Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)

This research proposes an innovative method for correcting banding errors in satellite images based on Generative Adversarial Networks (GAN). Small satellites are frequently launched into space to obtain images that can be used in scientific or military research, commercial activities, and urban pla...

Full description

Autores:
Zárate L., Paola
Arroyo H., Christian
Rincón U., Sonia
López Sotelo, Jesús Alfonso
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15860
Acceso en línea:
https://hdl.handle.net/10614/15860
https://red.uao.edu.co/
Palabra clave:
Artificial neural network
Deep learning
Generative adversarial network
Satellite images
Radiometric error
Banding
Rights
openAccess
License
Derechos reservados - IEEE, 2023
id REPOUAO2_ee5fb05b4719bc71377ac5e775378337
oai_identifier_str oai:red.uao.edu.co:10614/15860
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
title Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
spellingShingle Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
Artificial neural network
Deep learning
Generative adversarial network
Satellite images
Radiometric error
Banding
title_short Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
title_full Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
title_fullStr Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
title_full_unstemmed Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
title_sort Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)
dc.creator.fl_str_mv Zárate L., Paola
Arroyo H., Christian
Rincón U., Sonia
López Sotelo, Jesús Alfonso
dc.contributor.author.none.fl_str_mv Zárate L., Paola
Arroyo H., Christian
Rincón U., Sonia
López Sotelo, Jesús Alfonso
dc.subject.proposal.eng.fl_str_mv Artificial neural network
Deep learning
Generative adversarial network
Satellite images
Radiometric error
Banding
topic Artificial neural network
Deep learning
Generative adversarial network
Satellite images
Radiometric error
Banding
description This research proposes an innovative method for correcting banding errors in satellite images based on Generative Adversarial Networks (GAN). Small satellites are frequently launched into space to obtain images that can be used in scientific or military research, commercial activities, and urban planning, among other applications. However, its small cameras are more susceptible to radiometric, geometric errors, and other distortions caused by atmospheric interference. The proposed method was compared to the conventional correction technique using experimental data, showing the similar performance (92.64% and 90.05% accuracy, respectively). These experimental results suggest that generative models utilizing Artificial Intelligence (AI) techniques, specifically Deep Learning, are getting closer to achieving automatic correction close to conventional methods. Advantages of the GAN models include automating the task of correcting banding in satellite images, reducing the required time, and facilitating the processing without requiring prior technical knowledge in handling Geographic Information Systems (GIS). Potentially, this technique could represent a valuable tool for satellite image processing, improving the accuracy of the results and making the process more efficient. The research is particularly relevant to the field of remote sensing and can have practical applications in various industries
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-10-15T14:20:36Z
dc.date.available.none.fl_str_mv 2024-10-15T14:20:36Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Zárate L., P.; López Sotelo, J. A.; Arroyo H. Ch. y Rincón U. S. (2023). Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN). IEEE Acces. volumen 11. 11 p. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10131946
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15860
dc.identifier.doi.spa.fl_str_mv 10.1109/ACCESS.2023.3279265
dc.identifier.eissn.spa.fl_str_mv 21693536
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Zárate L., P.; López Sotelo, J. A.; Arroyo H. Ch. y Rincón U. S. (2023). Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN). IEEE Acces. volumen 11. 11 p. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10131946
10.1109/ACCESS.2023.3279265
21693536
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15860
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 51970
dc.relation.citationstartpage.spa.fl_str_mv 51960
dc.relation.citationvolume.spa.fl_str_mv 11
dc.relation.ispartofjournal.eng.fl_str_mv IEEE Acces
dc.relation.references.none.fl_str_mv [1] P. Alonso. Correciones a Las Imágenes de Satélites. Universidad de Murcia. Accessed: Jan. 16, 2022. [Online]. Available: https://www. um.es/geograf/sigmur/teledet/tema07.pdf
[2] F. Pachua-Cofrep, ‘‘Correlation between NDVI and tree-rings. Growth of forest species in southern Ecuador,’’ M.S. thesis, Departamento de Geomática-Z_GIS, Universidad de Salzburgo, Salzburg, Austria, 2019, doi: 10.13140/RG.2.2.34662.57922.
[3] USGS. Data Citation. Accessed: Jan. 16, 2022. [Online].Available: https:// www.usgs.gov/centers/eros/data-citation
[4] Y. Pang, J. Lin, T. Qin, and Z. Chen, ‘‘Image-to-image translation: Methods and applications,’’ in Proc. Comput. Vis. Pattern Recognit., Jul. 2021, pp. 1–14.
[5] Y. Pang, J. Lin, T. Qin, and Z. Chen, ‘‘Image-to-image translation: Methods and applications,’’ IEEE Trans. Multimedia, vol. 24, pp. 3859–3881, 2022.
[6] X. Chen, C. Xu, X. Yang, and D. Tao, ‘‘Attention-GAN for object transfiguration in wild images,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 164–180.
[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial networks,’’ 2014, arXiv:1406.2661.
[8] J. Gauthier. (2015). Conditional Generative Adversarial Nets for Convolutional Face Generation. [Online]. Available: http://cs231n.stanford.edu/ reports/2015/pdfs/jgauthie_final_report.pdf
[9] A. Sharma. (Jul. 2021). Pix2Pix: Image-to-Image Translation in PyTorch& TensorFlow. LearnOpenCV. [Online]. Available: https://learnopencv.com/ paired-image-to-image-translation-pix2pix/#pix2pix
[10] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.
[11] D. Bank, N.Koenigstein, and R. Giryes, ‘‘Autoencoders,’’ in Proc. Comput. Vis. Pattern Recognit., Mach. Learn., Apr. 2021, pp. 1–12.
[12] D. Bank, N. Koenigstein, and R. Giryes, ‘‘Autoencoders,’’ 2020, arXiv:2003.05991.
[13] Y. Zhang. (2018). A Better Autoencoder for Images: Convolutional Autoencoder. Australian National University. [Online]. Available: http://users. cecs.anu.edu.au/~Tom.Gedeon/conf/ABCs2018/paper/ABCs 2018_paper_58.pdf
[14] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, May 2015, pp. 1–4.
[15] H. Joyce, N. Terry, and M. Den, ‘‘Pix2Pix GAN for image-to-image translation,’’ Community College Rhode Island, Tech. Rep., 2021, doi: 10.13140/RG.2.2.32286.66887.
[16] J. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image translation using cycle-consistent adversarial networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242–2251.
[17] H. Bansal and A. Rathore. (Dec. 2017). Understanding and Implementing CycleGAN in TensorFlow. GitHub. [Online]. Available: https://hardikbansal.github.io/CycleGANBlog/
[18] T. Ganokratanaa, S. Aramvith, and N. Sebe, ‘‘Unsupervised anomaly detection and localization based on deep spatiotemporal translation network,’’ IEEE Access, vol. 8, pp. 50312–50329, 2020, doi: 10.1109/ACCESS.2020.2979869.
[19] U. Demir and G. Unal, ‘‘Patch-based image inpainting with generative adversarial networks,’’ 2018, arXiv:1803.07422.
[20] Y. Jia, Y. Guo, S. Chen, R. Song, G. Wang, X. Zhong, C. Yan, and G. Cui, ‘‘Multipath ghost and side/grating lobe suppression based on stacked generative adversarial nets in MIMO through-wall radar imaging,’’ IEEE Access, vol. 7, pp. 143367–143380, 2019, doi: 10.1109/ACCESS.2019.2945859.
[21] K. Regmi and A. Borji, ‘‘Cross-view image synthesis using conditional GANs,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3501–3510.
[22] Q. Yang, N. Li, Z. Zhao, X. Fan, E. I.-C. Chang, and Y. Xu, ‘‘MRI cross-modality neuroimage-to-neuroImage translation,’’ 2018, arXiv:1801.06940.
[23] T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim, ‘‘Learning to discover crossdomain relations with generative adversarial networks,’’ in Proc. Int. Conf. Mach. Learn., May 2017, pp. 1–12.
[24] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. A. Efros, ‘‘Real-time user-guided image colorization with learned deep priors,’’ 2017, arXiv:1705.02999.
[25] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, ‘‘Context encoders: Feature learning by inpainting,’’ 2016, arXiv:1604.07379.
26] C. Xu and B. Zhao, ‘‘Satellite image spoofing: Creating remote sensing dataset with generative adversarial networks,’’ in Proc. 10th Int. Conf. Geograph. Inf. Sci., 2018, pp. 3–6.
[27] Y. Zhang, Y. Yin, R. Zimmermann, G. Wang, J. Varadarajan, and S. Ng, ‘‘An enhanced GAN model for automatic satellite-to-map image conversion,’’ IEEE Access, vol. 8, pp. 176704–176716, 2020, doi: 10.1109/ACCESS.2020.3025008.
[28] S. Ganguli, P. Garzon, and N. Glaser, ‘‘GeoGAN: A conditional GAN generate standard layer of maps from satellite images,’’ Dept. Comput. Sci., Stanford Univ., Tech. Rep., Dec. 2018, doi: 10.13140/RG.2.2.19414.91205.
[29] M. Shah, M. Gupta, and P. Thakkar, ‘‘SatGAN: Satellite image generation using conditional adversarial networks,’’ in Proc. Int. Conf. Commun. Inf. Comput. Technol. (ICCICT), Jun. 2021, pp. 1–6, doi: 10.1109/ICCICT50803.2021.9510104.
[30] G. Kogan, G. Gambotto, A. Samsen, A. Boleslavský, M. Ferretti, D. Gui, and F. Frei. (Nov. 2016). Machine Learning for Artists Workshop at OpenDot. [Online]. Available: https://opendot.github.io/ml4a-invisiblecities/ implementation/
[31] F. R. Uebersch. (Feb. 2022). Creating a Dataset of Satellite Images for StyleGAN Training. [Online]. Available: https://ueberf.medium.com/ creating-a-dataset-of-satellite-images-for-stylegan-training-8eff8fd56e68
[32] A. Gautam, M. Sit, and I. Demir, ‘‘Realistic river image synthesis using deep generative adversarial networks,’’ 2020, arXiv:2003.00826.
[33] K. Johnson. (Dec. 2020). NVidia Researchers Devise a Method for Training GANs With Fewer Data. VentureBeat. [Online]. Available: https://venturebeat.com/2020/12/07/nvidia-researchers-devise-methodfor- training-gans-with-less-data/
[34] R. Mourya. (Dec. 2020). Resolving CUDA: Being Out of Memory With Gradient Accumulation and AMP. Towards Data Science. [Online]. Available: https://towardsdatascience.com/i-am-so-done-withcuda- out-of-memory-c62f42947dca
[35] J. Brownlee. (Jul. 2019). How to Implement Pix2Pix GAN Models From Scratch With Keras. Machine Learning Mastery. [Online]. Available: https://machinelearningmastery.com/how-to-implement-pix2pix-ganmodels- from-scratch-with-keras/
[36] A. Horé and D. Ziou, ‘‘Is there a relationship between peak-signal-to-noise ratio and structural similarity index measure?’’ IET Image Process., vol. 7, no. 1, pp. 12–24, Feb. 2013, doi: 10.1049/iet-ipr.2012.0489.
[37] Y. Wang, C. Wu, L. Herranz, J. van de Weijer, A. Gonzalez-Garcia, and B. Raducanu, ‘‘Transferring GANs: Generating images from limited data,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Oct. 2018, pp. 218–234.
[38] P. A. Z. Luna and J. A. L. Sotelo, ‘‘Systematic literature review: Artificial neural networks applied in satellite images,’’ in Proc. IEEE Colombian Conf. Appl. Comput. Intell., Aug. 2020, pp. 1–6, doi: 10.1109/COLCACI50549.2020.9247916.
dc.rights.spa.fl_str_mv Derechos reservados - IEEE, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - IEEE, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv IEEE
dc.publisher.place.eng.fl_str_mv Piscataway
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/c01b8689-fa13-4faa-a293-deb3ad905b30/download
https://red.uao.edu.co/bitstreams/f563a7b8-351d-442a-aa7a-7feea052c831/download
https://red.uao.edu.co/bitstreams/92cc53ab-afb3-4bbf-8172-636a90694a81/download
https://red.uao.edu.co/bitstreams/b2e3d29b-18fe-4dab-a9ef-66bc7bddb622/download
bitstream.checksum.fl_str_mv dda7577d93f310954f317aca6dd1e3c0
6987b791264a2b5525252450f99b10d1
c592debc89adf04fd53f1da5ec6e9b97
f6d68cdba5c66303853898f875c0b41e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260122775453696
spelling Zárate L., PaolaArroyo H., ChristianRincón U., SoniaLópez Sotelo, Jesús Alfonsovirtual::5729-12024-10-15T14:20:36Z2024-10-15T14:20:36Z2023Zárate L., P.; López Sotelo, J. A.; Arroyo H. Ch. y Rincón U. S. (2023). Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN). IEEE Acces. volumen 11. 11 p. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10131946https://hdl.handle.net/10614/1586010.1109/ACCESS.2023.327926521693536Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This research proposes an innovative method for correcting banding errors in satellite images based on Generative Adversarial Networks (GAN). Small satellites are frequently launched into space to obtain images that can be used in scientific or military research, commercial activities, and urban planning, among other applications. However, its small cameras are more susceptible to radiometric, geometric errors, and other distortions caused by atmospheric interference. The proposed method was compared to the conventional correction technique using experimental data, showing the similar performance (92.64% and 90.05% accuracy, respectively). These experimental results suggest that generative models utilizing Artificial Intelligence (AI) techniques, specifically Deep Learning, are getting closer to achieving automatic correction close to conventional methods. Advantages of the GAN models include automating the task of correcting banding in satellite images, reducing the required time, and facilitating the processing without requiring prior technical knowledge in handling Geographic Information Systems (GIS). Potentially, this technique could represent a valuable tool for satellite image processing, improving the accuracy of the results and making the process more efficient. The research is particularly relevant to the field of remote sensing and can have practical applications in various industries11 páginasapplication/pdfengIEEEPiscatawayDerechos reservados - IEEE, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Correction of Banding Errors in Satellite Images With Generative Adversarial Networks (GAN)Artículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85519705196011IEEE Acces[1] P. Alonso. Correciones a Las Imágenes de Satélites. Universidad de Murcia. Accessed: Jan. 16, 2022. [Online]. Available: https://www. um.es/geograf/sigmur/teledet/tema07.pdf[2] F. Pachua-Cofrep, ‘‘Correlation between NDVI and tree-rings. Growth of forest species in southern Ecuador,’’ M.S. thesis, Departamento de Geomática-Z_GIS, Universidad de Salzburgo, Salzburg, Austria, 2019, doi: 10.13140/RG.2.2.34662.57922.[3] USGS. Data Citation. Accessed: Jan. 16, 2022. [Online].Available: https:// www.usgs.gov/centers/eros/data-citation[4] Y. Pang, J. Lin, T. Qin, and Z. Chen, ‘‘Image-to-image translation: Methods and applications,’’ in Proc. Comput. Vis. Pattern Recognit., Jul. 2021, pp. 1–14.[5] Y. Pang, J. Lin, T. Qin, and Z. Chen, ‘‘Image-to-image translation: Methods and applications,’’ IEEE Trans. Multimedia, vol. 24, pp. 3859–3881, 2022.[6] X. Chen, C. Xu, X. Yang, and D. Tao, ‘‘Attention-GAN for object transfiguration in wild images,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 164–180.[7] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial networks,’’ 2014, arXiv:1406.2661.[8] J. Gauthier. (2015). Conditional Generative Adversarial Nets for Convolutional Face Generation. [Online]. Available: http://cs231n.stanford.edu/ reports/2015/pdfs/jgauthie_final_report.pdf[9] A. Sharma. (Jul. 2021). Pix2Pix: Image-to-Image Translation in PyTorch& TensorFlow. LearnOpenCV. [Online]. Available: https://learnopencv.com/ paired-image-to-image-translation-pix2pix/#pix2pix[10] P. Isola, J. Zhu, T. Zhou, and A. A. Efros, ‘‘Image-to-image translation with conditional adversarial networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.[11] D. Bank, N.Koenigstein, and R. Giryes, ‘‘Autoencoders,’’ in Proc. Comput. Vis. Pattern Recognit., Mach. Learn., Apr. 2021, pp. 1–12.[12] D. Bank, N. Koenigstein, and R. Giryes, ‘‘Autoencoders,’’ 2020, arXiv:2003.05991.[13] Y. Zhang. (2018). A Better Autoencoder for Images: Convolutional Autoencoder. Australian National University. [Online]. Available: http://users. cecs.anu.edu.au/~Tom.Gedeon/conf/ABCs2018/paper/ABCs 2018_paper_58.pdf[14] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks for biomedical image segmentation,’’ in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, May 2015, pp. 1–4.[15] H. Joyce, N. Terry, and M. Den, ‘‘Pix2Pix GAN for image-to-image translation,’’ Community College Rhode Island, Tech. Rep., 2021, doi: 10.13140/RG.2.2.32286.66887.[16] J. Zhu, T. Park, P. Isola, and A. A. Efros, ‘‘Unpaired image-to-image translation using cycle-consistent adversarial networks,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242–2251.[17] H. Bansal and A. Rathore. (Dec. 2017). Understanding and Implementing CycleGAN in TensorFlow. GitHub. [Online]. Available: https://hardikbansal.github.io/CycleGANBlog/[18] T. Ganokratanaa, S. Aramvith, and N. Sebe, ‘‘Unsupervised anomaly detection and localization based on deep spatiotemporal translation network,’’ IEEE Access, vol. 8, pp. 50312–50329, 2020, doi: 10.1109/ACCESS.2020.2979869.[19] U. Demir and G. Unal, ‘‘Patch-based image inpainting with generative adversarial networks,’’ 2018, arXiv:1803.07422.[20] Y. Jia, Y. Guo, S. Chen, R. Song, G. Wang, X. Zhong, C. Yan, and G. Cui, ‘‘Multipath ghost and side/grating lobe suppression based on stacked generative adversarial nets in MIMO through-wall radar imaging,’’ IEEE Access, vol. 7, pp. 143367–143380, 2019, doi: 10.1109/ACCESS.2019.2945859.[21] K. Regmi and A. Borji, ‘‘Cross-view image synthesis using conditional GANs,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 3501–3510.[22] Q. Yang, N. Li, Z. Zhao, X. Fan, E. I.-C. Chang, and Y. Xu, ‘‘MRI cross-modality neuroimage-to-neuroImage translation,’’ 2018, arXiv:1801.06940.[23] T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim, ‘‘Learning to discover crossdomain relations with generative adversarial networks,’’ in Proc. Int. Conf. Mach. Learn., May 2017, pp. 1–12.[24] R. Zhang, J.-Y. Zhu, P. Isola, X. Geng, A. S. Lin, T. Yu, and A. A. Efros, ‘‘Real-time user-guided image colorization with learned deep priors,’’ 2017, arXiv:1705.02999.[25] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros, ‘‘Context encoders: Feature learning by inpainting,’’ 2016, arXiv:1604.07379.26] C. Xu and B. Zhao, ‘‘Satellite image spoofing: Creating remote sensing dataset with generative adversarial networks,’’ in Proc. 10th Int. Conf. Geograph. Inf. Sci., 2018, pp. 3–6.[27] Y. Zhang, Y. Yin, R. Zimmermann, G. Wang, J. Varadarajan, and S. Ng, ‘‘An enhanced GAN model for automatic satellite-to-map image conversion,’’ IEEE Access, vol. 8, pp. 176704–176716, 2020, doi: 10.1109/ACCESS.2020.3025008.[28] S. Ganguli, P. Garzon, and N. Glaser, ‘‘GeoGAN: A conditional GAN generate standard layer of maps from satellite images,’’ Dept. Comput. Sci., Stanford Univ., Tech. Rep., Dec. 2018, doi: 10.13140/RG.2.2.19414.91205.[29] M. Shah, M. Gupta, and P. Thakkar, ‘‘SatGAN: Satellite image generation using conditional adversarial networks,’’ in Proc. Int. Conf. Commun. Inf. Comput. Technol. (ICCICT), Jun. 2021, pp. 1–6, doi: 10.1109/ICCICT50803.2021.9510104.[30] G. Kogan, G. Gambotto, A. Samsen, A. Boleslavský, M. Ferretti, D. Gui, and F. Frei. (Nov. 2016). Machine Learning for Artists Workshop at OpenDot. [Online]. Available: https://opendot.github.io/ml4a-invisiblecities/ implementation/[31] F. R. Uebersch. (Feb. 2022). Creating a Dataset of Satellite Images for StyleGAN Training. [Online]. Available: https://ueberf.medium.com/ creating-a-dataset-of-satellite-images-for-stylegan-training-8eff8fd56e68[32] A. Gautam, M. Sit, and I. Demir, ‘‘Realistic river image synthesis using deep generative adversarial networks,’’ 2020, arXiv:2003.00826.[33] K. Johnson. (Dec. 2020). NVidia Researchers Devise a Method for Training GANs With Fewer Data. VentureBeat. [Online]. Available: https://venturebeat.com/2020/12/07/nvidia-researchers-devise-methodfor- training-gans-with-less-data/[34] R. Mourya. (Dec. 2020). Resolving CUDA: Being Out of Memory With Gradient Accumulation and AMP. Towards Data Science. [Online]. Available: https://towardsdatascience.com/i-am-so-done-withcuda- out-of-memory-c62f42947dca[35] J. Brownlee. (Jul. 2019). How to Implement Pix2Pix GAN Models From Scratch With Keras. Machine Learning Mastery. [Online]. Available: https://machinelearningmastery.com/how-to-implement-pix2pix-ganmodels- from-scratch-with-keras/[36] A. Horé and D. Ziou, ‘‘Is there a relationship between peak-signal-to-noise ratio and structural similarity index measure?’’ IET Image Process., vol. 7, no. 1, pp. 12–24, Feb. 2013, doi: 10.1049/iet-ipr.2012.0489.[37] Y. Wang, C. Wu, L. Herranz, J. van de Weijer, A. Gonzalez-Garcia, and B. Raducanu, ‘‘Transferring GANs: Generating images from limited data,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Oct. 2018, pp. 218–234.[38] P. A. Z. Luna and J. A. L. Sotelo, ‘‘Systematic literature review: Artificial neural networks applied in satellite images,’’ in Proc. IEEE Colombian Conf. Appl. Comput. Intell., Aug. 2020, pp. 1–6, doi: 10.1109/COLCACI50549.2020.9247916.Artificial neural networkDeep learningGenerative adversarial networkSatellite imagesRadiometric errorBandingComunidad genralPublicationfc227fb1-22ec-47f0-afe7-521c61fddd32virtual::5729-1fc227fb1-22ec-47f0-afe7-521c61fddd32virtual::5729-1https://scholar.google.com.au/citations?user=7PIjh_MAAAAJ&hl=envirtual::5729-10000-0002-9731-8458virtual::5729-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000249106virtual::5729-1ORIGINALCorrection_of_Banding_Errors_in_Satellite_Images_With_Generative_Adversarial_Networks_(GAN).pdfCorrection_of_Banding_Errors_in_Satellite_Images_With_Generative_Adversarial_Networks_(GAN).pdfArchivo texto completo del artículo de revista, PDFapplication/pdf2752350https://red.uao.edu.co/bitstreams/c01b8689-fa13-4faa-a293-deb3ad905b30/downloaddda7577d93f310954f317aca6dd1e3c0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/f563a7b8-351d-442a-aa7a-7feea052c831/download6987b791264a2b5525252450f99b10d1MD52TEXTCorrection_of_Banding_Errors_in_Satellite_Images_With_Generative_Adversarial_Networks_(GAN).pdf.txtCorrection_of_Banding_Errors_in_Satellite_Images_With_Generative_Adversarial_Networks_(GAN).pdf.txtExtracted texttext/plain48388https://red.uao.edu.co/bitstreams/92cc53ab-afb3-4bbf-8172-636a90694a81/downloadc592debc89adf04fd53f1da5ec6e9b97MD53THUMBNAILCorrection_of_Banding_Errors_in_Satellite_Images_With_Generative_Adversarial_Networks_(GAN).pdf.jpgCorrection_of_Banding_Errors_in_Satellite_Images_With_Generative_Adversarial_Networks_(GAN).pdf.jpgGenerated Thumbnailimage/jpeg15798https://red.uao.edu.co/bitstreams/b2e3d29b-18fe-4dab-a9ef-66bc7bddb622/downloadf6d68cdba5c66303853898f875c0b41eMD5410614/15860oai:red.uao.edu.co:10614/158602024-10-16 03:01:55.606https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - IEEE, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==