Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers

In industrial processes such as those related with paper industry, coal or biomass combustion, particles can take irregular non-spherical shapes. However, in related numerical computations the assumption of spherical particle is customary, mainly because the fluid dynamic forces acting on such irreg...

Full description

Autores:
Sommerfeld, Martin
Castang Montiel, Carlos Eduardo
García Mina, Diego Felipe
Laín Beatove, Santiago
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14702
Acceso en línea:
https://hdl.handle.net/10614/14702
https://red.uao.edu.co/
Palabra clave:
Aerodinámica
Aerodynamics
Particle resolved direct numerical simulation
Non-spherical particles
Irregular shape
Sphericity
Flow resistance coefficients
Rights
openAccess
License
Derechos reservados - Elsevier, 2022
id REPOUAO2_ffb54b58f338133dfe83e501b9ac1b82
oai_identifier_str oai:red.uao.edu.co:10614/14702
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
title Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
spellingShingle Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
Aerodinámica
Aerodynamics
Particle resolved direct numerical simulation
Non-spherical particles
Irregular shape
Sphericity
Flow resistance coefficients
title_short Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
title_full Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
title_fullStr Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
title_full_unstemmed Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
title_sort Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
dc.creator.fl_str_mv Sommerfeld, Martin
Castang Montiel, Carlos Eduardo
García Mina, Diego Felipe
Laín Beatove, Santiago
dc.contributor.author.none.fl_str_mv Sommerfeld, Martin
Castang Montiel, Carlos Eduardo
García Mina, Diego Felipe
Laín Beatove, Santiago
dc.subject.armarc.spa.fl_str_mv Aerodinámica
topic Aerodinámica
Aerodynamics
Particle resolved direct numerical simulation
Non-spherical particles
Irregular shape
Sphericity
Flow resistance coefficients
dc.subject.armarc.eng.fl_str_mv Aerodynamics
dc.subject.proposal.eng.fl_str_mv Particle resolved direct numerical simulation
Non-spherical particles
Irregular shape
Sphericity
Flow resistance coefficients
description In industrial processes such as those related with paper industry, coal or biomass combustion, particles can take irregular non-spherical shapes. However, in related numerical computations the assumption of spherical particle is customary, mainly because the fluid dynamic forces acting on such irregular particles are unknown to a large extent. This contribution aims to generate new information about the flow resistance coefficients (forces and torques) experienced by non-spherical irregular-shaped particles with three different degrees of sphericity ψ (0.7, 0.8 and 0.89) immersed in a uniform flow at intermediate Reynolds numbers (i.e. Re = 1–200). For this purpose, Particle Resolved Direct Numerical Simulations (PR-DNS) are carried out by means of the Ansys-Fluent code using body fitted meshes where the irregular particle is well resolved. The flow coefficients are computed for a set of different particles belonging to the same sphericity group, considering a large number of orientations, which allows the construction of the corresponding distribution functions. Such distributions depend on Reynolds number and particle sphericity and can be reasonably well approximated by Gaussian distributions, which are determined by a mean value and a standard deviation. The obtained drag, lift and torque coefficients display expectedly a scattering around the mean values with a high sensitivity to the irregularity of the surface and particle intrinsic aspect ratio (φ). Additionally, the distribution of the angle formed between the transverse lift force and the transverse torque in the plane orthogonal to the flow direction is computed. The generated information will be used to further pursue a novel statistical model for the fluid dynamic forces and torques acting on irregular particles in the frame of the Lagrangian approach
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-03
dc.date.accessioned.none.fl_str_mv 2023-05-05T20:01:50Z
dc.date.available.none.fl_str_mv 2023-05-05T20:01:50Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 00325910
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14702
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 00325910
Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
url https://hdl.handle.net/10614/14702
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 16
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 402
dc.relation.cites.spa.fl_str_mv Sommerfeld, M., García, D. F., Lain, S., Castang C. E. (2022). Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technology. (402), 1-16. https://hdl.handle.net/10614/14702
dc.relation.ispartofjournal.eng.fl_str_mv Powder Technology
dc.relation.references.none.fl_str_mv Blender 2.92 Reference Manual, https://docs.blender.org/manual/en/latest/index. html Visited 4th January 2021.
L. Grega, S. Anderson, M. Cheetham, M. Clemente, A. Colletti, W. Moy, D. Talarico, S.L. Thatcher, J.M. Osborn, Aerodynamic characteristics of Saccate pollen grains, Int. J. Plant Sci. 174 (2013) 499–510, https://doi.org/10.1086/668694
K. Chu, J. Chen, A. Yu, A. Vince, Particle scale modelling of the multiphase flow in a dense medium cyclone: effect of medium-to-coal ratio, Sydney, Australia 2013, pp. 1182–1185, https://doi.org/10.1063/1.4812148.
M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, Int. J. Multiph. Flow. 39 (2012) 227–239, https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.004
G. Bagheri, C. Bonadonna, On the drag of freely falling non-spherical particles, Pow- der Technol. 301 (2016) 526–544, https://doi.org/10.1016/j.powtec.2016.06.015
Filippone, N. Bojdo, Turboshaft engine air particle separation, Prog. Aerosp. Sci. 46 (2010) 224–245, https://doi.org/10.1016/j.paerosci.2010.02.001.
.E. Jewell-Larsen, S.V. Karpov, H. Ran, P. Savalia, K.A. Honer, Investigation of dust in electrohydrodynamic (EHD) systems, IEEE 2010, pp. 249–255, https://doi.org/10. 1109/STHERM.2010.5444283.
Measurement and Analysis of Sediment Loads in Streams, Inter-Agency Committee on Water Resources, Minneapolis, Minnesota 1957
M. Göğüş, O.N. İpekç i•, M.A. Kökpinar, Effect of particle shape on fall velocity of an- gular particles, J. Hydraul. Eng. 127 (2001) 860–869.
D.A. Smith, Effect of Particle Shape on Grain Size, Hydraulic, and Transport Charac- teristics of Calcareous Sand, University of Hawaii, 2003
G.R. Alger, D.B. Simons, Fall velocity of irregular shaped particles, J. Hydraul. Div. 94 (1968) 721–737. https://trid.trb.org/view/103861.
F. Dioguardi, D. Mele, A new shape dependent drag correlation formula for non- spherical rough particles. Experiments and results, Powder Technol. 277 (2015) 222–230, https://doi.org/10.1016/j.powtec.2015.02.062
R.A. Fletcher, D.S. Bright, Shape factors of ISO 12103-A3 (medium test dust), Filtr. Sep. 37 (2000)
R. Clift, W.H. Gauvin, Proceedings of Chemeca 70, Butterworths, Melbourne, 1970
G.H. Ganser, A rational approach to drag prediction of spherical and nonspherical particles, Powder Technol. 77 (1993) 143–152.
R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978.
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 16 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/266268c8-f27f-401f-89a6-688581b541f4/download
https://red.uao.edu.co/bitstreams/78e8c584-d91a-42b9-a3fb-16c9e6b78622/download
https://red.uao.edu.co/bitstreams/6f673fe1-cf23-4398-8e35-9747a43badc6/download
https://red.uao.edu.co/bitstreams/a5fd005b-dace-4b7c-9792-ef4860fc4933/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
ee35c2adf6a1ec29ad590ecf220b2dd3
eab729849235a6490e13a5f9dc290e4d
9f1f30f24a64c940fc2701029efde6ea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259887787474944
spelling Sommerfeld, Martin4225b01693727b10986bcc383715fa70Castang Montiel, Carlos Eduardovirtual::1218-1García Mina, Diego Felipe766fae0a7fad42cdff3371755d5583e0Laín Beatove, Santiagovirtual::2525-12023-05-05T20:01:50Z2023-05-05T20:01:50Z2022-0300325910https://hdl.handle.net/10614/14702Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/In industrial processes such as those related with paper industry, coal or biomass combustion, particles can take irregular non-spherical shapes. However, in related numerical computations the assumption of spherical particle is customary, mainly because the fluid dynamic forces acting on such irregular particles are unknown to a large extent. This contribution aims to generate new information about the flow resistance coefficients (forces and torques) experienced by non-spherical irregular-shaped particles with three different degrees of sphericity ψ (0.7, 0.8 and 0.89) immersed in a uniform flow at intermediate Reynolds numbers (i.e. Re = 1–200). For this purpose, Particle Resolved Direct Numerical Simulations (PR-DNS) are carried out by means of the Ansys-Fluent code using body fitted meshes where the irregular particle is well resolved. The flow coefficients are computed for a set of different particles belonging to the same sphericity group, considering a large number of orientations, which allows the construction of the corresponding distribution functions. Such distributions depend on Reynolds number and particle sphericity and can be reasonably well approximated by Gaussian distributions, which are determined by a mean value and a standard deviation. The obtained drag, lift and torque coefficients display expectedly a scattering around the mean values with a high sensitivity to the irregularity of the surface and particle intrinsic aspect ratio (φ). Additionally, the distribution of the angle formed between the transverse lift force and the transverse torque in the plane orthogonal to the flow direction is computed. The generated information will be used to further pursue a novel statistical model for the fluid dynamic forces and torques acting on irregular particles in the frame of the Lagrangian approach 16 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbersArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85AerodinámicaAerodynamicsParticle resolved direct numerical simulationNon-spherical particlesIrregular shapeSphericityFlow resistance coefficients161402Sommerfeld, M., García, D. F., Lain, S., Castang C. E. (2022). Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technology. (402), 1-16. https://hdl.handle.net/10614/14702Powder TechnologyBlender 2.92 Reference Manual, https://docs.blender.org/manual/en/latest/index. html Visited 4th January 2021.L. Grega, S. Anderson, M. Cheetham, M. Clemente, A. Colletti, W. Moy, D. Talarico, S.L. Thatcher, J.M. Osborn, Aerodynamic characteristics of Saccate pollen grains, Int. J. Plant Sci. 174 (2013) 499–510, https://doi.org/10.1086/668694K. Chu, J. Chen, A. Yu, A. Vince, Particle scale modelling of the multiphase flow in a dense medium cyclone: effect of medium-to-coal ratio, Sydney, Australia 2013, pp. 1182–1185, https://doi.org/10.1063/1.4812148.M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, Int. J. Multiph. Flow. 39 (2012) 227–239, https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.004G. Bagheri, C. Bonadonna, On the drag of freely falling non-spherical particles, Pow- der Technol. 301 (2016) 526–544, https://doi.org/10.1016/j.powtec.2016.06.015Filippone, N. Bojdo, Turboshaft engine air particle separation, Prog. Aerosp. Sci. 46 (2010) 224–245, https://doi.org/10.1016/j.paerosci.2010.02.001..E. Jewell-Larsen, S.V. Karpov, H. Ran, P. Savalia, K.A. Honer, Investigation of dust in electrohydrodynamic (EHD) systems, IEEE 2010, pp. 249–255, https://doi.org/10. 1109/STHERM.2010.5444283.Measurement and Analysis of Sediment Loads in Streams, Inter-Agency Committee on Water Resources, Minneapolis, Minnesota 1957M. Göğüş, O.N. İpekç i•, M.A. Kökpinar, Effect of particle shape on fall velocity of an- gular particles, J. Hydraul. Eng. 127 (2001) 860–869.D.A. Smith, Effect of Particle Shape on Grain Size, Hydraulic, and Transport Charac- teristics of Calcareous Sand, University of Hawaii, 2003G.R. Alger, D.B. Simons, Fall velocity of irregular shaped particles, J. Hydraul. Div. 94 (1968) 721–737. https://trid.trb.org/view/103861.F. Dioguardi, D. Mele, A new shape dependent drag correlation formula for non- spherical rough particles. Experiments and results, Powder Technol. 277 (2015) 222–230, https://doi.org/10.1016/j.powtec.2015.02.062R.A. Fletcher, D.S. Bright, Shape factors of ISO 12103-A3 (medium test dust), Filtr. Sep. 37 (2000)R. Clift, W.H. Gauvin, Proceedings of Chemeca 70, Butterworths, Melbourne, 1970G.H. Ganser, A rational approach to drag prediction of spherical and nonspherical particles, Powder Technol. 77 (1993) 143–152.R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978.Comunidad generalPublication58942dc4-b266-442c-9c3b-75d8a3a3d570virtual::1218-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2525-158942dc4-b266-442c-9c3b-75d8a3a3d570virtual::1218-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2525-1https://scholar.google.com/citations?view_op=list_works&hl=es&user=FM2T5T0AAAAJvirtual::1218-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2525-10009-0005-6686-7365virtual::1218-10000-0002-0269-2608virtual::2525-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000404217virtual::1218-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2525-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/266268c8-f27f-401f-89a6-688581b541f4/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdfAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdfTexto archivo completo del artículo de revista. pdfapplication/pdf5571978https://red.uao.edu.co/bitstreams/78e8c584-d91a-42b9-a3fb-16c9e6b78622/downloadee35c2adf6a1ec29ad590ecf220b2dd3MD53TEXTAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdf.txtAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdf.txtExtracted texttext/plain68098https://red.uao.edu.co/bitstreams/6f673fe1-cf23-4398-8e35-9747a43badc6/downloadeab729849235a6490e13a5f9dc290e4dMD54THUMBNAILAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdf.jpgAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdf.jpgGenerated Thumbnailimage/jpeg5925https://red.uao.edu.co/bitstreams/a5fd005b-dace-4b7c-9792-ef4860fc4933/download9f1f30f24a64c940fc2701029efde6eaMD5510614/14702oai:red.uao.edu.co:10614/147022024-03-21 09:36:31.474https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K