Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach
Wolbachia is a maternally transmitted bacterial symbiont which is known to reduce the vector competence of mosquitoes and other arthropod species. Therefore, Wolbachia-based biocontrol is regarded as a practicable method for prevention and control of dengue and other arboviral infections. In particu...
- Autores:
-
Cardona Salgado, Daiver
Campo Duarte, Doris Elena
Vasilieva, Olga
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11218
- Acceso en línea:
- http://hdl.handle.net/10614/11218
http://dx.doi.org/10.18576/amis/110408
- Palabra clave:
- Artrópodos vectores
Arthropod vectors
Population dynamics
Biological control
Wolbachia strain
Aedes aegypti
Optimal control
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_fc056b8d3643f7a4362238c6e56dfa43 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11218 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach |
title |
Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach |
spellingShingle |
Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach Artrópodos vectores Arthropod vectors Population dynamics Biological control Wolbachia strain Aedes aegypti Optimal control |
title_short |
Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach |
title_full |
Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach |
title_fullStr |
Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach |
title_full_unstemmed |
Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach |
title_sort |
Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approach |
dc.creator.fl_str_mv |
Cardona Salgado, Daiver Campo Duarte, Doris Elena Vasilieva, Olga |
dc.contributor.author.none.fl_str_mv |
Cardona Salgado, Daiver Campo Duarte, Doris Elena Vasilieva, Olga |
dc.subject.armarc.spa.fl_str_mv |
Artrópodos vectores |
topic |
Artrópodos vectores Arthropod vectors Population dynamics Biological control Wolbachia strain Aedes aegypti Optimal control |
dc.subject.armarc.eng.fl_str_mv |
Arthropod vectors |
dc.subject.proposal.eng.fl_str_mv |
Population dynamics Biological control Wolbachia strain Aedes aegypti Optimal control |
description |
Wolbachia is a maternally transmitted bacterial symbiont which is known to reduce the vector competence of mosquitoes and other arthropod species. Therefore, Wolbachia-based biocontrol is regarded as a practicable method for prevention and control of dengue and other arboviral infections. In particular, a deliberate infection of Aedes aegypti females with wMelPop Wolbachia strain makes them almost incapable of transmitting dengue and other arboviruses. In this paper, we present and thoroughly analyze a population dynamics model of interaction between wild Aedes aegypti female mosquitoes and those infected with wMelPop Wolbachia strain, which compete for the same vital resources (food, breeding sites, etc.) and share the same locality. Using this model, we demonstrate that the final outcome of the competition essentially depends on the frequency of Wolbachia infection. Further, we apply the optimal control approach and design the control intervention programs based on periodic releases of Wolbachia-carrying females for establishing wMelPop Wolbachia infection in the target locality |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-07-01 |
dc.date.accessioned.none.fl_str_mv |
2019-10-16T13:32:31Z |
dc.date.available.none.fl_str_mv |
2019-10-16T13:32:31Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1935-0090 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11218 |
dc.identifier.doi.spa.fl_str_mv |
http://dx.doi.org/10.18576/amis/110408 |
identifier_str_mv |
1935-0090 |
url |
http://hdl.handle.net/10614/11218 http://dx.doi.org/10.18576/amis/110408 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
1027 |
dc.relation.citationissue.none.fl_str_mv |
4 |
dc.relation.citationstartpage.none.fl_str_mv |
1011 |
dc.relation.cites.spa.fl_str_mv |
Campo-Duarte, D. E., Cardona-Salgado, D., & Vasilieva, O. (2017). Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach. Applied Mathematics & Information Sciences An International Journa, 11(4), 1011-1027 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Applied Mathematics and Information Sciences |
dc.relation.references.none.fl_str_mv |
[1] U. Ascher, R. Mattheij, and R. D. Russell. Numerical solution of boundary value problems for ordinary differential equations. Prentice Hall Series in Computational Mathematics. Prentice Hall Inc., Englewood Cliffs, NJ, 1988. [2] K. Blayneh, Y. Cao, and H. Kwon. Optimal control of vector-borne diseases: treatment and prevention. Discrete and Continuous Dynamical Systems B, 11(3):587–611, 2009. [3] P.-A. Bliman, M. Aronna, and M. Coelho, F. da Silva. Global stabilizing feedback law for a problem of biological control of mosquito-borne diseases. In 2015 54th IEEE Conference on Decision and Control (CDC), pages 3206–3211. IEEE, 2015. [4] N. Britton. Essential Mathematical Biology. Springer Undergraduate Mathematics Series. Springer, London, 2012. [5] D. Campo-Duarte, O. Vasilieva, and D. Cardona-Salgado. Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females. International Journal of Pure and Applied Mathematics, 112(2):219–238, 2017. [6] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, and M. Svinin. Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations. Preprint, submitted for review, 2017. [7] A. Clements. The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, volume 3. CABI, Cambridge, UK, 2012. [8] A. Costero, J. Edman, G. Clark, and T. Scott. Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. Journal of Medical Entomology, 35(5):809–813, 1998. [9] Stephen L Dobson, Charles W Fox, and Francis M Jiggins. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proceedings of the Royal Society of London B: Biological Sciences, 269(1490):437–445, 2002. [10] H. Dutra, M. Rocha, F. Dias, S. Mansur, and L. Caragata, E.and Moreira. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell host & microbe, 19(6):771–774, 2016. [11] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. Ryan, S. ONeill, E. McGraw, V. Long, L. Dui, H. Nguyen, N. Vinh Chau, B. Wills, and C. Simmons. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Science translational medicine, 7(279):279ra37–279ra37, 2015. [12] W. Fleming and R. Rishel. Deterministic and stochastic optimal control. Springer, New York, 1975. [13] D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, and G. Huntington. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 46(11):1843–1851, 2010. [14] P. Hancock, V. White, A. Callahan, C. Godfray, A. Hoffmann, and S. Ritchie. Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. Journal of Applied Ecology, 53:785–793, 2016. [15] A. Hoffmann. Facilitating Wolbachia invasions. Austral Entomology, 53(2):125–132, 2014. [16] J. Kamtchum-Tatuene, B. Makepeace, L. Benjamin, M. Baylis, and T. Solomon. The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Current Opinion in Infectious Diseases, 30(1):108–116, 2017. [17] D. Kroese, T. Taimre, and Z. Botev. Handbook of Monte Carlo Methods. Wiley Series in Probability and Statistics 706. Wiley, 2011. [18] J.D. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, Chichester, UK, 1991. [19] A. Lawson. Statistical Methods in Spatial Epidemiology. Wiley Series in Probability and Statistics. Wiley, 2 edition, 2006. [20] M. Legros, A. Lloyd, Y. Huang, and F. Gould. Densitydependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): revisiting the current paradigm. Journal of medical entomology, 46(3):409–419, 2009. [21] S. Lenhart and J. Workman. Optimal control applied to biological models. Chapman & Hall/CRC, Boca Raton, FL, 2007. [22] J. N. Liles. Effects of mating or association of the sexes on longevity in Aedes aegypti (l.). Mosquito News, 25:434–439, 1965. [23] C. Manore, K. Hickmann, S. Xu, H. Wearing, and J. Hyman. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Journal of theoretical biology, 356:174–191, 2014. [24] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, and S. O’Neill. Stable introduction of a lifeshortening Wolbachia infection into the mosquito Aedes aegypti. Science, 323(5910):141–144, 2009. [25] C. McMeniman and S. O’Neill. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis, 4(7):e748, 2010. [26] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, and S. O’Neill. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell, 139(7):1268–1278, 2009. [27] D. Moulay, M. Aziz-Alaoui, and H. Kwon. Optimal control of chikungunya disease: larvae reduction, treatment andcprevention. Mathematical Biosciences and Engineering,c9(2):369–392, 2012. [28] H. Nguyen, T. Nguyen, T. Nguyen, S. Vu, N. Tran, T. Le, Q. Vien, T. Bui, H. Le, S. Kutcher, T. Hurst, T. Duong, J. Jeffery, J. Darbro, H. Kay, I. Iturbe-Ormaetxe, J. Popovici, B. Montgomery, A. Turley, F. Zigterman, H. Cook, P. Cook, P. Johnson, P. Ryan, C. Paton, S. Ritchie, C. Simmons, S. ONeill, and A. Hoffmann. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasites & vectors, 8(563):1–14, 2015. [29] K. Okosun, R. Ouifki, and N. Marcus. Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems, 106(2):136–145, 2011. [30] K. Okosun, O. Rachid, and N. Marcus. Optimal control strategies and cost-effectiveness analysis of a malariamodel. BioSystems, 111(2):83–101, 2013. [31] M. Patterson and A. Rao. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software (TOMS), 41(1):1, 2014. [32] S. Ritchie, M. Townsend, C. Paton, A. Callahan, and A. Hoffmann. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis, 9(7):e0003930, 2015. [33] S. Roberts and J. Shipman. Two-Point Boundary Value Problems: Shooting Methods. Modern analytic and computational methods in science and mathematics, no. 31. American Elsevier Pub. Co., 1972. [34] P. Ross, N. Endersby, H. Yeap, and A. Hoffmann. Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti. The American journal of tropical medicine and hygiene, 91(1):198–205, 2014. [35] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Aggarwal, M. Schwemmer, C. Hom, R. Grosberg, and S. Schreiber. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Journal of theoretical biology, 297:26–32, 2012. [36] L. S. Sep´ulveda and O. Vasilieva. Optimal control approach to dengue reduction and prevention in Cali, Colombia. Mathematical Methods in the Applied Sciences, 39(18):5475–5496, 2016. [37] L. Sep´ulveda-Salcedo, O. Vasilieva, H. Mart´ınez-Romero, and J. Arias-Castro. Ross-Macdonald: Un modelo para la din´amica del dengue en Cali, Colombia [Ross-Macdonald: A model for the dengue dynamic in Cali, Colombia]. Revista de Salud P´ublica, 17(5):749–761, 2015. [38] M. Trpis, W. Hausermann, and G. Craig. Estimates of population size, dispersal, and longevity of domestic Aedes aegypti (Diptera: Culicidae) by mark–release–recapture in the village of Shauri Moyo in Eastern Kenya. Journal of Medical Entomology, 32(1):27–33, 1995. [39] M. Turelli. Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64(1):232–241, 2010. [40] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. ONeill, and A. Hoffmann. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476(7361):450–453, 2011. [41] I. Woolfit, M.and Iturbe-Ormaetxe, J. Brownlie, T. Walker, M. Riegler, A. Seleznev, J. Popovici, E. Ranc`es, B. Wee, J. Pavlides, M. Sullivan, S. Beatson, A. Lane, M. Sidhu, C. McMeniman, E. McGraw, and S. O’Neill. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome biology and evolution, 5(11):2189–2204, 2013. [42] H. Yeap, J. Axford, J. Popovici, N. Endersby, I. Iturbe-Ormaetxe, S. Ritchie, and A. Hoffmann. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasites & vectors, 7(58):1–13, 2014. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
17 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Natural Sciences Publishing |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/605c669c-d2c8-47e8-90e5-6d24b3c81289/download https://red.uao.edu.co/bitstreams/cd59785d-ff9d-4faf-b3fe-6c723228b586/download https://red.uao.edu.co/bitstreams/7bfe595b-b635-41f6-937d-af13758f44ea/download https://red.uao.edu.co/bitstreams/0db4d2c2-803d-4cc8-8431-8f3c408303bb/download https://red.uao.edu.co/bitstreams/5343e8d2-e6c2-46c0-8bae-87eff7d90d4c/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 b3794b2d50b47931dc2abca80925a07a 226fa8757457d10d510cd3797b10b6bf b70ffd2e49411b661349f37f084b68f0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259918498168832 |
spelling |
Cardona Salgado, Daivervirtual::1174-1Campo Duarte, Doris Elenavirtual::1002-1Vasilieva, Olga31f6a4db00254953edddbca148e36487Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-16T13:32:31Z2019-10-16T13:32:31Z2017-07-011935-0090http://hdl.handle.net/10614/11218http://dx.doi.org/10.18576/amis/110408Wolbachia is a maternally transmitted bacterial symbiont which is known to reduce the vector competence of mosquitoes and other arthropod species. Therefore, Wolbachia-based biocontrol is regarded as a practicable method for prevention and control of dengue and other arboviral infections. In particular, a deliberate infection of Aedes aegypti females with wMelPop Wolbachia strain makes them almost incapable of transmitting dengue and other arboviruses. In this paper, we present and thoroughly analyze a population dynamics model of interaction between wild Aedes aegypti female mosquitoes and those infected with wMelPop Wolbachia strain, which compete for the same vital resources (food, breeding sites, etc.) and share the same locality. Using this model, we demonstrate that the final outcome of the competition essentially depends on the frequency of Wolbachia infection. Further, we apply the optimal control approach and design the control intervention programs based on periodic releases of Wolbachia-carrying females for establishing wMelPop Wolbachia infection in the target localityapplication/pdf17 páginasengNatural Sciences PublishingDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Establishing wMelPop wolbachia Infection among wild aedes aegypti females by optimal control approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Artrópodos vectoresArthropod vectorsPopulation dynamicsBiological controlWolbachia strainAedes aegyptiOptimal control102741011Campo-Duarte, D. E., Cardona-Salgado, D., & Vasilieva, O. (2017). Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach. Applied Mathematics & Information Sciences An International Journa, 11(4), 1011-1027Applied Mathematics and Information Sciences[1] U. Ascher, R. Mattheij, and R. D. Russell. Numerical solution of boundary value problems for ordinary differential equations. Prentice Hall Series in Computational Mathematics. Prentice Hall Inc., Englewood Cliffs, NJ, 1988.[2] K. Blayneh, Y. Cao, and H. Kwon. Optimal control of vector-borne diseases: treatment and prevention. Discrete and Continuous Dynamical Systems B, 11(3):587–611, 2009.[3] P.-A. Bliman, M. Aronna, and M. Coelho, F. da Silva. Global stabilizing feedback law for a problem of biological control of mosquito-borne diseases. In 2015 54th IEEE Conference on Decision and Control (CDC), pages 3206–3211. IEEE, 2015.[4] N. Britton. Essential Mathematical Biology. Springer Undergraduate Mathematics Series. Springer, London, 2012.[5] D. Campo-Duarte, O. Vasilieva, and D. Cardona-Salgado. Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females. International Journal of Pure and Applied Mathematics, 112(2):219–238, 2017.[6] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, and M. Svinin. Optimal control approach for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations. Preprint, submitted for review, 2017.[7] A. Clements. The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, volume 3. CABI, Cambridge, UK, 2012.[8] A. Costero, J. Edman, G. Clark, and T. Scott. Life table study of Aedes aegypti (Diptera: Culicidae) in Puerto Rico fed only human blood versus blood plus sugar. Journal of Medical Entomology, 35(5):809–813, 1998.[9] Stephen L Dobson, Charles W Fox, and Francis M Jiggins. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proceedings of the Royal Society of London B: Biological Sciences, 269(1490):437–445, 2002.[10] H. Dutra, M. Rocha, F. Dias, S. Mansur, and L. Caragata, E.and Moreira. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell host & microbe, 19(6):771–774, 2016.[11] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. Ryan, S. ONeill, E. McGraw, V. Long, L. Dui, H. Nguyen, N. Vinh Chau, B. Wills, and C. Simmons. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Science translational medicine, 7(279):279ra37–279ra37, 2015.[12] W. Fleming and R. Rishel. Deterministic and stochastic optimal control. Springer, New York, 1975.[13] D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, and G. Huntington. A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica, 46(11):1843–1851, 2010.[14] P. Hancock, V. White, A. Callahan, C. Godfray, A. Hoffmann, and S. Ritchie. Density-dependent population dynamics in Aedes aegypti slow the spread of wMel Wolbachia. Journal of Applied Ecology, 53:785–793, 2016.[15] A. Hoffmann. Facilitating Wolbachia invasions. Austral Entomology, 53(2):125–132, 2014.[16] J. Kamtchum-Tatuene, B. Makepeace, L. Benjamin, M. Baylis, and T. Solomon. The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Current Opinion in Infectious Diseases, 30(1):108–116, 2017.[17] D. Kroese, T. Taimre, and Z. Botev. Handbook of Monte Carlo Methods. Wiley Series in Probability and Statistics 706. Wiley, 2011.[18] J.D. Lambert. Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. Wiley, Chichester, UK, 1991.[19] A. Lawson. Statistical Methods in Spatial Epidemiology. Wiley Series in Probability and Statistics. Wiley, 2 edition, 2006.[20] M. Legros, A. Lloyd, Y. Huang, and F. Gould. Densitydependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): revisiting the current paradigm. Journal of medical entomology, 46(3):409–419, 2009.[21] S. Lenhart and J. Workman. Optimal control applied to biological models. Chapman & Hall/CRC, Boca Raton, FL, 2007.[22] J. N. Liles. Effects of mating or association of the sexes on longevity in Aedes aegypti (l.). Mosquito News, 25:434–439, 1965.[23] C. Manore, K. Hickmann, S. Xu, H. Wearing, and J. Hyman. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. Journal of theoretical biology, 356:174–191, 2014.[24] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, and S. O’Neill. Stable introduction of a lifeshortening Wolbachia infection into the mosquito Aedes aegypti. Science, 323(5910):141–144, 2009.[25] C. McMeniman and S. O’Neill. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis, 4(7):e748, 2010.[26] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, and S. O’Neill. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium. Cell, 139(7):1268–1278, 2009.[27] D. Moulay, M. Aziz-Alaoui, and H. Kwon. Optimal control of chikungunya disease: larvae reduction, treatment andcprevention. Mathematical Biosciences and Engineering,c9(2):369–392, 2012.[28] H. Nguyen, T. Nguyen, T. Nguyen, S. Vu, N. Tran, T. Le, Q. Vien, T. Bui, H. Le, S. Kutcher, T. Hurst, T. Duong, J. Jeffery, J. Darbro, H. Kay, I. Iturbe-Ormaetxe, J. Popovici, B. Montgomery, A. Turley, F. Zigterman, H. Cook, P. Cook, P. Johnson, P. Ryan, C. Paton, S. Ritchie, C. Simmons, S. ONeill, and A. Hoffmann. Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control. Parasites & vectors, 8(563):1–14, 2015.[29] K. Okosun, R. Ouifki, and N. Marcus. Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems, 106(2):136–145, 2011.[30] K. Okosun, O. Rachid, and N. Marcus. Optimal control strategies and cost-effectiveness analysis of a malariamodel. BioSystems, 111(2):83–101, 2013.[31] M. Patterson and A. Rao. GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming. ACM Transactions on Mathematical Software (TOMS), 41(1):1, 2014.[32] S. Ritchie, M. Townsend, C. Paton, A. Callahan, and A. Hoffmann. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis, 9(7):e0003930, 2015.[33] S. Roberts and J. Shipman. Two-Point Boundary Value Problems: Shooting Methods. Modern analytic and computational methods in science and mathematics, no. 31. American Elsevier Pub. Co., 1972.[34] P. Ross, N. Endersby, H. Yeap, and A. Hoffmann. Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti. The American journal of tropical medicine and hygiene, 91(1):198–205, 2014.[35] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Aggarwal, M. Schwemmer, C. Hom, R. Grosberg, and S. Schreiber. Constraints on the use of lifespan-shortening Wolbachia to control dengue fever. Journal of theoretical biology, 297:26–32, 2012.[36] L. S. Sep´ulveda and O. Vasilieva. Optimal control approach to dengue reduction and prevention in Cali, Colombia. Mathematical Methods in the Applied Sciences, 39(18):5475–5496, 2016.[37] L. Sep´ulveda-Salcedo, O. Vasilieva, H. Mart´ınez-Romero, and J. Arias-Castro. Ross-Macdonald: Un modelo para la din´amica del dengue en Cali, Colombia [Ross-Macdonald: A model for the dengue dynamic in Cali, Colombia]. Revista de Salud P´ublica, 17(5):749–761, 2015.[38] M. Trpis, W. Hausermann, and G. Craig. Estimates of population size, dispersal, and longevity of domestic Aedes aegypti (Diptera: Culicidae) by mark–release–recapture in the village of Shauri Moyo in Eastern Kenya. Journal of Medical Entomology, 32(1):27–33, 1995.[39] M. Turelli. Cytoplasmic incompatibility in populations with overlapping generations. Evolution, 64(1):232–241, 2010.[40] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. ONeill, and A. Hoffmann. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature, 476(7361):450–453, 2011.[41] I. Woolfit, M.and Iturbe-Ormaetxe, J. Brownlie, T. Walker, M. Riegler, A. Seleznev, J. Popovici, E. Ranc`es, B. Wee, J. Pavlides, M. Sullivan, S. Beatson, A. Lane, M. Sidhu, C. McMeniman, E. McGraw, and S. O’Neill. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome biology and evolution, 5(11):2189–2204, 2013.[42] H. Yeap, J. Axford, J. Popovici, N. Endersby, I. Iturbe-Ormaetxe, S. Ritchie, and A. Hoffmann. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasites & vectors, 7(58):1–13, 2014.Publication72f68479-5914-43da-8996-02353d27d5dcvirtual::1174-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1002-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1002-172f68479-5914-43da-8996-02353d27d5dcvirtual::1174-1https://scholar.google.com.co/citations?user=KcfKIyEAAAAJ&hl=esvirtual::1174-1https://scholar.google.com/citations?hl=es&user=wyuT448AAAAJvirtual::1002-10000-0003-4828-9360virtual::1174-10000-0001-6832-9265virtual::1002-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001474886virtual::1174-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349182virtual::1002-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/605c669c-d2c8-47e8-90e5-6d24b3c81289/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/cd59785d-ff9d-4faf-b3fe-6c723228b586/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALEstablishing wMelPop Wolbachia Infection among Wild Aedes aegypti Females by Optimal Control Approach.pdfEstablishing wMelPop Wolbachia Infection among Wild Aedes aegypti Females by Optimal Control Approach.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf6265475https://red.uao.edu.co/bitstreams/7bfe595b-b635-41f6-937d-af13758f44ea/downloadb3794b2d50b47931dc2abca80925a07aMD54TEXTEstablishing wMelPop Wolbachia Infection among Wild Aedes aegypti Females by Optimal Control Approach.pdf.txtEstablishing wMelPop Wolbachia Infection among Wild Aedes aegypti Females by Optimal Control Approach.pdf.txtExtracted texttext/plain72952https://red.uao.edu.co/bitstreams/0db4d2c2-803d-4cc8-8431-8f3c408303bb/download226fa8757457d10d510cd3797b10b6bfMD55THUMBNAILEstablishing wMelPop Wolbachia Infection among Wild Aedes aegypti Females by Optimal Control Approach.pdf.jpgEstablishing wMelPop Wolbachia Infection among Wild Aedes aegypti Females by Optimal Control Approach.pdf.jpgGenerated Thumbnailimage/jpeg16120https://red.uao.edu.co/bitstreams/5343e8d2-e6c2-46c0-8bae-87eff7d90d4c/downloadb70ffd2e49411b661349f37f084b68f0MD5610614/11218oai:red.uao.edu.co:10614/112182024-03-01 14:58:37.723https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |