Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings

Laboratory scale studies of tribological properties of nitride coatings are useful in predicting their protective wear behavior in cutting toolsfor industrial-scale applications. The main aim of this research is to determine optical and tribo-mechanical properties in multilayer coatingsof metal-cera...

Full description

Autores:
González Hernández, A.
Morales-Cepeda, Ana Beatriz
Caicedo Angulo, Julio César
Alba de Sánchez, Nelly Cecilia
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13294
Acceso en línea:
https://hdl.handle.net/10614/13294
Palabra clave:
Fricción (Mecánica)
Tribología
Tribology
Multilayer
Optical tribo mechanical propertie
Magnetron sputtering
Rights
openAccess
License
Derechos reservados - Revista Mexicana de Física, 2020
id REPOUAO2_f1446469192bbfa2224481e3f57a2911
oai_identifier_str oai:red.uao.edu.co:10614/13294
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings
title Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings
spellingShingle Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings
Fricción (Mecánica)
Tribología
Tribology
Multilayer
Optical tribo mechanical propertie
Magnetron sputtering
title_short Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings
title_full Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings
title_fullStr Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings
title_full_unstemmed Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings
title_sort Optical and tribo-mechanical characterization in metal-ceramic multilayers coatings
dc.creator.fl_str_mv González Hernández, A.
Morales-Cepeda, Ana Beatriz
Caicedo Angulo, Julio César
Alba de Sánchez, Nelly Cecilia
dc.contributor.author.spa.fl_str_mv González Hernández, A.
Morales-Cepeda, Ana Beatriz
Caicedo Angulo, Julio César
Alba de Sánchez, Nelly Cecilia
dc.contributor.corporatename.spa.fl_str_mv Revista Mexicana de Física
dc.subject.armarc.spa.fl_str_mv Fricción (Mecánica)
Tribología
topic Fricción (Mecánica)
Tribología
Tribology
Multilayer
Optical tribo mechanical propertie
Magnetron sputtering
dc.subject.armarc.eng.fl_str_mv Tribology
dc.subject.proposal.eng.fl_str_mv Multilayer
Optical tribo mechanical propertie
Magnetron sputtering
description Laboratory scale studies of tribological properties of nitride coatings are useful in predicting their protective wear behavior in cutting toolsfor industrial-scale applications. The main aim of this research is to determine optical and tribo-mechanical properties in multilayer coatingsof metal-ceramic assigned as coatings A and B. These coatings were deposited by DC magnetron sputtering on carbon steel AISI 1060using buffer adhesion layers of W, Ti/W/WN and TiN/TiN respectively. For to determine molecules, interactions of materials were analyzedthrough of Raman and FTR spectroscopies. The nanohardness, tribological and adhesion behavior were studied by nanoindentation, pinon disk and a tribometer. The hardness and behavior tribological, were obtained by Nano-indentation, pin on disk, and scratch test using atribometer. FTIR and Raman analysis shown the formation of Ti metallic ion and WO3mainly in both coatings. The hardness of coatingsshown a slight improvement compared with the substrate. However, for industrial applications this property should be increase. The behaviorof COF does not present improvement. The mass loss and wear rate were high significantly due to the formation of cracks on surface coatings.Scratch analysis, it found three wear mechanics determined by the presence of irregular borders with sharp shadow, semicircle detachmentin coatings and coatings detachment in the central track as the load increased
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-08
dc.date.accessioned.none.fl_str_mv 2021-09-30T15:55:21Z
dc.date.available.none.fl_str_mv 2021-09-30T15:55:21Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0035001X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13294
identifier_str_mv 0035001X
url https://hdl.handle.net/10614/13294
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 66, número 4 (2020)
dc.relation.citationendpage.spa.fl_str_mv 503
dc.relation.citationissue.spa.fl_str_mv 4
dc.relation.citationstartpage.spa.fl_str_mv 496
dc.relation.citationvolume.spa.fl_str_mv 66
dc.relation.cites.eng.fl_str_mv González Hernandez, A., Morales Cepeda, A. B., Caicedo, J.C., Alba, N. C. (2020). Optical and tribo mechanical characterization in metal ceramic multilayers coatings. Revista Mexicana de Física. Vol. 66 (4), pp. 496–503. DOI: https://doi.org/10.31349/RevMexFis.66.496
dc.relation.ispartofjournal.spa.fl_str_mv Revista Mexicana de Física
dc.relation.references.eng.fl_str_mv 1. M.J. Neale, M. Gee, A Guide to Wear Problems and Testing for Industry. William Andrew. Applied Science Publisher (2001) 3-31. https://doi.org/10.1016/ B978-081551471-8.50002-5
2. J. Morales-Hernández, A. Mandujano-Ruiz, Torres-González, F.J. Espinoza-Beltr´an, H. Herrera-Hernández, Low friction coefficient coatings Ni-Cr by magnetron sputtering, DC. Rev. Metal.
3 (2015) 1-8. http://dx.doi.org/10.3989/ revmetalm.047 3. J. E. Sundgren, Formation and characterization of titanium nitride and titanium carbide films prepared by reactive Sputtering. Dissertation Link¨oping 79 (1982) 13. https://inis. iaea.org/collection/NCLCollectionStore/ Public/13/693/13693374.pdf
4. M. Wen, Q.N. Meng, W.X. Yu, W.T. Zheng, S.X. Mao , M.J. Hua, Growth, stress and hardness of reactively sputtered tungsten nitride thin films. Surface and Coatings Technology 205 (2010) 1953-1961. https://doi.org/10.1016/j.surfcoat.2010.08.082
5. R.F. Londo˜no Menjura et al., Influence of deposition temperature on WTiN coatings tribological performance. Applied Surface Science 427 (2018) 1096-1104. https://doi.org/ 10.1016/j.apsusc.2017.07.215
6. M. Albella Jose. Láminas delgadas y recubrimientos: Preparaci´on, propiedades y aplicaciones. Consejo Superior de Investigaciones Cient´ıficas. Madrid España (2003) 559-560.
7. D.I. James, Surface damage caused by Polyvinyl Chloride Sliding on Steel. Wear 2 (1958) 183-194. https://doi.org/ 10.1016/0043-1648(59)90003-1
8. A. González, M. Flores, J.C. Caicedo, W. Aperador and A.B. Morales-Cepeda, Síntesis y caracterización electroqu´ımica de recubrimientos de multicapas metal cer´amico de W/WN, Ti/TiN y WTiN. Rev. Mex. Fis. 64 (2018) 368-374. https: //doi.org/10.31349/RevMexFis.64.368
9. W. Douglas Timothy, Infrared and Raman spectra of metal-oxygen complexes. Thesis doctor of philosophy of University of London, chemistry department Imperial College, south Kensington (1967) 58. https: //spiral.imperial.ac.uk/bitstream/10044/ 1/17628/2/Wickens-TD-1967-PhD-Thesis.pdf
10. M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, M. Figlarz. Infrared and Raman study of WO3 tungsten triox-ides and WO3, xH2O tungsten trioxide hydrates. J. Solid- State Chemis. 67 (1987) 235-247. https://doi.org/10. 1016/0022-4596(87)90359-8
11. I. Hargittai, M. Hargittai, V.P. Spiridonov and E.V. Erokhin, J. Mol. Structure 8 (1971) 31-41. https://doi.org/10. 1016/0022-2860(71)80039-X
12. J. Díaz-Reyes, V. Dorantes-García, A. Pérez-Benítez, J.A. Balderas-Lopez, Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament. Superficies y Vacío sociedad Mexicana de Ciencia y Tecnolog´ıa de superficies y materiales 21 (2008). http://www.scielo.org.mx/ pdf/sv/v21n2/v21n2a3.pdf
13. T. Mahalingan, C. Selvakumar, E. Ranjith Kumar, T. Venkatachalam, Structural, optical, morphological and termal properties of TiO2-Al and TiO2-Al2O3 composite powders by ball melting. Phys. Lett. A, 381 (2017) 1815-1819. https:// doi.org/10.1016/j.physleta.2017.02.053
14. W. Xue-Bin, D. Chua-Fan andW. Lai-Sheng, Vibrationally Resolved Photoelectron Spectra of TiCx- (x =2-5) Clusters. J. Phys. Chem. A 101 (1997) 7699-7701. https://doi.org/ 10.1021/jp971838k
15. L. Addonizio Maria, C. Anna, A. Alessandro, G. Emilia and L. Laura, Influence of process parameters on properties of reactively sputtered tungsten nitride thin films. J. Vac. Sc. Technol. A, 30 (2012) 031506-1-031506-8. https://doi.org/10. 1116/1.3698399
16. B. Pecquenard, h. Lecacheux, j. Livage, and c. Julien, OrthorhombicWO 3 formed via a ti-stabilizedWO3 1/3h2o phase. J. Solid State Chemis. 135 (1998) 159-168. https://doi. org/10.1006/jssc.1997.7618
17. P. Hoffman, H. Galindo, G. Zambrano, C. Rinc´on, FTIR studies of tungsten carbide in bulk material and thin film samples. Material Characterization 50 (2003) 255-259. https: //doi.org/10.1016/S1044-5803(03)00100-1
18. M. Morsi Abou Sekkina and S. Samy Asar, Infrared absorption Spectra and hydrogen bonding of some solid aninoanthraquinones. Proc. Indian Nath. Sci. Acad. 48 (1982) 112-118. https://insa.nic.in/ UI/Journalarticle.aspx?jid=NA==&&VID= Mjky&&IsNm=SXNzdWUgMUEgICAg
19. G. Davindson, Spectroscopic properties of inorganic and organometallic compounds. The Royal Society of Chemistry. First edition, 30 (1997) 349. https://doi.org/10. 1080/00945717708069725
20. H. Barbara Stuart, J. David Ando, Biological Applications of Infrared Spectroscopy. (JohnWiley and Sons editorial, first edition 1997) 61. ISBN: 978-0-471-97414-7
21. W.L. Scopel, M.C. Fantini, M.I. Alayo, I. Pereyra, Thin solid films 413 (2002) 59-64. https://doi.org/10.1016/ S0040-6090(02)00346-2
22. F. Giorgis, C.F. Pirri, E. Tresso, Thin solid films 307 (1997) 298- 305. https://doi.org/10.1016/S0040-6090(97) 00272-1
23. M.M. Ismael, The effect of silicon orientation on Thickness and chemical bonding configuration of SiOxNy thin films. International Letters of Chemistry, Physics and Astronomy, 19 (2013) 1-9. https: //www.infona.pl/resource/bwmeta1.element. baztech-7f6c119c-7831-4304-9816-b5769f4d4de9/ tab/summary
24. B.O. Francisco, J. B.G. Gilberto, G.B.A. Maryory, Influence of the duplex coatings on the mechanical properties and wear resistance of the tempered AISI 4140 steel. Journal EIA Volume 19 (2013) 151-160. http: //www.scielo.org.co/scielo.php?script= sci arttextn&pid=S1794-12372013000100014
25. P.G. Spizzirri, J.H. Fang, E. Gauja and S. Prawer, Nano-Raman spectroscopy of silicon surfaces. Research Gate Article in materials Forum (2010). https://arxiv.org/ftp/arxiv/ papers/1002/1002.2692.pdf
26. M. Filipescu, V. Ion, D. Colceag, P. M. Ossi , M. Dinescu, Growth and characterizations of nanostructured tungsten oxides. Romanian Reports in Physics Supplement 64 (2012) 1213-1225. https://core.ac.uk/download/ pdf/74312823.pdf
27. W. Bhalchandra Anil, Synthesis of porous monoclinic tungsten oxides and their applications in sensor. Thesis Doctoral Philosophy in chemistry, University of Maine (2003). https://pdfs.semanticscholar.org/bd3e/ 3fad72a065e04d13e5934ab20bd7bb639dd7.pdf
28. K. Srinivasarao and P.K. Mukhopadha, IR and Raman Studies on r.f. magnetron sputtered nano crystalline WO3 thin films. Int. J. App. Eng. Res. 16 (2015) 36148-36156. ISSN 0973-4562 https://www.researchgate.net/ publication/283108627 IR and Raman studies on rf magnetron sputtered nano crystalline WO3 thin films
29. G.S. Kim, S.Y. Lee and J.H. Hahn, Surf. Coat. Technol. 171 (2003) 91. https://doi.org/10.1016/ S0257-8972(03)00244-5
30. W.C. Oliver and G. Pharr, An improved Technique for determining hardness and elastic modulus using load displacement sensing indentation experiments. J. Mater Res. 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.1564
31. V. Hajek, K. Rusnak, J. Vicek, L. Martinu and H.M. Hawthone, Wear 213 (1997) 80. https://doi.org/10. 1016/S0043-1648(97)00176-2
32. S. Petrovi´c et al., Picosecond Laser Ablation of Nano-Sized WTi thin film. Laser Physiscs 19 (2009) 1844-1849. https: //doi.org/10.1134/S1054660X09150
33. T. Polcar, A. Cavaleiro, Structure, mechanical properties and tribology of W-N and W-O coatings. Int. Journal of Refractory Metals and Hard Materials 28 (2010) 15-22. https: //doi.org/10.1016/j.ijrmhm.2009.07.013
34. C.C. Vi´atara, M.I Castro, J.M. V´elez, A. Toro, Unlubricated sliding wear of pearlitic and bainitic steels. Wear 259 (2005) 405-411. https://doi.org/10.1016/j. wear.2005.02.013
35. T. Polcar, N.M.G. Parreira, A. Cavaleiro, Structural and tribological characterization of tungsten nitride coatings at elevated temperature. Wear 265 (2008) 319-326. https:// doi.org/10.1016/j.wear.2007.10.011
36. A. García, ´a. Varela, J.L. Miel, C. Camba, F. Barbadillo, Estudio tribol´ogico de aceros austen´ıticos tipo Hadfield: influencia del manganeso en su respuesta frente al desgaste. Revista de metalurgia, 46 (2010) 47- 52. http://revistademetalurgia.revistas.csic. es/index.php/revistademetalurgia/article/ view/1158
37. K. Sipos, M. López, and, M. Trucco. Surface martensite White layer produced by adhesive sliding wearfriction in AISI 1065 steel. Rev. Lat. Mat. 28 (2008) 46- 50. http://ve.scielo.org/scielo.php?script= sci arttextn&pid=S0255-69522008000100006
38. G. Frade Rub´en, Pr´acticas de elementos amovibles y fijos no estructurales (2014). https://fradeblogs.wordpress. com/2014/02/01/los-aceros/
39. M.F. Cano Ordóñez, J.S. Restrepo Paruma, F. Sequeda Osorio, The effect of counterpart material on the sliding wear of TiAlN coatings deposited by reactive cathodic pulverization. SCI. CUM IND. 3 (2015) 59-66. http://dx.doi.org/ 10.18226/23185279.v3iss2p59
40. N.L PartChasarathi, U. Borah, SH. K. Albert, Correlation between coefficient of friction and surface roughness in dry sliding wear of AISI 316 (N) Stainless Steel elevated Temperatures. Computer Modelling and new Technologies 17 (2013) 51- 63. https://www.semanticscholar.org/paper/ CORRELATION-BETWEEN-COEFFICIENT-OF-FRICTI ON-AND-IN-Parthasarathi-Borah/ d5bd514436b05fb9b8af5ab57476cba71a7470d6
41. B. Ivkovi´c, M. Djukdjanovi´c, D. Stamenkovi´c, The influence of the contact surface roughness on the static friction coefficient. Tribology in industry, 22 (2000) 41- 44. http://www. tribology.rs/journals/2000/2000-3-4.html
42. S.R. Chauhan, K. Dass, Dry sliding wear behaviour of Titanium (grade 5) alloy by using response surface methodology. Advances in Tribology e 2 (2013) 1-9. https://doi.org/ 10.1155/2013/272106
43. ASTM GG99-05. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. Copyright °c ASTM International, 100 Barr Harbor Drive, PO Box C700,West Conshohocken, PA 19428-2959. United States (2010). https://www.astm. org/DATABASE.CART/HISTORICAL/G99-05.htm
44. C. Fischer-Cripps Antony, Introduction to contact mechanics. In chapter 6: Elastic contact, 6.1 Hertz contact equations Second edition, Springer Science, printed in United Sates of America (2007) 101-108. ISBN 978-0-387-68187-0
45. A.G. Mamalis, A.S. Branis, D.E. Manolakos. Modelling of precision hard cutting using implicit finite element methods. Journal of Materials Processing Technology 123 (2002) 464- 475. https://doi.org/10.1016/S0924-0136(02) 00133-4
46. Hertzian contact stress calculator. Hertzian contact stress calculator online. https://amesweb.info/ HertzianContact/HertzianContact.aspx (consulted 4 April 2020).
47. ASTM C1624, M´etodo de prueba est´andar para resistencia a la adhesi´on y los modos de fallo mec´anico de los recubrimientos cer´amicos por cuantitativa de punto ´unico del rasgu˜no de pruebas ASTM International, West Conshohocken, PA, (2015). https://www.astm.org/Standards/C1624.htm
48. ASTM 171, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus. West Conshohocken, PA United States (2003). https://www.astm. org/DATABASE.CART/HISTORICAL/G171-03.htm
49. A. Mubarak, E. Hamzah, Influence of nitrogen gas flow rate on the microstructural and mechanical properties of TiN deposited carbon steel synthesized by CAE PVD Technique. AJSTD 23 (2006) 239-251. https://doi.org/10. 29037/ajstd.111
50. J.C. Caicedo, W. Aperador and Y. Aguilar, Tribological performance evidence on ternary and quaternary nitride coatings applied for industrial steel. Rev. Mex. Fis. 59 (2013) 364-370 http://www.scielo.org.mx/scielo. php?pid=S0035-001X2013000400012n&script= sci arttextn&tlng=pt Rev. Mex.
dc.rights.spa.fl_str_mv Derechos reservados - Revista Mexicana de Física, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Revista Mexicana de Física, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Revista Mexicana de Fisica
dc.publisher.place.spa.fl_str_mv México
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/d16d1e09-250c-4bad-9147-b758ac17d971/download
https://dspace7-uao.metacatalogo.com/bitstreams/585b1a87-07db-42cb-8f59-a3580e49e845/download
https://dspace7-uao.metacatalogo.com/bitstreams/d4dbb5cd-530c-4285-b5a1-d6bce4f4f848/download
https://dspace7-uao.metacatalogo.com/bitstreams/2441b381-b9e6-47d8-8ae4-233c2d71f831/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
cd7fc6092604ba4f30c17d8c0085dc71
6d68e5b25d9d915b32c92e4b7deec657
42c879686698065a0a882acab579fb4e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260045712457728
spelling González Hernández, A.11d1e60746ea0944292fadcb745a1098Morales-Cepeda, Ana Beatriz6bef10b842c69b036c87383ee903595dCaicedo Angulo, Julio Césarf992baa0bb173e69c42dd9c1ed408b05Alba de Sánchez, Nelly Cecilia2793e3a51a82a454e83e94b5b61af113Revista Mexicana de Física2021-09-30T15:55:21Z2021-09-30T15:55:21Z2020-080035001Xhttps://hdl.handle.net/10614/13294Laboratory scale studies of tribological properties of nitride coatings are useful in predicting their protective wear behavior in cutting toolsfor industrial-scale applications. The main aim of this research is to determine optical and tribo-mechanical properties in multilayer coatingsof metal-ceramic assigned as coatings A and B. These coatings were deposited by DC magnetron sputtering on carbon steel AISI 1060using buffer adhesion layers of W, Ti/W/WN and TiN/TiN respectively. For to determine molecules, interactions of materials were analyzedthrough of Raman and FTR spectroscopies. The nanohardness, tribological and adhesion behavior were studied by nanoindentation, pinon disk and a tribometer. The hardness and behavior tribological, were obtained by Nano-indentation, pin on disk, and scratch test using atribometer. FTIR and Raman analysis shown the formation of Ti metallic ion and WO3mainly in both coatings. The hardness of coatingsshown a slight improvement compared with the substrate. However, for industrial applications this property should be increase. The behaviorof COF does not present improvement. The mass loss and wear rate were high significantly due to the formation of cracks on surface coatings.Scratch analysis, it found three wear mechanics determined by the presence of irregular borders with sharp shadow, semicircle detachmentin coatings and coatings detachment in the central track as the load increased8 páginasapplication/pdfengRevista Mexicana de FisicaMéxicoDerechos reservados - Revista Mexicana de Física, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Optical and tribo-mechanical characterization in metal-ceramic multilayers coatingsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Fricción (Mecánica)TribologíaTribologyMultilayerOptical tribo mechanical propertieMagnetron sputteringVolumen 66, número 4 (2020)503449666González Hernandez, A., Morales Cepeda, A. B., Caicedo, J.C., Alba, N. C. (2020). Optical and tribo mechanical characterization in metal ceramic multilayers coatings. Revista Mexicana de Física. Vol. 66 (4), pp. 496–503. DOI: https://doi.org/10.31349/RevMexFis.66.496Revista Mexicana de Física1. M.J. Neale, M. Gee, A Guide to Wear Problems and Testing for Industry. William Andrew. Applied Science Publisher (2001) 3-31. https://doi.org/10.1016/ B978-081551471-8.50002-52. J. Morales-Hernández, A. Mandujano-Ruiz, Torres-González, F.J. Espinoza-Beltr´an, H. Herrera-Hernández, Low friction coefficient coatings Ni-Cr by magnetron sputtering, DC. Rev. Metal.3 (2015) 1-8. http://dx.doi.org/10.3989/ revmetalm.047 3. J. E. Sundgren, Formation and characterization of titanium nitride and titanium carbide films prepared by reactive Sputtering. Dissertation Link¨oping 79 (1982) 13. https://inis. iaea.org/collection/NCLCollectionStore/ Public/13/693/13693374.pdf4. M. Wen, Q.N. Meng, W.X. Yu, W.T. Zheng, S.X. Mao , M.J. Hua, Growth, stress and hardness of reactively sputtered tungsten nitride thin films. Surface and Coatings Technology 205 (2010) 1953-1961. https://doi.org/10.1016/j.surfcoat.2010.08.0825. R.F. Londo˜no Menjura et al., Influence of deposition temperature on WTiN coatings tribological performance. Applied Surface Science 427 (2018) 1096-1104. https://doi.org/ 10.1016/j.apsusc.2017.07.2156. M. Albella Jose. Láminas delgadas y recubrimientos: Preparaci´on, propiedades y aplicaciones. Consejo Superior de Investigaciones Cient´ıficas. Madrid España (2003) 559-560.7. D.I. James, Surface damage caused by Polyvinyl Chloride Sliding on Steel. Wear 2 (1958) 183-194. https://doi.org/ 10.1016/0043-1648(59)90003-18. A. González, M. Flores, J.C. Caicedo, W. Aperador and A.B. Morales-Cepeda, Síntesis y caracterización electroqu´ımica de recubrimientos de multicapas metal cer´amico de W/WN, Ti/TiN y WTiN. Rev. Mex. Fis. 64 (2018) 368-374. https: //doi.org/10.31349/RevMexFis.64.3689. W. Douglas Timothy, Infrared and Raman spectra of metal-oxygen complexes. Thesis doctor of philosophy of University of London, chemistry department Imperial College, south Kensington (1967) 58. https: //spiral.imperial.ac.uk/bitstream/10044/ 1/17628/2/Wickens-TD-1967-PhD-Thesis.pdf10. M.F. Daniel, B. Desbat, J.C. Lassegues, B. Gerand, M. Figlarz. Infrared and Raman study of WO3 tungsten triox-ides and WO3, xH2O tungsten trioxide hydrates. J. Solid- State Chemis. 67 (1987) 235-247. https://doi.org/10. 1016/0022-4596(87)90359-811. I. Hargittai, M. Hargittai, V.P. Spiridonov and E.V. Erokhin, J. Mol. Structure 8 (1971) 31-41. https://doi.org/10. 1016/0022-2860(71)80039-X12. J. Díaz-Reyes, V. Dorantes-García, A. Pérez-Benítez, J.A. Balderas-Lopez, Obtaining of films of tungsten trioxide (WO3) by resistive heating of a tungsten filament. Superficies y Vacío sociedad Mexicana de Ciencia y Tecnolog´ıa de superficies y materiales 21 (2008). http://www.scielo.org.mx/ pdf/sv/v21n2/v21n2a3.pdf13. T. Mahalingan, C. Selvakumar, E. Ranjith Kumar, T. Venkatachalam, Structural, optical, morphological and termal properties of TiO2-Al and TiO2-Al2O3 composite powders by ball melting. Phys. Lett. A, 381 (2017) 1815-1819. https:// doi.org/10.1016/j.physleta.2017.02.05314. W. Xue-Bin, D. Chua-Fan andW. Lai-Sheng, Vibrationally Resolved Photoelectron Spectra of TiCx- (x =2-5) Clusters. J. Phys. Chem. A 101 (1997) 7699-7701. https://doi.org/ 10.1021/jp971838k15. L. Addonizio Maria, C. Anna, A. Alessandro, G. Emilia and L. Laura, Influence of process parameters on properties of reactively sputtered tungsten nitride thin films. J. Vac. Sc. Technol. A, 30 (2012) 031506-1-031506-8. https://doi.org/10. 1116/1.369839916. B. Pecquenard, h. Lecacheux, j. Livage, and c. Julien, OrthorhombicWO 3 formed via a ti-stabilizedWO3 1/3h2o phase. J. Solid State Chemis. 135 (1998) 159-168. https://doi. org/10.1006/jssc.1997.761817. P. Hoffman, H. Galindo, G. Zambrano, C. Rinc´on, FTIR studies of tungsten carbide in bulk material and thin film samples. Material Characterization 50 (2003) 255-259. https: //doi.org/10.1016/S1044-5803(03)00100-118. M. Morsi Abou Sekkina and S. Samy Asar, Infrared absorption Spectra and hydrogen bonding of some solid aninoanthraquinones. Proc. Indian Nath. Sci. Acad. 48 (1982) 112-118. https://insa.nic.in/ UI/Journalarticle.aspx?jid=NA==&&VID= Mjky&&IsNm=SXNzdWUgMUEgICAg19. G. Davindson, Spectroscopic properties of inorganic and organometallic compounds. The Royal Society of Chemistry. First edition, 30 (1997) 349. https://doi.org/10. 1080/0094571770806972520. H. Barbara Stuart, J. David Ando, Biological Applications of Infrared Spectroscopy. (JohnWiley and Sons editorial, first edition 1997) 61. ISBN: 978-0-471-97414-721. W.L. Scopel, M.C. Fantini, M.I. Alayo, I. Pereyra, Thin solid films 413 (2002) 59-64. https://doi.org/10.1016/ S0040-6090(02)00346-222. F. Giorgis, C.F. Pirri, E. Tresso, Thin solid films 307 (1997) 298- 305. https://doi.org/10.1016/S0040-6090(97) 00272-123. M.M. Ismael, The effect of silicon orientation on Thickness and chemical bonding configuration of SiOxNy thin films. International Letters of Chemistry, Physics and Astronomy, 19 (2013) 1-9. https: //www.infona.pl/resource/bwmeta1.element. baztech-7f6c119c-7831-4304-9816-b5769f4d4de9/ tab/summary24. B.O. Francisco, J. B.G. Gilberto, G.B.A. Maryory, Influence of the duplex coatings on the mechanical properties and wear resistance of the tempered AISI 4140 steel. Journal EIA Volume 19 (2013) 151-160. http: //www.scielo.org.co/scielo.php?script= sci arttextn&pid=S1794-1237201300010001425. P.G. Spizzirri, J.H. Fang, E. Gauja and S. Prawer, Nano-Raman spectroscopy of silicon surfaces. Research Gate Article in materials Forum (2010). https://arxiv.org/ftp/arxiv/ papers/1002/1002.2692.pdf26. M. Filipescu, V. Ion, D. Colceag, P. M. Ossi , M. Dinescu, Growth and characterizations of nanostructured tungsten oxides. Romanian Reports in Physics Supplement 64 (2012) 1213-1225. https://core.ac.uk/download/ pdf/74312823.pdf27. W. Bhalchandra Anil, Synthesis of porous monoclinic tungsten oxides and their applications in sensor. Thesis Doctoral Philosophy in chemistry, University of Maine (2003). https://pdfs.semanticscholar.org/bd3e/ 3fad72a065e04d13e5934ab20bd7bb639dd7.pdf28. K. Srinivasarao and P.K. Mukhopadha, IR and Raman Studies on r.f. magnetron sputtered nano crystalline WO3 thin films. Int. J. App. Eng. Res. 16 (2015) 36148-36156. ISSN 0973-4562 https://www.researchgate.net/ publication/283108627 IR and Raman studies on rf magnetron sputtered nano crystalline WO3 thin films29. G.S. Kim, S.Y. Lee and J.H. Hahn, Surf. Coat. Technol. 171 (2003) 91. https://doi.org/10.1016/ S0257-8972(03)00244-530. W.C. Oliver and G. Pharr, An improved Technique for determining hardness and elastic modulus using load displacement sensing indentation experiments. J. Mater Res. 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.156431. V. Hajek, K. Rusnak, J. Vicek, L. Martinu and H.M. Hawthone, Wear 213 (1997) 80. https://doi.org/10. 1016/S0043-1648(97)00176-232. S. Petrovi´c et al., Picosecond Laser Ablation of Nano-Sized WTi thin film. Laser Physiscs 19 (2009) 1844-1849. https: //doi.org/10.1134/S1054660X0915033. T. Polcar, A. Cavaleiro, Structure, mechanical properties and tribology of W-N and W-O coatings. Int. Journal of Refractory Metals and Hard Materials 28 (2010) 15-22. https: //doi.org/10.1016/j.ijrmhm.2009.07.01334. C.C. Vi´atara, M.I Castro, J.M. V´elez, A. Toro, Unlubricated sliding wear of pearlitic and bainitic steels. Wear 259 (2005) 405-411. https://doi.org/10.1016/j. wear.2005.02.01335. T. Polcar, N.M.G. Parreira, A. Cavaleiro, Structural and tribological characterization of tungsten nitride coatings at elevated temperature. Wear 265 (2008) 319-326. https:// doi.org/10.1016/j.wear.2007.10.01136. A. García, ´a. Varela, J.L. Miel, C. Camba, F. Barbadillo, Estudio tribol´ogico de aceros austen´ıticos tipo Hadfield: influencia del manganeso en su respuesta frente al desgaste. Revista de metalurgia, 46 (2010) 47- 52. http://revistademetalurgia.revistas.csic. es/index.php/revistademetalurgia/article/ view/115837. K. Sipos, M. López, and, M. Trucco. Surface martensite White layer produced by adhesive sliding wearfriction in AISI 1065 steel. Rev. Lat. Mat. 28 (2008) 46- 50. http://ve.scielo.org/scielo.php?script= sci arttextn&pid=S0255-6952200800010000638. G. Frade Rub´en, Pr´acticas de elementos amovibles y fijos no estructurales (2014). https://fradeblogs.wordpress. com/2014/02/01/los-aceros/39. M.F. Cano Ordóñez, J.S. Restrepo Paruma, F. Sequeda Osorio, The effect of counterpart material on the sliding wear of TiAlN coatings deposited by reactive cathodic pulverization. SCI. CUM IND. 3 (2015) 59-66. http://dx.doi.org/ 10.18226/23185279.v3iss2p5940. N.L PartChasarathi, U. Borah, SH. K. Albert, Correlation between coefficient of friction and surface roughness in dry sliding wear of AISI 316 (N) Stainless Steel elevated Temperatures. Computer Modelling and new Technologies 17 (2013) 51- 63. https://www.semanticscholar.org/paper/ CORRELATION-BETWEEN-COEFFICIENT-OF-FRICTI ON-AND-IN-Parthasarathi-Borah/ d5bd514436b05fb9b8af5ab57476cba71a7470d641. B. Ivkovi´c, M. Djukdjanovi´c, D. Stamenkovi´c, The influence of the contact surface roughness on the static friction coefficient. Tribology in industry, 22 (2000) 41- 44. http://www. tribology.rs/journals/2000/2000-3-4.html42. S.R. Chauhan, K. Dass, Dry sliding wear behaviour of Titanium (grade 5) alloy by using response surface methodology. Advances in Tribology e 2 (2013) 1-9. https://doi.org/ 10.1155/2013/27210643. ASTM GG99-05. Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. Copyright °c ASTM International, 100 Barr Harbor Drive, PO Box C700,West Conshohocken, PA 19428-2959. United States (2010). https://www.astm. org/DATABASE.CART/HISTORICAL/G99-05.htm44. C. Fischer-Cripps Antony, Introduction to contact mechanics. In chapter 6: Elastic contact, 6.1 Hertz contact equations Second edition, Springer Science, printed in United Sates of America (2007) 101-108. ISBN 978-0-387-68187-045. A.G. Mamalis, A.S. Branis, D.E. Manolakos. Modelling of precision hard cutting using implicit finite element methods. Journal of Materials Processing Technology 123 (2002) 464- 475. https://doi.org/10.1016/S0924-0136(02) 00133-446. Hertzian contact stress calculator. Hertzian contact stress calculator online. https://amesweb.info/ HertzianContact/HertzianContact.aspx (consulted 4 April 2020).47. ASTM C1624, M´etodo de prueba est´andar para resistencia a la adhesi´on y los modos de fallo mec´anico de los recubrimientos cer´amicos por cuantitativa de punto ´unico del rasgu˜no de pruebas ASTM International, West Conshohocken, PA, (2015). https://www.astm.org/Standards/C1624.htm48. ASTM 171, Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus. West Conshohocken, PA United States (2003). https://www.astm. org/DATABASE.CART/HISTORICAL/G171-03.htm49. A. Mubarak, E. Hamzah, Influence of nitrogen gas flow rate on the microstructural and mechanical properties of TiN deposited carbon steel synthesized by CAE PVD Technique. AJSTD 23 (2006) 239-251. https://doi.org/10. 29037/ajstd.11150. J.C. Caicedo, W. Aperador and Y. Aguilar, Tribological performance evidence on ternary and quaternary nitride coatings applied for industrial steel. Rev. Mex. Fis. 59 (2013) 364-370 http://www.scielo.org.mx/scielo. php?pid=S0035-001X2013000400012n&script= sci arttextn&tlng=pt Rev. Mex.GeneralPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/d16d1e09-250c-4bad-9147-b758ac17d971/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALOptical and tribo-mechanical characterization in metal-ceramic multilayers coatings.pdfOptical and tribo-mechanical characterization in metal-ceramic multilayers coatings.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1787951https://dspace7-uao.metacatalogo.com/bitstreams/585b1a87-07db-42cb-8f59-a3580e49e845/downloadcd7fc6092604ba4f30c17d8c0085dc71MD53TEXTOptical and tribo-mechanical characterization in metal-ceramic multilayers coatings.pdf.txtOptical and tribo-mechanical characterization in metal-ceramic multilayers coatings.pdf.txtExtracted texttext/plain37033https://dspace7-uao.metacatalogo.com/bitstreams/d4dbb5cd-530c-4285-b5a1-d6bce4f4f848/download6d68e5b25d9d915b32c92e4b7deec657MD54THUMBNAILOptical and tribo-mechanical characterization in metal-ceramic multilayers coatings.pdf.jpgOptical and tribo-mechanical characterization in metal-ceramic multilayers coatings.pdf.jpgGenerated Thumbnailimage/jpeg16592https://dspace7-uao.metacatalogo.com/bitstreams/2441b381-b9e6-47d8-8ae4-233c2d71f831/download42c879686698065a0a882acab579fb4eMD5510614/13294oai:dspace7-uao.metacatalogo.com:10614/132942024-01-19 16:47:01.517https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Revista Mexicana de Física, 2020open.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K