GMM background modeling using divergence-based weight updating

Background modeling is a core task of video-based surveillance systems used to facilitate the online analysis of real-world scenes. Nowadays, GMM-based background modeling approaches are widely used, and several versions have been proposed to improve the original one proposed by Stauffer and Grimson...

Full description

Autores:
Pulgarín Giraldo, Juan Diego
Castellanos Domínguez, German
Insuasti Ceballos, Hernan David
Álvarez Meza, Andrés Marino
Bouwmans, Thierry
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11223
Acceso en línea:
http://hdl.handle.net/10614/11223
Palabra clave:
Modelado
Modeling
Background modeling
GMM
Euclidean divergence
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_f7a98c6ebee275547d57b19bcfe6059a
oai_identifier_str oai:red.uao.edu.co:10614/11223
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv GMM background modeling using divergence-based weight updating
title GMM background modeling using divergence-based weight updating
spellingShingle GMM background modeling using divergence-based weight updating
Modelado
Modeling
Background modeling
GMM
Euclidean divergence
title_short GMM background modeling using divergence-based weight updating
title_full GMM background modeling using divergence-based weight updating
title_fullStr GMM background modeling using divergence-based weight updating
title_full_unstemmed GMM background modeling using divergence-based weight updating
title_sort GMM background modeling using divergence-based weight updating
dc.creator.fl_str_mv Pulgarín Giraldo, Juan Diego
Castellanos Domínguez, German
Insuasti Ceballos, Hernan David
Álvarez Meza, Andrés Marino
Bouwmans, Thierry
dc.contributor.author.none.fl_str_mv Pulgarín Giraldo, Juan Diego
Castellanos Domínguez, German
Insuasti Ceballos, Hernan David
Álvarez Meza, Andrés Marino
Bouwmans, Thierry
dc.subject.lemb.spa.fl_str_mv Modelado
topic Modelado
Modeling
Background modeling
GMM
Euclidean divergence
dc.subject.lemb.eng.fl_str_mv Modeling
dc.subject.proposal.eng.fl_str_mv Background modeling
GMM
Euclidean divergence
description Background modeling is a core task of video-based surveillance systems used to facilitate the online analysis of real-world scenes. Nowadays, GMM-based background modeling approaches are widely used, and several versions have been proposed to improve the original one proposed by Stauffer and Grimson. Nonetheless, the cost function employed to update the GMM weight parameters has not received major changes and is still set by means of a single binary reference, which mostly leads to noisy foreground masks when the ownership of a pixel to the background model is uncertain. To cope with this issue, we propose a cost function based on Euclidean divergence, providing nonlinear smoothness to the background modeling process. Achieved results over well-known datasets show that the proposed cost function supports the foreground/background discrimination, reducing the number of false positives, especially, in highly dynamical scenarios
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-02-16
dc.date.accessioned.none.fl_str_mv 2019-10-17T13:19:33Z
dc.date.available.none.fl_str_mv 2019-10-17T13:19:33Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
status_str publishedVersion
dc.identifier.isbn.spa.fl_str_mv 9783319597393
dc.identifier.isbn.none.fl_str_mv 9783319522777
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11223
identifier_str_mv 9783319597393
9783319522777
url http://hdl.handle.net/10614/11223
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.spa.fl_str_mv Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications : 21st Iberoamerican Congress, CIARP 2016, Lima, Peru, November 8–11, 2016, Proceedings. Páginas 282-290
dc.relation.citationendpage.none.fl_str_mv 290
290
dc.relation.citationstartpage.none.fl_str_mv 282
282
dc.relation.cites.spa.fl_str_mv Pulgarin-Giraldo, J. D., Alvarez-Meza, A., Insuasti-Ceballos, D., Bouwmans, T., & Castellanos-Dominguez, G. (2016, November). GMM Background Modeling Using Divergence-Based Weight Updating. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2016. Lecture Notes in Computer Science(), vol 10125. Springer, Cham. https://doi.org/10.1007/978-3-319-52277-7_35
dc.relation.ispartofbook.eng.fl_str_mv Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications
dc.relation.references.none.fl_str_mv 1. Molina-Giraldo, S., ´Alvarez-Meza, A.M., Garc´ıa-´Alvarez, J.C., Castellanos-Dom´ınguez, C.G.: Video segmentation framework by dynamic background modelling. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8156, pp. 843–852. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41181-6 85
2. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)
3. Alvarez-Meza, A.M., Molina-Giraldo, S., Castellanos-Dominguez, G.: Background modeling using object-based selective updating and correntropy adaptation. Image Vis. Comput. 45, 22–36 (2016)
4. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE (1999)
5. Bouwmans, T., El Baf, F., Vachon, B., et al.: Background modeling using mixture of Gaussians for foreground detection - a survey. Recent Pat. Comput. Sci. 1(3), 219–237 (2008)
6. Hayman, E., Eklundh, J.-O.: Statistical background subtraction for a mobile observer. In: Proceedings of Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 67–74, October 2003
7. Principe, J.: Information Theoretic Learning. Renyi’s Entropy and Kernel Perspectives. Springer, New York (2010)
8. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31, August 2004
9. Sobral, A.: BGSLibrary: an OpenCV C++ background subtraction library. In: IX Workshop de Vis˜ao Computacional (WVC 2013), Rio de Janeiro, Brazil, pp. 38–43, June 2013
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 9 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Springer, Cham
dc.source.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-3-319-52277-7_35
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/c40ae1cf-cef6-443d-b41e-247380592475/download
https://red.uao.edu.co/bitstreams/db99b8e3-dbfe-4e93-af3d-f80815ec150a/download
https://red.uao.edu.co/bitstreams/e68a39ed-83ef-4425-89f9-1f2f34783d94/download
https://red.uao.edu.co/bitstreams/a90f320e-710c-4408-a8f9-26da29cd28f7/download
https://red.uao.edu.co/bitstreams/3aef4060-a16f-450a-bf00-85076f981de9/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
9389bbf7245582858e67b9b85f12a473
b8c84f5ac596662bbb5ec0f01570ba36
be0b8161b1fcacb8355d877290fba21c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259891149209600
spelling Pulgarín Giraldo, Juan Diegovirtual::4144-1Castellanos Domínguez, German3de8cb9245317beddda7d5f7dade0b1bInsuasti Ceballos, Hernan David7e6a0fd1b91e6d3130037902506a9469Álvarez Meza, Andrés Marino7fd52c5e946073a9aac3ed6f493759d7Bouwmans, Thierry9b6333ed1f9e5a14cb40f8a4e7e78215Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-17T13:19:33Z2019-10-17T13:19:33Z2017-02-1697833195973939783319522777http://hdl.handle.net/10614/11223Background modeling is a core task of video-based surveillance systems used to facilitate the online analysis of real-world scenes. Nowadays, GMM-based background modeling approaches are widely used, and several versions have been proposed to improve the original one proposed by Stauffer and Grimson. Nonetheless, the cost function employed to update the GMM weight parameters has not received major changes and is still set by means of a single binary reference, which mostly leads to noisy foreground masks when the ownership of a pixel to the background model is uncertain. To cope with this issue, we propose a cost function based on Euclidean divergence, providing nonlinear smoothness to the background modeling process. Achieved results over well-known datasets show that the proposed cost function supports the foreground/background discrimination, reducing the number of false positives, especially, in highly dynamical scenariosapplication/pdf9 páginasengSpringer, ChamProgress in Pattern Recognition, Image Analysis, Computer Vision, and Applications : 21st Iberoamerican Congress, CIARP 2016, Lima, Peru, November 8–11, 2016, Proceedings. Páginas 282-290290290282282Pulgarin-Giraldo, J. D., Alvarez-Meza, A., Insuasti-Ceballos, D., Bouwmans, T., & Castellanos-Dominguez, G. (2016, November). GMM Background Modeling Using Divergence-Based Weight Updating. Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2016. Lecture Notes in Computer Science(), vol 10125. Springer, Cham. https://doi.org/10.1007/978-3-319-52277-7_35Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications1. Molina-Giraldo, S., ´Alvarez-Meza, A.M., Garc´ıa-´Alvarez, J.C., Castellanos-Dom´ınguez, C.G.: Video segmentation framework by dynamic background modelling. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8156, pp. 843–852. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41181-6 852. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)3. Alvarez-Meza, A.M., Molina-Giraldo, S., Castellanos-Dominguez, G.: Background modeling using object-based selective updating and correntropy adaptation. Image Vis. Comput. 45, 22–36 (2016)4. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2. IEEE (1999)5. Bouwmans, T., El Baf, F., Vachon, B., et al.: Background modeling using mixture of Gaussians for foreground detection - a survey. Recent Pat. Comput. Sci. 1(3), 219–237 (2008)6. Hayman, E., Eklundh, J.-O.: Statistical background subtraction for a mobile observer. In: Proceedings of Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 67–74, October 20037. Principe, J.: Information Theoretic Learning. Renyi’s Entropy and Kernel Perspectives. Springer, New York (2010)8. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31, August 20049. Sobral, A.: BGSLibrary: an OpenCV C++ background subtraction library. In: IX Workshop de Vis˜ao Computacional (WVC 2013), Rio de Janeiro, Brazil, pp. 38–43, June 2013Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://link.springer.com/chapter/10.1007/978-3-319-52277-7_35GMM background modeling using divergence-based weight updatingCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ModeladoModelingBackground modelingGMMEuclidean divergencePublication33e9b6b4-bd6d-4b86-b500-ae237e1e9a98virtual::4144-133e9b6b4-bd6d-4b86-b500-ae237e1e9a98virtual::4144-1https://scholar.google.com.co/citations?user=Bwuc2BkAAAAJ&hl=envirtual::4144-10000-0002-6409-5104virtual::4144-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000207497virtual::4144-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/c40ae1cf-cef6-443d-b41e-247380592475/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/db99b8e3-dbfe-4e93-af3d-f80815ec150a/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALGMM background modeling using divergence-based weight updating.pdfGMM background modeling using divergence-based weight updating.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf778313https://red.uao.edu.co/bitstreams/e68a39ed-83ef-4425-89f9-1f2f34783d94/download9389bbf7245582858e67b9b85f12a473MD54TEXTGMM background modeling using divergence-based weight updating.pdf.txtGMM background modeling using divergence-based weight updating.pdf.txtExtracted texttext/plain21011https://red.uao.edu.co/bitstreams/a90f320e-710c-4408-a8f9-26da29cd28f7/downloadb8c84f5ac596662bbb5ec0f01570ba36MD55THUMBNAILGMM background modeling using divergence-based weight updating.pdf.jpgGMM background modeling using divergence-based weight updating.pdf.jpgGenerated Thumbnailimage/jpeg11783https://red.uao.edu.co/bitstreams/3aef4060-a16f-450a-bf00-85076f981de9/downloadbe0b8161b1fcacb8355d877290fba21cMD5610614/11223oai:red.uao.edu.co:10614/112232024-03-13 14:15:26.539https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K