Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
La información de la expresión de genes consignada en bases de datos, ha permitido extraer y analizar información acerca procesos moleculares implicados tanto en la homeostasis cerebral y su alteración en algunas neuropatologías. A partir de valores de expresión génica disponibles en la base de dato...
- Autores:
-
Montoya Villegas, Julio César
Fajardo Colorado, Dianora
Peña-Gonzalez, Angela
Sanchez, Adalberto
Domínguez Narváez, Martha C
Satizábal Soto, José María
García Vallejo, Felipe
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2014
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11812
- Acceso en línea:
- http://red.uao.edu.co//handle/10614/11812
- Palabra clave:
- Down Syndrome
Nervioso Nervous System Diseases
Cerebro
Corteza cerebral
Homeostasis
Región crítica del Síndrome de Down
Análisis secuencial en arreglo de oligonucleótidos
Transcriptoma
Perfil de expresión génica
Brain
Cerebral cortex
Down Syndrome critical region
Oligonucleotide array sequence analysis
Transcriptome
Gene expression profiling
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_f3ea47b511693cc41439bf49a4a18313 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11812 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain |
dc.title.alternative.spa.fl_str_mv |
Expresión diferencial global de genes localizados en la Región Crítica del Síndrome de Down en el cerebro humano normal |
title |
Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain |
spellingShingle |
Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain Down Syndrome Nervioso Nervous System Diseases Cerebro Corteza cerebral Homeostasis Región crítica del Síndrome de Down Análisis secuencial en arreglo de oligonucleótidos Transcriptoma Perfil de expresión génica Brain Cerebral cortex Down Syndrome critical region Oligonucleotide array sequence analysis Transcriptome Gene expression profiling |
title_short |
Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain |
title_full |
Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain |
title_fullStr |
Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain |
title_full_unstemmed |
Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain |
title_sort |
Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain |
dc.creator.fl_str_mv |
Montoya Villegas, Julio César Fajardo Colorado, Dianora Peña-Gonzalez, Angela Sanchez, Adalberto Domínguez Narváez, Martha C Satizábal Soto, José María García Vallejo, Felipe |
dc.contributor.author.none.fl_str_mv |
Montoya Villegas, Julio César Fajardo Colorado, Dianora Peña-Gonzalez, Angela Sanchez, Adalberto Domínguez Narváez, Martha C Satizábal Soto, José María García Vallejo, Felipe |
dc.subject.mesh.eng.fl_str_mv |
Down Syndrome Nervioso Nervous System Diseases |
topic |
Down Syndrome Nervioso Nervous System Diseases Cerebro Corteza cerebral Homeostasis Región crítica del Síndrome de Down Análisis secuencial en arreglo de oligonucleótidos Transcriptoma Perfil de expresión génica Brain Cerebral cortex Down Syndrome critical region Oligonucleotide array sequence analysis Transcriptome Gene expression profiling |
dc.subject.proposal.spa.fl_str_mv |
Cerebro Corteza cerebral Homeostasis Región crítica del Síndrome de Down Análisis secuencial en arreglo de oligonucleótidos Transcriptoma Perfil de expresión génica |
dc.subject.proposal.eng.fl_str_mv |
Brain Cerebral cortex Down Syndrome critical region Oligonucleotide array sequence analysis Transcriptome Gene expression profiling |
description |
La información de la expresión de genes consignada en bases de datos, ha permitido extraer y analizar información acerca procesos moleculares implicados tanto en la homeostasis cerebral y su alteración en algunas neuropatologías. A partir de valores de expresión génica disponibles en la base de datos del proyecto cerebro humano del Atlas del Cerebro del “Allen Institute for Brain Sciences” (http://human.brain-map.org/), se construyeron perfiles de expresión de 19 genes DSCR en 42 subestructuras cerebrales. Además, utilizando métodos estadísticos multivariados se analizaron los patrones de coexpresión de genes DSCR en el cerebro normal. En el núcleo caudado, el núcleo accumbens y el putamen además de las Áreas centrales 2, 3 y 4, se determinaron los valores de expresión más elevados para los genes incluidos RCAN1, que codifica para una proteína involucrada en el proceso de transducción de señales de SNC; PCP4 cuya proteína interviene en la unión a la calmodulina y TTC3 una proteína que interviene en la diferenciación de neuronas. Las subestructuras identificadas con una elevada expresión de estos genes, están asociadas con procesos de aprendizaje, en diferentes tipos de memoria y habilidades motoras. La regulación de la expresión de los genes DSCR es clave para mantener la homeostasis cerebral, especialmente en aquellas áreas de mayor expresión, las cuales están asociadas con procesos sumamente importantes |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-01-17T13:59:42Z |
dc.date.available.none.fl_str_mv |
2020-01-17T13:59:42Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1657-9534 (Online ) |
dc.identifier.uri.none.fl_str_mv |
http://red.uao.edu.co//handle/10614/11812 |
dc.identifier.doi.spa.fl_str_mv |
10.25100/cm.v45i4.1640 |
identifier_str_mv |
1657-9534 (Online ) 10.25100/cm.v45i4.1640 |
url |
http://red.uao.edu.co//handle/10614/11812 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Colombia Médica. Volumen 45, número 4 (2014); pages 154-161 |
dc.relation.citationendpage.none.fl_str_mv |
161 |
dc.relation.citationissue.none.fl_str_mv |
4 |
dc.relation.citationstartpage.none.fl_str_mv |
154 |
dc.relation.citationvolume.none.fl_str_mv |
45 |
dc.relation.cites.spa.fl_str_mv |
Montoya, J., Fajardo, D., Peña, Ángela, Sánchez, A., Domínguez, M., Satizábal, J., & García Vallejo, F. (2014). Expresión diferencial global de genes ubicados en la Región Crítica del Síndrome de Down en el cerebro humano normal. Colombia Médica , 45 (4), 154-161. http://red.uao.edu.co//handle/10614/11812 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Colombia Médica |
dc.relation.references.none.fl_str_mv |
Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron. 2013; 77: 624–638. Johnson M, Kawasawa M, Mason C, Krsnik Z, Coppola G, et al. Bogdanovic´ D Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009; 62: 494–509. Oldham M, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008; 11: 1271–1282. Nieuwenhuis-Mark R Diagnosing Alzheimer's dementia in Down syndrome: Problems and possible solutions. Res Dev Disabil. 2009; 30: 827–838. Abbeduto L, McDuffie A. Genetic Syndromes Associated with Intellectual Disabilities. In: Handbook of Medical Neuropsychology: Applications of Cognitive Neuroscience. Armstrong, CL, Morrow L (Eds) New York: Springer; 2010. pp. 193–221. Korenberg Julie R, Kawashima Hiroko, Pulst Stefan-M, Ikeuchi T, Ogasawara N, Yamamoto K, et al. Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Human Genet. 1990; 47: 236–46. Montoya J, Soto J, Satizábal J, Sánchez A, García Vallejo F. Genomic study of the critical region of chromosome 21 associated to Down syndrome. Colomb Med (Cali). 2011; 42: 26–38. Weitzdoerfer R, Dierssen M, Fountoulakis M, Lubec G. Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J Neural Transm Suppl. 2001; 61: 59–70. Ferrando-Miguel R, Cheon M, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): Overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5) Amino Acids. 2004; 26: 255–61. VanGilder R, Huber J, Rosen C, Barr T. The transcriptome of cerebral ischemia. Brain Res Bull. 2012; 88: 313–9. Zeng H, Shen E, Hohmann J, Oh S, Bernard A, Royall J, et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell. 2012; 149: 483– 96. Cheadle C, Cho-Chung YS, Becker KG, Vawter MP. Application of z-score transformation to Affymetrix data. Appl Bioinformatics. 2003; 2: 209–17. Montoya J, Peña A, Satizábal J, García-Vallejo F. In silico systemic analysis of the differential expression of genes located in críticalregion of Down syndrome in the human brain. Rev Med. 2012; 20: 15–26. Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, Epstein CJ, Yamakawa K. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004; 13: 1333–40. Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, Shi DL. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate embryos. Development. 2009; 136: 2121-1. Ferrando-Miguel R, Cheon MS, Yang JW, Lubec G. Overexpression of transcription factor BACH1 in fetal Down syndrome brain. J Neural Transm Suppl. 2003; 67: 193–205. Richard C, Drevon C, Canto PY, Villain G, Bollérot K, Lempereur A, et al. Endothelio-Mesenchymal Interaction Controls runx1 Expression and Modulates the notch Pathway to Initiate Aortic Hematopoiesis. Dev Cell. 2013; 24: 600–11. Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, et al. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-? and reactive oxygen species. Nat Med. 2012; 18(11): 1693–8. Wang W, Zhu JZ, Chang KT, Min KT. DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J. 2012; 31(18): 3655–66. Ermak G, Pritchard MA, Dronjak S, Niu B, Davies KJ. Do RCAN1 proteins link chronic stress with neurodegeneration. FASEB J. 2011; 25(10): 3306–11. Guedj F, Pereira PL, Najas S, Barallobre MJ, Chabert C, Souchet B, et al. DYRK1A: a master regulatory protein controlling brain growth. Neurobiol Dis. 2012; 46(1): 190–200. Park J, Oh Y, Chung KC. Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1. BMB Rep. 2009; 42(1): 6–15. Packard MG, Goodman J. Emotional arousal and multiple memory systems in the mammalian brain. Front Behav Neurosci. 2012; 6: 14. Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS ONE. 2011; 6: 21852. Wegiel J, Gong CX, Hwang YW. The role of DYRK1A in neurodegenerative diseases. FEBS J. 2011; 278: 236–45. Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008; 86(3): 141–55. Kistler P, Ropper A, Martin J. Enfermedades cerebrovasculares. En: Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson L, Loscalzo J (eds.). Harrison Principios de Medicina Interna. 17a edición. Barcelona: McGraw-Hill; 2010. pp. 2570–96. Dauphinot L, Lyle R, Rivals I, Dang MT, Moldrich RX, Golfier G, et al. The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. Hum Mol Genet. 2005; 14: 373–84. Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem. 2006; 97(1): 104–9. Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem. 2014; 155: 217–26. Arron JR, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature. 2006; 441: 595–600 |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad del Valle |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/30b642e5-2396-4929-b2a8-9abdc5ffbc0e/download https://dspace7-uao.metacatalogo.com/bitstreams/c3e07e9c-5372-47f2-b59a-268f1d56cec3/download https://dspace7-uao.metacatalogo.com/bitstreams/bf3248da-92c4-45af-822e-ba71efa09b32/download https://dspace7-uao.metacatalogo.com/bitstreams/1f34f607-847a-4c50-9f7d-c9ace3084ea4/download https://dspace7-uao.metacatalogo.com/bitstreams/ded76d04-5f97-4ec6-8644-91500e976473/download https://dspace7-uao.metacatalogo.com/bitstreams/c96b9a4f-2036-48b1-a7bb-3432eb7500ac/download https://dspace7-uao.metacatalogo.com/bitstreams/fbebe636-5cee-4b84-ad0a-e7ebc555faeb/download |
bitstream.checksum.fl_str_mv |
b3254d6e5f3838d4efcaeb6513e16062 b3254d6e5f3838d4efcaeb6513e16062 ba4b660813ef7513a93c6ccf21b08ce5 ba4b660813ef7513a93c6ccf21b08ce5 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 7f891cd50fe21e0463bace043d91a688 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260143241560064 |
spelling |
Montoya Villegas, Julio César30731facfc970f7c063315080a1b1cfeFajardo Colorado, Dianorafa53e8ae0449b2694822b787f5e874e7Peña-Gonzalez, Angela5c99d2648b2f40d449c5eaffbf3c110eSanchez, Adalbertoab39cb50c46112950b66521a04063bbfDomínguez Narváez, Martha C8662083b4b9f3bfec27aa007ba6a1d03Satizábal Soto, José Maríaaf3af00699c79cd1089ce5b3c1bcebe0García Vallejo, Felipe4ec19dfd5067ff1a0ecbe8cd3c4bdfb2Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-01-17T13:59:42Z2020-01-17T13:59:42Z20141657-9534 (Online )http://red.uao.edu.co//handle/10614/1181210.25100/cm.v45i4.1640La información de la expresión de genes consignada en bases de datos, ha permitido extraer y analizar información acerca procesos moleculares implicados tanto en la homeostasis cerebral y su alteración en algunas neuropatologías. A partir de valores de expresión génica disponibles en la base de datos del proyecto cerebro humano del Atlas del Cerebro del “Allen Institute for Brain Sciences” (http://human.brain-map.org/), se construyeron perfiles de expresión de 19 genes DSCR en 42 subestructuras cerebrales. Además, utilizando métodos estadísticos multivariados se analizaron los patrones de coexpresión de genes DSCR en el cerebro normal. En el núcleo caudado, el núcleo accumbens y el putamen además de las Áreas centrales 2, 3 y 4, se determinaron los valores de expresión más elevados para los genes incluidos RCAN1, que codifica para una proteína involucrada en el proceso de transducción de señales de SNC; PCP4 cuya proteína interviene en la unión a la calmodulina y TTC3 una proteína que interviene en la diferenciación de neuronas. Las subestructuras identificadas con una elevada expresión de estos genes, están asociadas con procesos de aprendizaje, en diferentes tipos de memoria y habilidades motoras. La regulación de la expresión de los genes DSCR es clave para mantener la homeostasis cerebral, especialmente en aquellas áreas de mayor expresión, las cuales están asociadas con procesos sumamente importantesThe information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences”, (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognitionapplication/pdf8 páginasengUniversidad del ValleColombia Médica. Volumen 45, número 4 (2014); pages 154-161161415445Montoya, J., Fajardo, D., Peña, Ángela, Sánchez, A., Domínguez, M., Satizábal, J., & García Vallejo, F. (2014). Expresión diferencial global de genes ubicados en la Región Crítica del Síndrome de Down en el cerebro humano normal. Colombia Médica , 45 (4), 154-161. http://red.uao.edu.co//handle/10614/11812Colombia MédicaCritchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron. 2013; 77: 624–638.Johnson M, Kawasawa M, Mason C, Krsnik Z, Coppola G, et al. Bogdanovic´ D Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009; 62: 494–509.Oldham M, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008; 11: 1271–1282.Nieuwenhuis-Mark R Diagnosing Alzheimer's dementia in Down syndrome: Problems and possible solutions. Res Dev Disabil. 2009; 30: 827–838.Abbeduto L, McDuffie A. Genetic Syndromes Associated with Intellectual Disabilities. In: Handbook of Medical Neuropsychology: Applications of Cognitive Neuroscience. Armstrong, CL, Morrow L (Eds) New York: Springer; 2010. pp. 193–221.Korenberg Julie R, Kawashima Hiroko, Pulst Stefan-M, Ikeuchi T, Ogasawara N, Yamamoto K, et al. Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Human Genet. 1990; 47: 236–46.Montoya J, Soto J, Satizábal J, Sánchez A, García Vallejo F. Genomic study of the critical region of chromosome 21 associated to Down syndrome. Colomb Med (Cali). 2011; 42: 26–38.Weitzdoerfer R, Dierssen M, Fountoulakis M, Lubec G. Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J Neural Transm Suppl. 2001; 61: 59–70.Ferrando-Miguel R, Cheon M, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): Overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5) Amino Acids. 2004; 26: 255–61.VanGilder R, Huber J, Rosen C, Barr T. The transcriptome of cerebral ischemia. Brain Res Bull. 2012; 88: 313–9.Zeng H, Shen E, Hohmann J, Oh S, Bernard A, Royall J, et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell. 2012; 149: 483– 96.Cheadle C, Cho-Chung YS, Becker KG, Vawter MP. Application of z-score transformation to Affymetrix data. Appl Bioinformatics. 2003; 2: 209–17.Montoya J, Peña A, Satizábal J, García-Vallejo F. In silico systemic analysis of the differential expression of genes located in críticalregion of Down syndrome in the human brain. Rev Med. 2012; 20: 15–26.Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, Epstein CJ, Yamakawa K. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004; 13: 1333–40.Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, Shi DL. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate embryos. Development. 2009; 136: 2121-1.Ferrando-Miguel R, Cheon MS, Yang JW, Lubec G. Overexpression of transcription factor BACH1 in fetal Down syndrome brain. J Neural Transm Suppl. 2003; 67: 193–205.Richard C, Drevon C, Canto PY, Villain G, Bollérot K, Lempereur A, et al. Endothelio-Mesenchymal Interaction Controls runx1 Expression and Modulates the notch Pathway to Initiate Aortic Hematopoiesis. Dev Cell. 2013; 24: 600–11.Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, et al. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-? and reactive oxygen species. Nat Med. 2012; 18(11): 1693–8.Wang W, Zhu JZ, Chang KT, Min KT. DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J. 2012; 31(18): 3655–66.Ermak G, Pritchard MA, Dronjak S, Niu B, Davies KJ. Do RCAN1 proteins link chronic stress with neurodegeneration. FASEB J. 2011; 25(10): 3306–11.Guedj F, Pereira PL, Najas S, Barallobre MJ, Chabert C, Souchet B, et al. DYRK1A: a master regulatory protein controlling brain growth. Neurobiol Dis. 2012; 46(1): 190–200.Park J, Oh Y, Chung KC. Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1. BMB Rep. 2009; 42(1): 6–15.Packard MG, Goodman J. Emotional arousal and multiple memory systems in the mammalian brain. Front Behav Neurosci. 2012; 6: 14.Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS ONE. 2011; 6: 21852.Wegiel J, Gong CX, Hwang YW. The role of DYRK1A in neurodegenerative diseases. FEBS J. 2011; 278: 236–45.Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008; 86(3): 141–55.Kistler P, Ropper A, Martin J. Enfermedades cerebrovasculares. En: Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson L, Loscalzo J (eds.). Harrison Principios de Medicina Interna. 17a edición. Barcelona: McGraw-Hill; 2010. pp. 2570–96.Dauphinot L, Lyle R, Rivals I, Dang MT, Moldrich RX, Golfier G, et al. The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. Hum Mol Genet. 2005; 14: 373–84.Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem. 2006; 97(1): 104–9.Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem. 2014; 155: 217–26.Arron JR, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature. 2006; 441: 595–600Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Down SyndromeNervioso Nervous System DiseasesCerebroCorteza cerebralHomeostasisRegión crítica del Síndrome de DownAnálisis secuencial en arreglo de oligonucleótidosTranscriptomaPerfil de expresión génicaBrainCerebral cortexDown Syndrome critical regionOligonucleotide array sequence analysisTranscriptomeGene expression profilingGlobal differential expression of genes located in the Down Syndrome Critical Region in normal human brainExpresión diferencial global de genes localizados en la Región Crítica del Síndrome de Down en el cerebro humano normalArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationTEXTA0229.pdf.txtA0229.pdf.txtExtracted texttext/plain38748https://dspace7-uao.metacatalogo.com/bitstreams/30b642e5-2396-4929-b2a8-9abdc5ffbc0e/downloadb3254d6e5f3838d4efcaeb6513e16062MD55A0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdf.txtA0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdf.txtExtracted texttext/plain38748https://dspace7-uao.metacatalogo.com/bitstreams/c3e07e9c-5372-47f2-b59a-268f1d56cec3/downloadb3254d6e5f3838d4efcaeb6513e16062MD57THUMBNAILA0229.pdf.jpgA0229.pdf.jpgGenerated Thumbnailimage/jpeg15679https://dspace7-uao.metacatalogo.com/bitstreams/bf3248da-92c4-45af-822e-ba71efa09b32/downloadba4b660813ef7513a93c6ccf21b08ce5MD56A0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdf.jpgA0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdf.jpgGenerated Thumbnailimage/jpeg15679https://dspace7-uao.metacatalogo.com/bitstreams/1f34f607-847a-4c50-9f7d-c9ace3084ea4/downloadba4b660813ef7513a93c6ccf21b08ce5MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/ded76d04-5f97-4ec6-8644-91500e976473/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/c96b9a4f-2036-48b1-a7bb-3432eb7500ac/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdfA0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf845185https://dspace7-uao.metacatalogo.com/bitstreams/fbebe636-5cee-4b84-ad0a-e7ebc555faeb/download7f891cd50fe21e0463bace043d91a688MD5410614/11812oai:dspace7-uao.metacatalogo.com:10614/118122024-01-19 17:12:26.329https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |