Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers
In industrial processes such as those related with paper industry, coal or biomass combustion, particles can take irregular non-spherical shapes. However, in related numerical computations the assumption of spherical particle is customary, mainly because the fluid dynamic forces acting on such irreg...
- Autores:
-
Sommerfeld, Martin
Castang Montiel, Carlos Eduardo
García Mina, Diego Felipe
Laín Beatove, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/14702
- Acceso en línea:
- https://hdl.handle.net/10614/14702
https://red.uao.edu.co/
- Palabra clave:
- Aerodinámica
Aerodynamics
Particle resolved direct numerical simulation
Non-spherical particles
Irregular shape
Sphericity
Flow resistance coefficients
- Rights
- openAccess
- License
- Derechos reservados - Elsevier, 2022
id |
REPOUAO2_ffb54b58f338133dfe83e501b9ac1b82 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/14702 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers |
title |
Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers |
spellingShingle |
Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers Aerodinámica Aerodynamics Particle resolved direct numerical simulation Non-spherical particles Irregular shape Sphericity Flow resistance coefficients |
title_short |
Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers |
title_full |
Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers |
title_fullStr |
Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers |
title_full_unstemmed |
Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers |
title_sort |
Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers |
dc.creator.fl_str_mv |
Sommerfeld, Martin Castang Montiel, Carlos Eduardo García Mina, Diego Felipe Laín Beatove, Santiago |
dc.contributor.author.none.fl_str_mv |
Sommerfeld, Martin Castang Montiel, Carlos Eduardo García Mina, Diego Felipe Laín Beatove, Santiago |
dc.subject.armarc.spa.fl_str_mv |
Aerodinámica |
topic |
Aerodinámica Aerodynamics Particle resolved direct numerical simulation Non-spherical particles Irregular shape Sphericity Flow resistance coefficients |
dc.subject.armarc.eng.fl_str_mv |
Aerodynamics |
dc.subject.proposal.eng.fl_str_mv |
Particle resolved direct numerical simulation Non-spherical particles Irregular shape Sphericity Flow resistance coefficients |
description |
In industrial processes such as those related with paper industry, coal or biomass combustion, particles can take irregular non-spherical shapes. However, in related numerical computations the assumption of spherical particle is customary, mainly because the fluid dynamic forces acting on such irregular particles are unknown to a large extent. This contribution aims to generate new information about the flow resistance coefficients (forces and torques) experienced by non-spherical irregular-shaped particles with three different degrees of sphericity ψ (0.7, 0.8 and 0.89) immersed in a uniform flow at intermediate Reynolds numbers (i.e. Re = 1–200). For this purpose, Particle Resolved Direct Numerical Simulations (PR-DNS) are carried out by means of the Ansys-Fluent code using body fitted meshes where the irregular particle is well resolved. The flow coefficients are computed for a set of different particles belonging to the same sphericity group, considering a large number of orientations, which allows the construction of the corresponding distribution functions. Such distributions depend on Reynolds number and particle sphericity and can be reasonably well approximated by Gaussian distributions, which are determined by a mean value and a standard deviation. The obtained drag, lift and torque coefficients display expectedly a scattering around the mean values with a high sensitivity to the irregularity of the surface and particle intrinsic aspect ratio (φ). Additionally, the distribution of the angle formed between the transverse lift force and the transverse torque in the plane orthogonal to the flow direction is computed. The generated information will be used to further pursue a novel statistical model for the fluid dynamic forces and torques acting on irregular particles in the frame of the Lagrangian approach |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-03 |
dc.date.accessioned.none.fl_str_mv |
2023-05-05T20:01:50Z |
dc.date.available.none.fl_str_mv |
2023-05-05T20:01:50Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
00325910 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/14702 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital UAO |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
00325910 Universidad Autónoma de Occidente Repositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/14702 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
16 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
402 |
dc.relation.cites.spa.fl_str_mv |
Sommerfeld, M., García, D. F., Lain, S., Castang C. E. (2022). Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technology. (402), 1-16. https://hdl.handle.net/10614/14702 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Powder Technology |
dc.relation.references.none.fl_str_mv |
Blender 2.92 Reference Manual, https://docs.blender.org/manual/en/latest/index. html Visited 4th January 2021. L. Grega, S. Anderson, M. Cheetham, M. Clemente, A. Colletti, W. Moy, D. Talarico, S.L. Thatcher, J.M. Osborn, Aerodynamic characteristics of Saccate pollen grains, Int. J. Plant Sci. 174 (2013) 499–510, https://doi.org/10.1086/668694 K. Chu, J. Chen, A. Yu, A. Vince, Particle scale modelling of the multiphase flow in a dense medium cyclone: effect of medium-to-coal ratio, Sydney, Australia 2013, pp. 1182–1185, https://doi.org/10.1063/1.4812148. M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, Int. J. Multiph. Flow. 39 (2012) 227–239, https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.004 G. Bagheri, C. Bonadonna, On the drag of freely falling non-spherical particles, Pow- der Technol. 301 (2016) 526–544, https://doi.org/10.1016/j.powtec.2016.06.015 Filippone, N. Bojdo, Turboshaft engine air particle separation, Prog. Aerosp. Sci. 46 (2010) 224–245, https://doi.org/10.1016/j.paerosci.2010.02.001. .E. Jewell-Larsen, S.V. Karpov, H. Ran, P. Savalia, K.A. Honer, Investigation of dust in electrohydrodynamic (EHD) systems, IEEE 2010, pp. 249–255, https://doi.org/10. 1109/STHERM.2010.5444283. Measurement and Analysis of Sediment Loads in Streams, Inter-Agency Committee on Water Resources, Minneapolis, Minnesota 1957 M. Göğüş, O.N. İpekç i•, M.A. Kökpinar, Effect of particle shape on fall velocity of an- gular particles, J. Hydraul. Eng. 127 (2001) 860–869. D.A. Smith, Effect of Particle Shape on Grain Size, Hydraulic, and Transport Charac- teristics of Calcareous Sand, University of Hawaii, 2003 G.R. Alger, D.B. Simons, Fall velocity of irregular shaped particles, J. Hydraul. Div. 94 (1968) 721–737. https://trid.trb.org/view/103861. F. Dioguardi, D. Mele, A new shape dependent drag correlation formula for non- spherical rough particles. Experiments and results, Powder Technol. 277 (2015) 222–230, https://doi.org/10.1016/j.powtec.2015.02.062 R.A. Fletcher, D.S. Bright, Shape factors of ISO 12103-A3 (medium test dust), Filtr. Sep. 37 (2000) R. Clift, W.H. Gauvin, Proceedings of Chemeca 70, Butterworths, Melbourne, 1970 G.H. Ganser, A rational approach to drag prediction of spherical and nonspherical particles, Powder Technol. 77 (1993) 143–152. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Elsevier, 2022 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsevier, 2022 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
16 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/266268c8-f27f-401f-89a6-688581b541f4/download https://red.uao.edu.co/bitstreams/78e8c584-d91a-42b9-a3fb-16c9e6b78622/download https://red.uao.edu.co/bitstreams/6f673fe1-cf23-4398-8e35-9747a43badc6/download https://red.uao.edu.co/bitstreams/a5fd005b-dace-4b7c-9792-ef4860fc4933/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 ee35c2adf6a1ec29ad590ecf220b2dd3 eab729849235a6490e13a5f9dc290e4d 9f1f30f24a64c940fc2701029efde6ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259887787474944 |
spelling |
Sommerfeld, Martin4225b01693727b10986bcc383715fa70Castang Montiel, Carlos Eduardovirtual::1218-1García Mina, Diego Felipe766fae0a7fad42cdff3371755d5583e0Laín Beatove, Santiagovirtual::2525-12023-05-05T20:01:50Z2023-05-05T20:01:50Z2022-0300325910https://hdl.handle.net/10614/14702Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/In industrial processes such as those related with paper industry, coal or biomass combustion, particles can take irregular non-spherical shapes. However, in related numerical computations the assumption of spherical particle is customary, mainly because the fluid dynamic forces acting on such irregular particles are unknown to a large extent. This contribution aims to generate new information about the flow resistance coefficients (forces and torques) experienced by non-spherical irregular-shaped particles with three different degrees of sphericity ψ (0.7, 0.8 and 0.89) immersed in a uniform flow at intermediate Reynolds numbers (i.e. Re = 1–200). For this purpose, Particle Resolved Direct Numerical Simulations (PR-DNS) are carried out by means of the Ansys-Fluent code using body fitted meshes where the irregular particle is well resolved. The flow coefficients are computed for a set of different particles belonging to the same sphericity group, considering a large number of orientations, which allows the construction of the corresponding distribution functions. Such distributions depend on Reynolds number and particle sphericity and can be reasonably well approximated by Gaussian distributions, which are determined by a mean value and a standard deviation. The obtained drag, lift and torque coefficients display expectedly a scattering around the mean values with a high sensitivity to the irregularity of the surface and particle intrinsic aspect ratio (φ). Additionally, the distribution of the angle formed between the transverse lift force and the transverse torque in the plane orthogonal to the flow direction is computed. The generated information will be used to further pursue a novel statistical model for the fluid dynamic forces and torques acting on irregular particles in the frame of the Lagrangian approach 16 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbersArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85AerodinámicaAerodynamicsParticle resolved direct numerical simulationNon-spherical particlesIrregular shapeSphericityFlow resistance coefficients161402Sommerfeld, M., García, D. F., Lain, S., Castang C. E. (2022). Aerodynamic coefficients of irregular non-spherical particles at intermediate Reynolds numbers. Powder Technology. (402), 1-16. https://hdl.handle.net/10614/14702Powder TechnologyBlender 2.92 Reference Manual, https://docs.blender.org/manual/en/latest/index. html Visited 4th January 2021.L. Grega, S. Anderson, M. Cheetham, M. Clemente, A. Colletti, W. Moy, D. Talarico, S.L. Thatcher, J.M. Osborn, Aerodynamic characteristics of Saccate pollen grains, Int. J. Plant Sci. 174 (2013) 499–510, https://doi.org/10.1086/668694K. Chu, J. Chen, A. Yu, A. Vince, Particle scale modelling of the multiphase flow in a dense medium cyclone: effect of medium-to-coal ratio, Sydney, Australia 2013, pp. 1182–1185, https://doi.org/10.1063/1.4812148.M. Zastawny, G. Mallouppas, F. Zhao, B. van Wachem, Derivation of drag and lift force and torque coefficients for non-spherical particles in flows, Int. J. Multiph. Flow. 39 (2012) 227–239, https://doi.org/10.1016/j.ijmultiphaseflow.2011.09.004G. Bagheri, C. Bonadonna, On the drag of freely falling non-spherical particles, Pow- der Technol. 301 (2016) 526–544, https://doi.org/10.1016/j.powtec.2016.06.015Filippone, N. Bojdo, Turboshaft engine air particle separation, Prog. Aerosp. Sci. 46 (2010) 224–245, https://doi.org/10.1016/j.paerosci.2010.02.001..E. Jewell-Larsen, S.V. Karpov, H. Ran, P. Savalia, K.A. Honer, Investigation of dust in electrohydrodynamic (EHD) systems, IEEE 2010, pp. 249–255, https://doi.org/10. 1109/STHERM.2010.5444283.Measurement and Analysis of Sediment Loads in Streams, Inter-Agency Committee on Water Resources, Minneapolis, Minnesota 1957M. Göğüş, O.N. İpekç i•, M.A. Kökpinar, Effect of particle shape on fall velocity of an- gular particles, J. Hydraul. Eng. 127 (2001) 860–869.D.A. Smith, Effect of Particle Shape on Grain Size, Hydraulic, and Transport Charac- teristics of Calcareous Sand, University of Hawaii, 2003G.R. Alger, D.B. Simons, Fall velocity of irregular shaped particles, J. Hydraul. Div. 94 (1968) 721–737. https://trid.trb.org/view/103861.F. Dioguardi, D. Mele, A new shape dependent drag correlation formula for non- spherical rough particles. Experiments and results, Powder Technol. 277 (2015) 222–230, https://doi.org/10.1016/j.powtec.2015.02.062R.A. Fletcher, D.S. Bright, Shape factors of ISO 12103-A3 (medium test dust), Filtr. Sep. 37 (2000)R. Clift, W.H. Gauvin, Proceedings of Chemeca 70, Butterworths, Melbourne, 1970G.H. Ganser, A rational approach to drag prediction of spherical and nonspherical particles, Powder Technol. 77 (1993) 143–152.R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 1978.Comunidad generalPublication58942dc4-b266-442c-9c3b-75d8a3a3d570virtual::1218-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2525-158942dc4-b266-442c-9c3b-75d8a3a3d570virtual::1218-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2525-1https://scholar.google.com/citations?view_op=list_works&hl=es&user=FM2T5T0AAAAJvirtual::1218-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2525-10009-0005-6686-7365virtual::1218-10000-0002-0269-2608virtual::2525-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000404217virtual::1218-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2525-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/266268c8-f27f-401f-89a6-688581b541f4/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdfAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdfTexto archivo completo del artículo de revista. pdfapplication/pdf5571978https://red.uao.edu.co/bitstreams/78e8c584-d91a-42b9-a3fb-16c9e6b78622/downloadee35c2adf6a1ec29ad590ecf220b2dd3MD53TEXTAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdf.txtAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdf.txtExtracted texttext/plain68098https://red.uao.edu.co/bitstreams/6f673fe1-cf23-4398-8e35-9747a43badc6/downloadeab729849235a6490e13a5f9dc290e4dMD54THUMBNAILAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdf.jpgAerodynamic_coefficients_of_irregular_non_spherical_particles_at-intermediate_Reynolds_numbers.pdf.jpgGenerated Thumbnailimage/jpeg5925https://red.uao.edu.co/bitstreams/a5fd005b-dace-4b7c-9792-ef4860fc4933/download9f1f30f24a64c940fc2701029efde6eaMD5510614/14702oai:red.uao.edu.co:10614/147022024-03-21 09:36:31.474https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |