Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain

La información de la expresión de genes consignada en bases de datos, ha permitido extraer y analizar información acerca procesos moleculares implicados tanto en la homeostasis cerebral y su alteración en algunas neuropatologías. A partir de valores de expresión génica disponibles en la base de dato...

Full description

Autores:
Montoya Villegas, Julio César
Fajardo Colorado, Dianora
Peña-Gonzalez, Angela
Sanchez, Adalberto
Domínguez Narváez, Martha C
Satizábal Soto, José María
García Vallejo, Felipe
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11812
Acceso en línea:
http://red.uao.edu.co//handle/10614/11812
Palabra clave:
Down Syndrome
Nervioso Nervous System Diseases
Cerebro
Corteza cerebral
Homeostasis
Región crítica del Síndrome de Down
Análisis secuencial en arreglo de oligonucleótidos
Transcriptoma
Perfil de expresión génica
Brain
Cerebral cortex
Down Syndrome critical region
Oligonucleotide array sequence analysis
Transcriptome
Gene expression profiling
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_f3ea47b511693cc41439bf49a4a18313
oai_identifier_str oai:red.uao.edu.co:10614/11812
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
dc.title.alternative.spa.fl_str_mv Expresión diferencial global de genes localizados en la Región Crítica del Síndrome de Down en el cerebro humano normal
title Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
spellingShingle Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
Down Syndrome
Nervioso Nervous System Diseases
Cerebro
Corteza cerebral
Homeostasis
Región crítica del Síndrome de Down
Análisis secuencial en arreglo de oligonucleótidos
Transcriptoma
Perfil de expresión génica
Brain
Cerebral cortex
Down Syndrome critical region
Oligonucleotide array sequence analysis
Transcriptome
Gene expression profiling
title_short Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
title_full Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
title_fullStr Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
title_full_unstemmed Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
title_sort Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain
dc.creator.fl_str_mv Montoya Villegas, Julio César
Fajardo Colorado, Dianora
Peña-Gonzalez, Angela
Sanchez, Adalberto
Domínguez Narváez, Martha C
Satizábal Soto, José María
García Vallejo, Felipe
dc.contributor.author.none.fl_str_mv Montoya Villegas, Julio César
Fajardo Colorado, Dianora
Peña-Gonzalez, Angela
Sanchez, Adalberto
Domínguez Narváez, Martha C
Satizábal Soto, José María
García Vallejo, Felipe
dc.subject.mesh.eng.fl_str_mv Down Syndrome
Nervioso Nervous System Diseases
topic Down Syndrome
Nervioso Nervous System Diseases
Cerebro
Corteza cerebral
Homeostasis
Región crítica del Síndrome de Down
Análisis secuencial en arreglo de oligonucleótidos
Transcriptoma
Perfil de expresión génica
Brain
Cerebral cortex
Down Syndrome critical region
Oligonucleotide array sequence analysis
Transcriptome
Gene expression profiling
dc.subject.proposal.spa.fl_str_mv Cerebro
Corteza cerebral
Homeostasis
Región crítica del Síndrome de Down
Análisis secuencial en arreglo de oligonucleótidos
Transcriptoma
Perfil de expresión génica
dc.subject.proposal.eng.fl_str_mv Brain
Cerebral cortex
Down Syndrome critical region
Oligonucleotide array sequence analysis
Transcriptome
Gene expression profiling
description La información de la expresión de genes consignada en bases de datos, ha permitido extraer y analizar información acerca procesos moleculares implicados tanto en la homeostasis cerebral y su alteración en algunas neuropatologías. A partir de valores de expresión génica disponibles en la base de datos del proyecto cerebro humano del Atlas del Cerebro del “Allen Institute for Brain Sciences” (http://human.brain-map.org/), se construyeron perfiles de expresión de 19 genes DSCR en 42 subestructuras cerebrales. Además, utilizando métodos estadísticos multivariados se analizaron los patrones de coexpresión de genes DSCR en el cerebro normal. En el núcleo caudado, el núcleo accumbens y el putamen además de las Áreas centrales 2, 3 y 4, se determinaron los valores de expresión más elevados para los genes incluidos RCAN1, que codifica para una proteína involucrada en el proceso de transducción de señales de SNC; PCP4 cuya proteína interviene en la unión a la calmodulina y TTC3 una proteína que interviene en la diferenciación de neuronas. Las subestructuras identificadas con una elevada expresión de estos genes, están asociadas con procesos de aprendizaje, en diferentes tipos de memoria y habilidades motoras. La regulación de la expresión de los genes DSCR es clave para mantener la homeostasis cerebral, especialmente en aquellas áreas de mayor expresión, las cuales están asociadas con procesos sumamente importantes
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2020-01-17T13:59:42Z
dc.date.available.none.fl_str_mv 2020-01-17T13:59:42Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1657-9534 (Online )
dc.identifier.uri.none.fl_str_mv http://red.uao.edu.co//handle/10614/11812
dc.identifier.doi.spa.fl_str_mv 10.25100/cm.v45i4.1640
identifier_str_mv 1657-9534 (Online )
10.25100/cm.v45i4.1640
url http://red.uao.edu.co//handle/10614/11812
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv Colombia Médica. Volumen 45, número 4 (2014); pages 154-161
dc.relation.citationendpage.none.fl_str_mv 161
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.citationstartpage.none.fl_str_mv 154
dc.relation.citationvolume.none.fl_str_mv 45
dc.relation.cites.spa.fl_str_mv Montoya, J., Fajardo, D., Peña, Ángela, Sánchez, A., Domínguez, M., Satizábal, J., & García Vallejo, F. (2014). Expresión diferencial global de genes ubicados en la Región Crítica del Síndrome de Down en el cerebro humano normal. Colombia Médica , 45 (4), 154-161. http://red.uao.edu.co//handle/10614/11812
dc.relation.ispartofjournal.spa.fl_str_mv Colombia Médica
dc.relation.references.none.fl_str_mv Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron. 2013; 77: 624–638.
Johnson M, Kawasawa M, Mason C, Krsnik Z, Coppola G, et al. Bogdanovic´ D Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009; 62: 494–509.
Oldham M, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008; 11: 1271–1282.
Nieuwenhuis-Mark R Diagnosing Alzheimer's dementia in Down syndrome: Problems and possible solutions. Res Dev Disabil. 2009; 30: 827–838.
Abbeduto L, McDuffie A. Genetic Syndromes Associated with Intellectual Disabilities. In: Handbook of Medical Neuropsychology: Applications of Cognitive Neuroscience. Armstrong, CL, Morrow L (Eds) New York: Springer; 2010. pp. 193–221.
Korenberg Julie R, Kawashima Hiroko, Pulst Stefan-M, Ikeuchi T, Ogasawara N, Yamamoto K, et al. Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Human Genet. 1990; 47: 236–46.
Montoya J, Soto J, Satizábal J, Sánchez A, García Vallejo F. Genomic study of the critical region of chromosome 21 associated to Down syndrome. Colomb Med (Cali). 2011; 42: 26–38.
Weitzdoerfer R, Dierssen M, Fountoulakis M, Lubec G. Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J Neural Transm Suppl. 2001; 61: 59–70.
Ferrando-Miguel R, Cheon M, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): Overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5) Amino Acids. 2004; 26: 255–61.
VanGilder R, Huber J, Rosen C, Barr T. The transcriptome of cerebral ischemia. Brain Res Bull. 2012; 88: 313–9.
Zeng H, Shen E, Hohmann J, Oh S, Bernard A, Royall J, et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell. 2012; 149: 483– 96.
Cheadle C, Cho-Chung YS, Becker KG, Vawter MP. Application of z-score transformation to Affymetrix data. Appl Bioinformatics. 2003; 2: 209–17.
Montoya J, Peña A, Satizábal J, García-Vallejo F. In silico systemic analysis of the differential expression of genes located in críticalregion of Down syndrome in the human brain. Rev Med. 2012; 20: 15–26.
Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, Epstein CJ, Yamakawa K. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004; 13: 1333–40.
Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, Shi DL. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate embryos. Development. 2009; 136: 2121-1.
Ferrando-Miguel R, Cheon MS, Yang JW, Lubec G. Overexpression of transcription factor BACH1 in fetal Down syndrome brain. J Neural Transm Suppl. 2003; 67: 193–205.
Richard C, Drevon C, Canto PY, Villain G, Bollérot K, Lempereur A, et al. Endothelio-Mesenchymal Interaction Controls runx1 Expression and Modulates the notch Pathway to Initiate Aortic Hematopoiesis. Dev Cell. 2013; 24: 600–11.
Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, et al. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-? and reactive oxygen species. Nat Med. 2012; 18(11): 1693–8.
Wang W, Zhu JZ, Chang KT, Min KT. DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J. 2012; 31(18): 3655–66.
Ermak G, Pritchard MA, Dronjak S, Niu B, Davies KJ. Do RCAN1 proteins link chronic stress with neurodegeneration. FASEB J. 2011; 25(10): 3306–11.
Guedj F, Pereira PL, Najas S, Barallobre MJ, Chabert C, Souchet B, et al. DYRK1A: a master regulatory protein controlling brain growth. Neurobiol Dis. 2012; 46(1): 190–200.
Park J, Oh Y, Chung KC. Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1. BMB Rep. 2009; 42(1): 6–15.
Packard MG, Goodman J. Emotional arousal and multiple memory systems in the mammalian brain. Front Behav Neurosci. 2012; 6: 14.
Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS ONE. 2011; 6: 21852.
Wegiel J, Gong CX, Hwang YW. The role of DYRK1A in neurodegenerative diseases. FEBS J. 2011; 278: 236–45.
Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008; 86(3): 141–55.
Kistler P, Ropper A, Martin J. Enfermedades cerebrovasculares. En: Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson L, Loscalzo J (eds.). Harrison Principios de Medicina Interna. 17a edición. Barcelona: McGraw-Hill; 2010. pp. 2570–96.
Dauphinot L, Lyle R, Rivals I, Dang MT, Moldrich RX, Golfier G, et al. The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. Hum Mol Genet. 2005; 14: 373–84.
Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem. 2006; 97(1): 104–9.
Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem. 2014; 155: 217–26.
Arron JR, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature. 2006; 441: 595–600
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 8 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad del Valle
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/30b642e5-2396-4929-b2a8-9abdc5ffbc0e/download
https://dspace7-uao.metacatalogo.com/bitstreams/c3e07e9c-5372-47f2-b59a-268f1d56cec3/download
https://dspace7-uao.metacatalogo.com/bitstreams/bf3248da-92c4-45af-822e-ba71efa09b32/download
https://dspace7-uao.metacatalogo.com/bitstreams/1f34f607-847a-4c50-9f7d-c9ace3084ea4/download
https://dspace7-uao.metacatalogo.com/bitstreams/ded76d04-5f97-4ec6-8644-91500e976473/download
https://dspace7-uao.metacatalogo.com/bitstreams/c96b9a4f-2036-48b1-a7bb-3432eb7500ac/download
https://dspace7-uao.metacatalogo.com/bitstreams/fbebe636-5cee-4b84-ad0a-e7ebc555faeb/download
bitstream.checksum.fl_str_mv b3254d6e5f3838d4efcaeb6513e16062
b3254d6e5f3838d4efcaeb6513e16062
ba4b660813ef7513a93c6ccf21b08ce5
ba4b660813ef7513a93c6ccf21b08ce5
4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
7f891cd50fe21e0463bace043d91a688
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260143241560064
spelling Montoya Villegas, Julio César30731facfc970f7c063315080a1b1cfeFajardo Colorado, Dianorafa53e8ae0449b2694822b787f5e874e7Peña-Gonzalez, Angela5c99d2648b2f40d449c5eaffbf3c110eSanchez, Adalbertoab39cb50c46112950b66521a04063bbfDomínguez Narváez, Martha C8662083b4b9f3bfec27aa007ba6a1d03Satizábal Soto, José Maríaaf3af00699c79cd1089ce5b3c1bcebe0García Vallejo, Felipe4ec19dfd5067ff1a0ecbe8cd3c4bdfb2Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-01-17T13:59:42Z2020-01-17T13:59:42Z20141657-9534 (Online )http://red.uao.edu.co//handle/10614/1181210.25100/cm.v45i4.1640La información de la expresión de genes consignada en bases de datos, ha permitido extraer y analizar información acerca procesos moleculares implicados tanto en la homeostasis cerebral y su alteración en algunas neuropatologías. A partir de valores de expresión génica disponibles en la base de datos del proyecto cerebro humano del Atlas del Cerebro del “Allen Institute for Brain Sciences” (http://human.brain-map.org/), se construyeron perfiles de expresión de 19 genes DSCR en 42 subestructuras cerebrales. Además, utilizando métodos estadísticos multivariados se analizaron los patrones de coexpresión de genes DSCR en el cerebro normal. En el núcleo caudado, el núcleo accumbens y el putamen además de las Áreas centrales 2, 3 y 4, se determinaron los valores de expresión más elevados para los genes incluidos RCAN1, que codifica para una proteína involucrada en el proceso de transducción de señales de SNC; PCP4 cuya proteína interviene en la unión a la calmodulina y TTC3 una proteína que interviene en la diferenciación de neuronas. Las subestructuras identificadas con una elevada expresión de estos genes, están asociadas con procesos de aprendizaje, en diferentes tipos de memoria y habilidades motoras. La regulación de la expresión de los genes DSCR es clave para mantener la homeostasis cerebral, especialmente en aquellas áreas de mayor expresión, las cuales están asociadas con procesos sumamente importantesThe information of gene expression obtained from databases, have made possible the extraction and analysis of data related with several molecular processes involving not only in brain homeostasis but its disruption in some neuropathologies; principally in Down syndrome and the Alzheimer disease. There were obtained expression profiles of 19 DSCR genes in 42 brain substructures, from gene expression values available at the database of the human brain of the Brain Atlas of the Allen Institute for Brain Sciences”, (http://human.brain-map.org/). The co-expression patterns of DSCR genes in brain were calculated by using multivariate statistical methods. Highest levels of gene expression were registered at caudate nucleus, nucleus accumbens and putamen among central areas of cerebral cortex. Increased expression levels of RCAN1 that encode by a protein involved in signal transduction process of the CNS were recorded for PCP4 that participates in the binding to calmodulin and TTC3; a protein that is associated with differentiation of neurons. That previously identified brain structures play a crucial role in the learning process, in different class of memory and in motor skills. The precise regulation of DSCR gene expression is crucial to maintain the brain homeostasis, especially in those areas with high levels of gene expression associated with a remarkable process of learning and cognitionapplication/pdf8 páginasengUniversidad del ValleColombia Médica. Volumen 45, número 4 (2014); pages 154-161161415445Montoya, J., Fajardo, D., Peña, Ángela, Sánchez, A., Domínguez, M., Satizábal, J., & García Vallejo, F. (2014). Expresión diferencial global de genes ubicados en la Región Crítica del Síndrome de Down en el cerebro humano normal. Colombia Médica , 45 (4), 154-161. http://red.uao.edu.co//handle/10614/11812Colombia MédicaCritchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron. 2013; 77: 624–638.Johnson M, Kawasawa M, Mason C, Krsnik Z, Coppola G, et al. Bogdanovic´ D Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron. 2009; 62: 494–509.Oldham M, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008; 11: 1271–1282.Nieuwenhuis-Mark R Diagnosing Alzheimer's dementia in Down syndrome: Problems and possible solutions. Res Dev Disabil. 2009; 30: 827–838.Abbeduto L, McDuffie A. Genetic Syndromes Associated with Intellectual Disabilities. In: Handbook of Medical Neuropsychology: Applications of Cognitive Neuroscience. Armstrong, CL, Morrow L (Eds) New York: Springer; 2010. pp. 193–221.Korenberg Julie R, Kawashima Hiroko, Pulst Stefan-M, Ikeuchi T, Ogasawara N, Yamamoto K, et al. Molecular definition of a region of chromosome 21 that causes features of the Down syndrome phenotype. Am J Human Genet. 1990; 47: 236–46.Montoya J, Soto J, Satizábal J, Sánchez A, García Vallejo F. Genomic study of the critical region of chromosome 21 associated to Down syndrome. Colomb Med (Cali). 2011; 42: 26–38.Weitzdoerfer R, Dierssen M, Fountoulakis M, Lubec G. Fetal life in Down syndrome starts with normal neuronal density but impaired dendritic spines and synaptosomal structure. J Neural Transm Suppl. 2001; 61: 59–70.Ferrando-Miguel R, Cheon M, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain (Part V): Overexpression of phosphatidyl-inositol-glycan class P protein (DSCR5) Amino Acids. 2004; 26: 255–61.VanGilder R, Huber J, Rosen C, Barr T. The transcriptome of cerebral ischemia. Brain Res Bull. 2012; 88: 313–9.Zeng H, Shen E, Hohmann J, Oh S, Bernard A, Royall J, et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell. 2012; 149: 483– 96.Cheadle C, Cho-Chung YS, Becker KG, Vawter MP. Application of z-score transformation to Affymetrix data. Appl Bioinformatics. 2003; 2: 209–17.Montoya J, Peña A, Satizábal J, García-Vallejo F. In silico systemic analysis of the differential expression of genes located in críticalregion of Down syndrome in the human brain. Rev Med. 2012; 20: 15–26.Amano K, Sago H, Uchikawa C, Suzuki T, Kotliarova SE, Nukina N, Epstein CJ, Yamakawa K. Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome. Hum Mol Genet. 2004; 13: 1333–40.Shao M, Liu ZZ, Wang CD, Li HY, Carron C, Zhang HW, Shi DL. Down syndrome critical region protein 5 regulates membrane localization of Wnt receptors, Dishevelled stability and convergent extension in vertebrate embryos. Development. 2009; 136: 2121-1.Ferrando-Miguel R, Cheon MS, Yang JW, Lubec G. Overexpression of transcription factor BACH1 in fetal Down syndrome brain. J Neural Transm Suppl. 2003; 67: 193–205.Richard C, Drevon C, Canto PY, Villain G, Bollérot K, Lempereur A, et al. Endothelio-Mesenchymal Interaction Controls runx1 Expression and Modulates the notch Pathway to Initiate Aortic Hematopoiesis. Dev Cell. 2013; 24: 600–11.Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, et al. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-? and reactive oxygen species. Nat Med. 2012; 18(11): 1693–8.Wang W, Zhu JZ, Chang KT, Min KT. DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis. EMBO J. 2012; 31(18): 3655–66.Ermak G, Pritchard MA, Dronjak S, Niu B, Davies KJ. Do RCAN1 proteins link chronic stress with neurodegeneration. FASEB J. 2011; 25(10): 3306–11.Guedj F, Pereira PL, Najas S, Barallobre MJ, Chabert C, Souchet B, et al. DYRK1A: a master regulatory protein controlling brain growth. Neurobiol Dis. 2012; 46(1): 190–200.Park J, Oh Y, Chung KC. Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1. BMB Rep. 2009; 42(1): 6–15.Packard MG, Goodman J. Emotional arousal and multiple memory systems in the mammalian brain. Front Behav Neurosci. 2012; 6: 14.Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS ONE. 2011; 6: 21852.Wegiel J, Gong CX, Hwang YW. The role of DYRK1A in neurodegenerative diseases. FEBS J. 2011; 278: 236–45.Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008; 86(3): 141–55.Kistler P, Ropper A, Martin J. Enfermedades cerebrovasculares. En: Fauci A, Braunwald E, Kasper D, Hauser S, Longo D, Jameson L, Loscalzo J (eds.). Harrison Principios de Medicina Interna. 17a edición. Barcelona: McGraw-Hill; 2010. pp. 2570–96.Dauphinot L, Lyle R, Rivals I, Dang MT, Moldrich RX, Golfier G, et al. The cerebellar transcriptome during postnatal development of the Ts1Cje mouse, a segmental trisomy model for Down syndrome. Hum Mol Genet. 2005; 14: 373–84.Potier MC, Rivals I, Mercier G, Ettwiller L, Moldrich RX, Laffaire J, et al. Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post-natal development. J Neurochem. 2006; 97(1): 104–9.Minami T. Calcineurin-NFAT activation and DSCR-1 auto-inhibitory loop: how is homoeostasis regulated? J Biochem. 2014; 155: 217–26.Arron JR, et al. NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature. 2006; 441: 595–600Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Down SyndromeNervioso Nervous System DiseasesCerebroCorteza cerebralHomeostasisRegión crítica del Síndrome de DownAnálisis secuencial en arreglo de oligonucleótidosTranscriptomaPerfil de expresión génicaBrainCerebral cortexDown Syndrome critical regionOligonucleotide array sequence analysisTranscriptomeGene expression profilingGlobal differential expression of genes located in the Down Syndrome Critical Region in normal human brainExpresión diferencial global de genes localizados en la Región Crítica del Síndrome de Down en el cerebro humano normalArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationTEXTA0229.pdf.txtA0229.pdf.txtExtracted texttext/plain38748https://dspace7-uao.metacatalogo.com/bitstreams/30b642e5-2396-4929-b2a8-9abdc5ffbc0e/downloadb3254d6e5f3838d4efcaeb6513e16062MD55A0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdf.txtA0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdf.txtExtracted texttext/plain38748https://dspace7-uao.metacatalogo.com/bitstreams/c3e07e9c-5372-47f2-b59a-268f1d56cec3/downloadb3254d6e5f3838d4efcaeb6513e16062MD57THUMBNAILA0229.pdf.jpgA0229.pdf.jpgGenerated Thumbnailimage/jpeg15679https://dspace7-uao.metacatalogo.com/bitstreams/bf3248da-92c4-45af-822e-ba71efa09b32/downloadba4b660813ef7513a93c6ccf21b08ce5MD56A0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdf.jpgA0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdf.jpgGenerated Thumbnailimage/jpeg15679https://dspace7-uao.metacatalogo.com/bitstreams/1f34f607-847a-4c50-9f7d-c9ace3084ea4/downloadba4b660813ef7513a93c6ccf21b08ce5MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/ded76d04-5f97-4ec6-8644-91500e976473/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/c96b9a4f-2036-48b1-a7bb-3432eb7500ac/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdfA0229_Global differential expression of genes located in the Down Syndrome Critical Region in normal human brain.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf845185https://dspace7-uao.metacatalogo.com/bitstreams/fbebe636-5cee-4b84-ad0a-e7ebc555faeb/download7f891cd50fe21e0463bace043d91a688MD5410614/11812oai:dspace7-uao.metacatalogo.com:10614/118122024-01-19 17:12:26.329https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K