Biomass logistics and environmental impact modelling for sugar-ethanol production
The goal of this paper is to evaluate the supply of sugarcane to mills and also the supply of green harvesting residues to second-generation ethanol plants under three different strategies: chopping, baling and integral harvesting. A dynamic model was developed in order to simulate the biomass flow...
- Autores:
-
Lozano Moreno, Jairo Alexander
Maréchal, François
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11524
- Palabra clave:
- Bioetanol
Bioethanol
Biomass logistics
Sugarcane residues
Environmental impact
Waste-to-energy
Bioenergy
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_fcf8c6e172be48cab2875fd2ee06785a |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11524 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Biomass logistics and environmental impact modelling for sugar-ethanol production |
title |
Biomass logistics and environmental impact modelling for sugar-ethanol production |
spellingShingle |
Biomass logistics and environmental impact modelling for sugar-ethanol production Bioetanol Bioethanol Biomass logistics Sugarcane residues Environmental impact Waste-to-energy Bioenergy |
title_short |
Biomass logistics and environmental impact modelling for sugar-ethanol production |
title_full |
Biomass logistics and environmental impact modelling for sugar-ethanol production |
title_fullStr |
Biomass logistics and environmental impact modelling for sugar-ethanol production |
title_full_unstemmed |
Biomass logistics and environmental impact modelling for sugar-ethanol production |
title_sort |
Biomass logistics and environmental impact modelling for sugar-ethanol production |
dc.creator.fl_str_mv |
Lozano Moreno, Jairo Alexander Maréchal, François |
dc.contributor.author.none.fl_str_mv |
Lozano Moreno, Jairo Alexander Maréchal, François |
dc.subject.armarc.spa.fl_str_mv |
Bioetanol |
topic |
Bioetanol Bioethanol Biomass logistics Sugarcane residues Environmental impact Waste-to-energy Bioenergy |
dc.subject.armarc.eng.fl_str_mv |
Bioethanol |
dc.subject.proposal.eng.fl_str_mv |
Biomass logistics Sugarcane residues Environmental impact Waste-to-energy Bioenergy |
description |
The goal of this paper is to evaluate the supply of sugarcane to mills and also the supply of green harvesting residues to second-generation ethanol plants under three different strategies: chopping, baling and integral harvesting. A dynamic model was developed in order to simulate the biomass flow along the main activities within sugar-ethanol supply chain. Weather, geographical and operational constraints were considered for calculating the biomass availability. The model is able to quantify the production of sugar and first-generation ethanol from mills, electricity surplus from co-generation and second-generation ethanol with the aim of evaluating operational, economic and environmental indicators. In this study it was found that the integral harvesting is the best strategy for supply the residues in terms of cost (5.90 USD/dry t), energy inputs (56.89 MJ/dry t) and carbon emissions (4.18 kg CO2/dry t). The low resources utilization due to the inappropriate harvest-load-transport synchronization creates bottlenecks that decrease the system throughput, leaving the door open for further improvements |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-18T20:19:54Z |
dc.date.available.none.fl_str_mv |
2019-11-18T20:19:54Z |
dc.date.issued.none.fl_str_mv |
2019-02-10 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0959-6526 |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/11524 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.jclepro.2018.10.310 |
identifier_str_mv |
0959-6526 |
url |
http://hdl.handle.net/10614/11524 https://doi.org/10.1016/j.jclepro.2018.10.310 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
324 |
dc.relation.citationstartpage.none.fl_str_mv |
317 |
dc.relation.citationvolume.none.fl_str_mv |
210 |
dc.relation.cites.eng.fl_str_mv |
Lozano-Moreno, J. A., & Maréchal, F. (2019). Biomass logistics and environmental impact modelling for sugar-ethanol production. Journal of cleaner production, 210, 317-324 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of Cleaner Production |
dc.relation.references.none.fl_str_mv |
Allen et al., 1996 J. Allen, M. Browne, A. Hunter, J. Boyd, H. Palmer Logistics management and costs of biomass fuel supply Transport Supp. Logist. Biomass Fuel. (1) Supp. Chain Opt. Biomass Fuel. (1996), pp. 463-477 Atchison and Hettenhaus, 2003 J. Atchison, J. Hettenhaus Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting NREL (2003) Briceno et al., 2001 C.O. Briceno, J.H. Cock, J. Torres Electric power from green harvesting residues of sugar cane in Colombia: a Pre-Feasibility Study on its Technical and Economic Viability Int. Sugar J., 1227 (103) (2001), pp. 107-111 Buckmaster and Hilton, 2005 D. Buckmaster, J. Hilton Computerized cycle analysis of harvest, transport, and unload systems Comput. Electron. Agric. (47) (2005), pp. 137-147 Carbonell et al., 2011 J.A. Carbonell, R. Quintero, J.S. Torres, C. Osorio, C.H. Isaacs, J.I. Victoria Agroecological Zoning for the Cultivation of Sugarcane in the Cauca Valley (fourth ed.), CENICAÑA, Cali (2011) Technical report No. 38. (In Spanish) Cardoso et al., 2013 T. Cardoso, O. Cavalett, M. Ferreira Chagas, E.R. de Morais, J.L. Nunes Carvalho, H.C. Junqueira Franco, O. A. Braunbeck Technical and economic assessment of trash recovery in the sugarcane bioenergy production system Sci. Agric., 5 (70) (2013), pp. 353-360 Delivand et al., 2011 M.K. Delivand, M. Barz, S. Gheewala Logistics cost analysis of rice straw for biomass power generation in Thailand Energy (2011), pp. 1435-1441 Duan et al., 1998 J. Duan, J. Selker, G. Grant Evaluation of probability density functions in precipitation models for the Pacific Northwest J. Am. Water Resour. Assoc., 3 (34) (1998), pp. 617-627 Dukulis et al., 2008 I. Dukulis, G. Birzietis, D. Kanaska Optimization Models for Biofuel Logistic Systems Engineering for rural development (2008), pp. 283-289 Ebadian, 2013 M. Ebadian Design and Scheduling of Agricultural Biomass Supply Chain for a Cellulosic Ethanol Plant Doctoral thesis). University of British Columbia, Vancouver (2013) Fedebiocombustibles, 2016 Fedebiocombustibles Anhydrous Ethanol from Sugarcane (2016) (In Spanish) http://www.fedebiocombustibles.com/estadistica-mostrar_info-titulo-Alcohol_Carburante_(Etanol).htm, Accessed 27th Feb 2017 Figueira et al., 2011 J.D. Figueira, P.H. Varvalho, H.H. Sato Sugarcane starch: quantitative determination and characterization Ciencia Tecnol. Aliment., 3 (31) (2011), pp. 806-815 García, 2014 C. García Long-term trends in the Colombian energy sector Energy TR3lemma Summit-WEC, UPME, Cartagena (2014) (In Spanish) Hassuani et al., 2005 S.J. Hassuani, M.R. Verde, I. Macedo Biomass Power Generation: Sugar Cane Bagasse and Trash PNUD-CTC, Piracicaba (2005) IEA, 2010 IEA World Energy Outlook 2010 OECD/International Energy Agency, Paris (2010) IEA, 2014 IEA IEA Energy Atlas (2014) https://www.iea.org/countries/non-membercountries/colombia/, Accessed 26th Sep 2018 Iqbal, 2008 Q. Iqbal Optimal Distillers Distribution Planning in an Ethanol Supply Chain (Master thesis) Wichita State University, Whichita (2008) Lozano and Contreras, 2011 A. Lozano, S. Contreras Design of a logistic pilot system for the collection of sugarcane agricultural residues in Valle del Cauca. (Master thesis) Universidad Autónoma de Occidente, Cali (2011) (In Spanish) Lozano et al., 2015 J. Lozano, M. Delivand, F. Maréchal Comparative evaluation of three sugarcane supply strategies in Colombia: logistic, energy and GHG emissions Int. J. Therm., 3 (18) (2015), pp. 171-178 Michelazzo and Braunbeck, 2008 M. Michelazzo, O. Braunbeck Analysis of six straw collection systems after sugarcane mechanical Rev. Bras. Eng. Agrícola Ambient., 5 (12) (2008), pp. 546-552 (In Portuguese) NREL., 2002 NREL Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover NREL, Golden Colorado (2002) Puertas et al., 2011 O. Puertas, Y. Carvajal, M. Quintero Monthly precipitation analysis in the high-middle basin of the Cauca Rive Dyna, 169 (2011), pp. 112-120 (In Spanish) Richardson et al., 2012 B. Richardson, J. Anderson, H. Heath, I. Mostad Sugarcane and the Global Land Grab: a Primer for Producers and Buyers (2012) https://www2.warwick.ac.uk/fac/soc/pais/people/richardson/publications/sugarcane_and_the_global_land_grab.pdf, Accessed 8th Mar 2017 Searcy and Flynn, 2009 E. Searcy, P. Flynn The impact of biomass availability and processing cost on optimum size and processing technology selection Appl. Biochem. Biotechnol., 154 (2009), pp. 271-286 Sims, 2002 R. Sims The brilliance of bioenergy James, James (Eds.), Business and in Practice (2002) (London) Sokhansanj and Turhollow, 2002 S. Sokhansanj, A. Turhollow Baseline cost for corn stover collection Appl. Eng. Agric., 18 (2002), pp. 525-532 Sokhansanj et al., 2008 S. Sokhansanj, A. Turhollow, E. Wilkerson Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL) Oak Ridge National Laboratory report, Tennessee (2008) Toasa, 2009 J. Toasa Colombia: a New Ethanol Producer on the Rise? United States Department of Agriculture (2009) Torres and Villegas, 2006 J. Torres, F. Villegas Management and use of green harvest residues CENICAÑA, 165 (2006) (In Spanish) UPME, 2009 UPME Biofuels in Colombia. Colombian Energy Mining Planning Unit (2009) (In Spanish) http://www.upme.gov.co/docs/biocombustibles_colombia.pdf, Accessed 3rd Feb 2017 Vijay, 1987 S. Vijay On application of the weibull distribution in hydrology Water Resour. Manag., 3343 (1987), pp. 33-43 Zhu and Yao, 2011 X. Zhu, Q. Yao Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks Bioresour. Technol. (102) (2011), pp. 10936-10945 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.eng.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.coverage.spatial.none.fl_str_mv |
Valle del Cauca, Colombia Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Elsevier |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/02ccba91-9b7e-4caa-97ee-fdee421040bf/download https://red.uao.edu.co/bitstreams/3c5a4a26-2e2e-464c-a1c0-6c9b6fe33c9b/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260025731842048 |
spelling |
Lozano Moreno, Jairo Alexandervirtual::2844-1Maréchal, Françoisee8f82873153062c137f198ed99b212fValle del Cauca, ColombiaUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-18T20:19:54Z2019-11-18T20:19:54Z2019-02-100959-6526http://hdl.handle.net/10614/11524https://doi.org/10.1016/j.jclepro.2018.10.310The goal of this paper is to evaluate the supply of sugarcane to mills and also the supply of green harvesting residues to second-generation ethanol plants under three different strategies: chopping, baling and integral harvesting. A dynamic model was developed in order to simulate the biomass flow along the main activities within sugar-ethanol supply chain. Weather, geographical and operational constraints were considered for calculating the biomass availability. The model is able to quantify the production of sugar and first-generation ethanol from mills, electricity surplus from co-generation and second-generation ethanol with the aim of evaluating operational, economic and environmental indicators. In this study it was found that the integral harvesting is the best strategy for supply the residues in terms of cost (5.90 USD/dry t), energy inputs (56.89 MJ/dry t) and carbon emissions (4.18 kg CO2/dry t). The low resources utilization due to the inappropriate harvest-load-transport synchronization creates bottlenecks that decrease the system throughput, leaving the door open for further improvementsapplication/pdf7 páginasengElsevierDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Biomass logistics and environmental impact modelling for sugar-ethanol productionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BioetanolBioethanolBiomass logisticsSugarcane residuesEnvironmental impactWaste-to-energyBioenergy324317210Lozano-Moreno, J. A., & Maréchal, F. (2019). Biomass logistics and environmental impact modelling for sugar-ethanol production. Journal of cleaner production, 210, 317-324Journal of Cleaner ProductionAllen et al., 1996 J. Allen, M. Browne, A. Hunter, J. Boyd, H. Palmer Logistics management and costs of biomass fuel supply Transport Supp. Logist. Biomass Fuel. (1) Supp. Chain Opt. Biomass Fuel. (1996), pp. 463-477Atchison and Hettenhaus, 2003 J. Atchison, J. Hettenhaus Innovative Methods for Corn Stover Collecting, Handling, Storing and Transporting NREL (2003)Briceno et al., 2001 C.O. Briceno, J.H. Cock, J. Torres Electric power from green harvesting residues of sugar cane in Colombia: a Pre-Feasibility Study on its Technical and Economic Viability Int. Sugar J., 1227 (103) (2001), pp. 107-111Buckmaster and Hilton, 2005 D. Buckmaster, J. Hilton Computerized cycle analysis of harvest, transport, and unload systems Comput. Electron. Agric. (47) (2005), pp. 137-147Carbonell et al., 2011 J.A. Carbonell, R. Quintero, J.S. Torres, C. Osorio, C.H. Isaacs, J.I. Victoria Agroecological Zoning for the Cultivation of Sugarcane in the Cauca Valley (fourth ed.), CENICAÑA, Cali (2011) Technical report No. 38. (In Spanish)Cardoso et al., 2013 T. Cardoso, O. Cavalett, M. Ferreira Chagas, E.R. de Morais, J.L. Nunes Carvalho, H.C. Junqueira Franco, O. A. Braunbeck Technical and economic assessment of trash recovery in the sugarcane bioenergy production system Sci. Agric., 5 (70) (2013), pp. 353-360Delivand et al., 2011 M.K. Delivand, M. Barz, S. Gheewala Logistics cost analysis of rice straw for biomass power generation in Thailand Energy (2011), pp. 1435-1441Duan et al., 1998 J. Duan, J. Selker, G. Grant Evaluation of probability density functions in precipitation models for the Pacific Northwest J. Am. Water Resour. Assoc., 3 (34) (1998), pp. 617-627Dukulis et al., 2008 I. Dukulis, G. Birzietis, D. Kanaska Optimization Models for Biofuel Logistic Systems Engineering for rural development (2008), pp. 283-289Ebadian, 2013 M. Ebadian Design and Scheduling of Agricultural Biomass Supply Chain for a Cellulosic Ethanol Plant Doctoral thesis). University of British Columbia, Vancouver (2013)Fedebiocombustibles, 2016 Fedebiocombustibles Anhydrous Ethanol from Sugarcane (2016) (In Spanish) http://www.fedebiocombustibles.com/estadistica-mostrar_info-titulo-Alcohol_Carburante_(Etanol).htm, Accessed 27th Feb 2017Figueira et al., 2011 J.D. Figueira, P.H. Varvalho, H.H. Sato Sugarcane starch: quantitative determination and characterization Ciencia Tecnol. Aliment., 3 (31) (2011), pp. 806-815García, 2014 C. García Long-term trends in the Colombian energy sector Energy TR3lemma Summit-WEC, UPME, Cartagena (2014) (In Spanish)Hassuani et al., 2005 S.J. Hassuani, M.R. Verde, I. Macedo Biomass Power Generation: Sugar Cane Bagasse and Trash PNUD-CTC, Piracicaba (2005)IEA, 2010 IEA World Energy Outlook 2010 OECD/International Energy Agency, Paris (2010)IEA, 2014 IEA IEA Energy Atlas (2014) https://www.iea.org/countries/non-membercountries/colombia/, Accessed 26th Sep 2018Iqbal, 2008 Q. Iqbal Optimal Distillers Distribution Planning in an Ethanol Supply Chain (Master thesis) Wichita State University, Whichita (2008)Lozano and Contreras, 2011 A. Lozano, S. Contreras Design of a logistic pilot system for the collection of sugarcane agricultural residues in Valle del Cauca. (Master thesis) Universidad Autónoma de Occidente, Cali (2011) (In Spanish)Lozano et al., 2015 J. Lozano, M. Delivand, F. Maréchal Comparative evaluation of three sugarcane supply strategies in Colombia: logistic, energy and GHG emissions Int. J. Therm., 3 (18) (2015), pp. 171-178Michelazzo and Braunbeck, 2008 M. Michelazzo, O. Braunbeck Analysis of six straw collection systems after sugarcane mechanical Rev. Bras. Eng. Agrícola Ambient., 5 (12) (2008), pp. 546-552 (In Portuguese)NREL., 2002 NREL Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover NREL, Golden Colorado (2002)Puertas et al., 2011 O. Puertas, Y. Carvajal, M. Quintero Monthly precipitation analysis in the high-middle basin of the Cauca Rive Dyna, 169 (2011), pp. 112-120 (In Spanish)Richardson et al., 2012 B. Richardson, J. Anderson, H. Heath, I. Mostad Sugarcane and the Global Land Grab: a Primer for Producers and Buyers (2012) https://www2.warwick.ac.uk/fac/soc/pais/people/richardson/publications/sugarcane_and_the_global_land_grab.pdf, Accessed 8th Mar 2017Searcy and Flynn, 2009 E. Searcy, P. Flynn The impact of biomass availability and processing cost on optimum size and processing technology selection Appl. Biochem. Biotechnol., 154 (2009), pp. 271-286Sims, 2002 R. Sims The brilliance of bioenergy James, James (Eds.), Business and in Practice (2002) (London)Sokhansanj and Turhollow, 2002 S. Sokhansanj, A. Turhollow Baseline cost for corn stover collection Appl. Eng. Agric., 18 (2002), pp. 525-532Sokhansanj et al., 2008 S. Sokhansanj, A. Turhollow, E. Wilkerson Development of the Integrated Biomass Supply Analysis and Logistics Model (IBSAL) Oak Ridge National Laboratory report, Tennessee (2008)Toasa, 2009 J. Toasa Colombia: a New Ethanol Producer on the Rise? United States Department of Agriculture (2009)Torres and Villegas, 2006 J. Torres, F. Villegas Management and use of green harvest residues CENICAÑA, 165 (2006) (In Spanish)UPME, 2009 UPME Biofuels in Colombia. Colombian Energy Mining Planning Unit (2009) (In Spanish) http://www.upme.gov.co/docs/biocombustibles_colombia.pdf, Accessed 3rd Feb 2017Vijay, 1987 S. Vijay On application of the weibull distribution in hydrology Water Resour. Manag., 3343 (1987), pp. 33-43Zhu and Yao, 2011 X. Zhu, Q. Yao Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks Bioresour. Technol. (102) (2011), pp. 10936-10945Publicationc8ef2364-e122-49ec-a893-545516b851b5virtual::2844-1c8ef2364-e122-49ec-a893-545516b851b5virtual::2844-1https://scholar.google.com/citations?user=6WU9KzMAAAAJ&hl=envirtual::2844-10000-0001-9139-5615virtual::2844-1https://scienti.minciencias.gov.covirtual::2844-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/02ccba91-9b7e-4caa-97ee-fdee421040bf/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/3c5a4a26-2e2e-464c-a1c0-6c9b6fe33c9b/download20b5ba22b1117f71589c7318baa2c560MD5310614/11524oai:red.uao.edu.co:10614/115242024-03-07 14:04:56.96https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |