Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites

Fiber-reinforced additive manufacturing (FRAM) is used in aeronautics, sports, and manufacturing. FRAM composites display better properties than AM polymers and better manufacturability than traditional composite manufacturing. However, their mechanical properties, damage behavior, and failure mecha...

Full description

Autores:
León-Becerra, Juan
González-Estrada, Octavio Andrés
Hidalgo Salazar, Miguel Ángel
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15811
Acceso en línea:
https://hdl.handle.net/10614/15811
https://red.uao.edu.co/
Palabra clave:
Continuum damage mechanics
FRAM
FFF
Progressive damage analysis
Rights
closedAccess
License
Derechos reservados - Springer, 2023
id REPOUAO2_ec43c207fbfa66a3ef5ef5b2450b93c9
oai_identifier_str oai:red.uao.edu.co:10614/15811
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites
title Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites
spellingShingle Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites
Continuum damage mechanics
FRAM
FFF
Progressive damage analysis
title_short Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites
title_full Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites
title_fullStr Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites
title_full_unstemmed Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites
title_sort Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites
dc.creator.fl_str_mv León-Becerra, Juan
González-Estrada, Octavio Andrés
Hidalgo Salazar, Miguel Ángel
dc.contributor.author.none.fl_str_mv León-Becerra, Juan
González-Estrada, Octavio Andrés
Hidalgo Salazar, Miguel Ángel
dc.subject.proposal.eng.fl_str_mv Continuum damage mechanics
FRAM
FFF
Progressive damage analysis
topic Continuum damage mechanics
FRAM
FFF
Progressive damage analysis
description Fiber-reinforced additive manufacturing (FRAM) is used in aeronautics, sports, and manufacturing. FRAM composites display better properties than AM polymers and better manufacturability than traditional composite manufacturing. However, their mechanical properties, damage behavior, and failure mechanisms are still active research topics because of their recent development. To assess its prediction capabilities, the present work aims to develop a progressive failure analysis of FRAM composites via the continuum damage mechanics (CDM) method. This approach relies on a reduced methodology, allowing few tests to determine the damage parameters. This work extends engineering design tools by assessing a damage method, estimating progressive damage and its link with damage variables. Previous works in damage mechanics of AM are scarce, requiring extensive experimentation and programming while this work presents a model with ease of implementation, yet accurate results. Progressive damage analysis is performed in continuous fiber-reinforced additive manufacturing parts with fiberglass, Kevlar reinforcements, and polymeric regions made of Onyx material, a chopped carbón fiber-reinforced polymer matrix composite. Results show that despite the large void fraction, configurable parameters, and degrees of freedom, CDM models are suitable for the progressive damage analysis of FRAM. Possible applications of this work could be in progressive damage failure analysis (PDFA) of FRAM, and also to enhance the design and optimization workflow with parts in aerospace, automotive, manufacturing, and biomedical sectors
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-09-11T14:32:11Z
dc.date.available.none.fl_str_mv 2024-09-11T14:32:11Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv León‑Becerra, J.; Hidalgo-Salazar, M. A. y González-Estrada, O. A. (2023). Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites. The International Journal of Advanced Manufacturing Technology. volumen 126. (marzo) p.p. 2617–2631. https://springerlink.proxyuao.elogim.com/article/10.1007/s00170-023-11256-w
dc.identifier.issn.spa.fl_str_mv 02683768
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15811
dc.identifier.eissn.spa.fl_str_mv 14333015
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv León‑Becerra, J.; Hidalgo-Salazar, M. A. y González-Estrada, O. A. (2023). Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites. The International Journal of Advanced Manufacturing Technology. volumen 126. (marzo) p.p. 2617–2631. https://springerlink.proxyuao.elogim.com/article/10.1007/s00170-023-11256-w
02683768
14333015
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15811
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 2631
dc.relation.citationstartpage.spa.fl_str_mv 2617
dc.relation.citationvolume.spa.fl_str_mv 126
dc.relation.ispartofjournal.eng.fl_str_mv The International Journal of Advanced Manufacturing Technology
dc.relation.references.none.fl_str_mv 1. Santo por siempre holy ofrecer -bethel music viscoelastic properties in a sandwich glass composite. Mech Time Depend Mater 25(3):353–363. https:// doi. org/ 10. 1007/ s11043- 020- 09448-y 2. Wang X et al (2021) The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. Springer, pp 25–32 3. Cao D et al (2022) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25(1):71–93. https:// doi. org/ 10. 1002/ we. 2661 4. Kumar Sharma A, Bhandari R, Sharma C, Krishna Dhakad S, Pinca-Bretotean C (2022) Polymer matrix composites: a state of art review. Mater Today Proc 57:2330–2333. https:// doi. org/ 10. 1016/j. matpr. 2021. 12. 592 5. Wisnom MR (1999) Size effects in the testing of fibre composite materials. Compos Sci Technol 59:1937–1957 6. Camanho P (2002) “Failure criteria for fibre-reinforced polymer composites,” Demegi, Feup, no. Figure 1, pp. 1–13. https:// doi. org/ 10. 1016/j. comps citech. 2014. 05. 033 7. Dutra TA, Ferreira RTL, Resende HB, Blinzler BJ, Larsson R (2020) Expanding puck and schurmann inter fiber fracture criterion for fiber reinforced thermoplastic 3D-printed composite materials. Materials 13(7):1–28. https:// doi. org/ 10. 3390/ ma130 71653 8. Guo Q, Yao W, Li W, Gupta N (2021) Constitutive models for the structural analysis of composite materials for the finite element analysis: a review of recent practices. Compos Struct 260(August 2020):113267. https:// doi. org/ 10. 1016/j. comps truct. 2020. 113267 9. Ivanov IV, Sadowski T (2009) Numerical modelling and investigation of plywood progressive failure in CT tests. Comput Mater Sci 45(3):729–734. https:// doi. org/ 10. 1016/j. comma tsci. 2008. 08. 016 10. Zhao L, Li Y, Zhang J, Zhou L, Hu N (2018) A novel material degradation model for unidirectional CFRP composites. Compos B Eng 135:84–94. https:// doi. org/ 10. 1016/j. compo sitesb. 2017. 09. 038 11. Belingardi G, Mehdipour H, Mangino E, Martorana B (2016) Progressive damage analysis of a rate-dependent hybrid composite beam. Compos Struct 154:433–442. https:// doi. org/ 10. 1016/j. comps truct. 2016. 07. 055 12. Wang L, Wang B, Wei S, Hong Y, Zheng C (2016) Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure. Compos B Eng 97:274–281. https:// doi. org/ 10. 1016/j. compo sitesb. 2016. 05. 012 13. Xu P, Zheng JY, Liu PF (2009) Finite element analysis of burst pressure of composite hydrogen storage vessels. Mater Des 30(7):2295–2301. https:// doi. org/ 10. 1016/j. matdes. 2009. 03. 006 14. Ansar MM, Chakrabarti A (2016) Progressive damage of GFRP composite plate under ballistic impact: experimental and numerical study. Polym Polym Compos 24(7):579–586 15. Maziz A, Tarfaoui M, Gemi L, Rechak S, Nachtane M (2021) A progressive damage model for pressurized filament-wound hybrid composite pipe under low-velocity impact. Compos Struct 276:114520. https:// doi. org/ 10. 1016/j. comps truct. 2021. 114520 16. Cairns DS, Nelson JW, Woo K, Miller D (2016) Progressive damage analysis and testing of composite laminates with fiber waves. Compos Part A Appl Sci Manuf 90:51–61. https:// doi. org/ 10. 1016/j. compo sitesa. 2016. 03. 005 17 Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152 18 Barbero EJ, Shahbazi M (2017) Determination of material properties for ANSYS progressive damage analysis of laminated composites. Compos Struct 176:768–779 19. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: Part I - Constitutive model. Mech Mater 39(10):897–908. https:// doi. org/ 10. 1016/j. mechm at. 2007. 03. 005 20. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: Part II - Computational implementation and validation. Mech Mater 39(10):909– 919. https:// doi. org/ 10. 1016/j. mechm at. 2007. 03. 006 21. Vyas GM, Pinho ST (2012) Computational implementation of a novel constitutive model for multidirectional composites. Comput Mater Sci 51(1):217–224. https:// doi. org/ 10. 1016/j. comma tsci. 2011. 07. 038 22. Zhan Z, Li H (2021) “A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing.” Int J Fatigue 145(December 2020):106089. https:// doi. org/ 10. 1016/j. ijfat igue. 2020. 106089 23. Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133(2):107–137. https:// doi. org/ 10. 1007/ s10704- 005- 4729-6 24 Han WQ, Hu KJ, Shi QH, Zhu FX (2020) Damage evolution analysis of open-hole tensile laminated composites using a progress damage model verified by AE and DIC. Compos Struct 247(May):112452. https:// doi. org/ 10. 1016/j. comps truct. 2020. 112452 25. Habibi M, Laperrière L (2020) Digital image correlation and acoustic emission for damage analysis during tensile loading of open-hole flax laminates. Eng Fract Mech 228:106921. https:// doi. org/ 10. 1016/j. engfr acmech. 2020. 106921 26 Miikki K et al (2021) An open-source camera system for experimental measurements. SoftwareX 14:100688. https:// doi. org/ 10. 1016/j. softx. 2021. 100688 27. Olufsen SN, Andersen ME, Fagerholt E (2020) μDIC: An opensource toolkit for digital image correlation. SoftwareX 11:100391. https:// doi. org/ 10. 1016/j. softx. 2019. 100391 28 Montalvo Navarrete JI, Hidalgo-Salazar MA, Escobar Nunez E, Rojas Arciniegas AJ (2018) Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf 12(2):449–458. https:// doi. org/ 10. 1007/ s12008- 017- 0411-2 29. Kim FH, Moylan SP, Phan TQ, Garboczi EJ (2020) Investigation of the effect of artificial internal defects on the tensile behavior of laser powder bed fusion 17–4 stainless steel samples: simultaneous tensile testing and X-ray computed tomography. Exp Mech 60(7):987–1004. https:// doi. org/ 10. 1007/ s11340- 020- 00604-6 30 Kabir SMF, Mathur K, Seyam AFM (2020) “A critical review on 3D printed continuous fiber-reinforced composites: history, mechanism, materials and properties.” Compos Struct 232(August 2019):111476. https:// doi. org/ 10. 1016/j. comps truct. 2019. 111476 31. Hou Z, et al. (2020) “Design and 3D printing of continuous fiber reinforced heterogeneous composites,” Compos Struct 237(August 2019). https:// doi. org/ 10. 1016/j. comps truct. 2020. 111945 32. Hou Z et al (2020) A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content. Compos B Eng 189(February):107893. https:// doi. org/ 10. 1016/j. compo sitesb. 2020. 107893 33. Díaz-Rodríguez JG, Pertúz-Comas AD, González CJA et al (2023) Monotonic crack propagation in a notched polymer matrix composite reinforced with continuous fiber and printed by material extrusion. Prog Addit Manuf. https:// doi. org/ 10. 1007/ s40964- 023- 00423-w 34 Juan Leon B, Díaz-Rodríguez JG, González-Estrada OA (2020) Daño en partes de manufactura aditiva reforzadas por fibras continuas. Rev UIS Ingenierías 19(2):161–175. https:// doi. org/ 10. 18273/ revuin. v19n2- 20200 18 35. León-Becerra JS, González-Estrada OA, and Pinto-Hernández W (2020) “Mechanical characterization of additive manufacturing composite parts,” Respuestas 25(2). https:// doi. org/ 10. 22463/ 01228 20x. 2189
dc.rights.spa.fl_str_mv Derechos reservados - Springer, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Springer, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Springer
dc.publisher.place.spa.fl_str_mv Londres
dc.source.none.fl_str_mv https://springerlink.proxyuao.elogim.com/article/10.1007/s00170-023-11256-w
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/eb13d18c-ebe3-4d40-a76c-f4a3787a613b/download
bitstream.checksum.fl_str_mv 6987b791264a2b5525252450f99b10d1
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260144119218176
spelling León-Becerra, JuanGonzález-Estrada, Octavio AndrésHidalgo Salazar, Miguel Ángelvirtual::5679-12024-09-11T14:32:11Z2024-09-11T14:32:11Z2023León‑Becerra, J.; Hidalgo-Salazar, M. A. y González-Estrada, O. A. (2023). Progressive damage analysis of carbon fiber-reinforced additive manufacturing composites. The International Journal of Advanced Manufacturing Technology. volumen 126. (marzo) p.p. 2617–2631. https://springerlink.proxyuao.elogim.com/article/10.1007/s00170-023-11256-w02683768https://hdl.handle.net/10614/1581114333015Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Fiber-reinforced additive manufacturing (FRAM) is used in aeronautics, sports, and manufacturing. FRAM composites display better properties than AM polymers and better manufacturability than traditional composite manufacturing. However, their mechanical properties, damage behavior, and failure mechanisms are still active research topics because of their recent development. To assess its prediction capabilities, the present work aims to develop a progressive failure analysis of FRAM composites via the continuum damage mechanics (CDM) method. This approach relies on a reduced methodology, allowing few tests to determine the damage parameters. This work extends engineering design tools by assessing a damage method, estimating progressive damage and its link with damage variables. Previous works in damage mechanics of AM are scarce, requiring extensive experimentation and programming while this work presents a model with ease of implementation, yet accurate results. Progressive damage analysis is performed in continuous fiber-reinforced additive manufacturing parts with fiberglass, Kevlar reinforcements, and polymeric regions made of Onyx material, a chopped carbón fiber-reinforced polymer matrix composite. Results show that despite the large void fraction, configurable parameters, and degrees of freedom, CDM models are suitable for the progressive damage analysis of FRAM. Possible applications of this work could be in progressive damage failure analysis (PDFA) of FRAM, and also to enhance the design and optimization workflow with parts in aerospace, automotive, manufacturing, and biomedical sectors15 páginasapplication/pdfengSpringerLondresDerechos reservados - Springer, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_14cbhttps://springerlink.proxyuao.elogim.com/article/10.1007/s00170-023-11256-wProgressive damage analysis of carbon fiber-reinforced additive manufacturing compositesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8526312617126The International Journal of Advanced Manufacturing Technology1. Santo por siempre holy ofrecer -bethel music viscoelastic properties in a sandwich glass composite. Mech Time Depend Mater 25(3):353–363. https:// doi. org/ 10. 1007/ s11043- 020- 09448-y 2. Wang X et al (2021) The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. Springer, pp 25–32 3. Cao D et al (2022) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy 25(1):71–93. https:// doi. org/ 10. 1002/ we. 2661 4. Kumar Sharma A, Bhandari R, Sharma C, Krishna Dhakad S, Pinca-Bretotean C (2022) Polymer matrix composites: a state of art review. Mater Today Proc 57:2330–2333. https:// doi. org/ 10. 1016/j. matpr. 2021. 12. 592 5. Wisnom MR (1999) Size effects in the testing of fibre composite materials. Compos Sci Technol 59:1937–1957 6. Camanho P (2002) “Failure criteria for fibre-reinforced polymer composites,” Demegi, Feup, no. Figure 1, pp. 1–13. https:// doi. org/ 10. 1016/j. comps citech. 2014. 05. 033 7. Dutra TA, Ferreira RTL, Resende HB, Blinzler BJ, Larsson R (2020) Expanding puck and schurmann inter fiber fracture criterion for fiber reinforced thermoplastic 3D-printed composite materials. Materials 13(7):1–28. https:// doi. org/ 10. 3390/ ma130 71653 8. Guo Q, Yao W, Li W, Gupta N (2021) Constitutive models for the structural analysis of composite materials for the finite element analysis: a review of recent practices. Compos Struct 260(August 2020):113267. https:// doi. org/ 10. 1016/j. comps truct. 2020. 113267 9. Ivanov IV, Sadowski T (2009) Numerical modelling and investigation of plywood progressive failure in CT tests. Comput Mater Sci 45(3):729–734. https:// doi. org/ 10. 1016/j. comma tsci. 2008. 08. 016 10. Zhao L, Li Y, Zhang J, Zhou L, Hu N (2018) A novel material degradation model for unidirectional CFRP composites. Compos B Eng 135:84–94. https:// doi. org/ 10. 1016/j. compo sitesb. 2017. 09. 038 11. Belingardi G, Mehdipour H, Mangino E, Martorana B (2016) Progressive damage analysis of a rate-dependent hybrid composite beam. Compos Struct 154:433–442. https:// doi. org/ 10. 1016/j. comps truct. 2016. 07. 055 12. Wang L, Wang B, Wei S, Hong Y, Zheng C (2016) Prediction of long-term fatigue life of CFRP composite hydrogen storage vessel based on micromechanics of failure. Compos B Eng 97:274–281. https:// doi. org/ 10. 1016/j. compo sitesb. 2016. 05. 012 13. Xu P, Zheng JY, Liu PF (2009) Finite element analysis of burst pressure of composite hydrogen storage vessels. Mater Des 30(7):2295–2301. https:// doi. org/ 10. 1016/j. matdes. 2009. 03. 006 14. Ansar MM, Chakrabarti A (2016) Progressive damage of GFRP composite plate under ballistic impact: experimental and numerical study. Polym Polym Compos 24(7):579–586 15. Maziz A, Tarfaoui M, Gemi L, Rechak S, Nachtane M (2021) A progressive damage model for pressurized filament-wound hybrid composite pipe under low-velocity impact. Compos Struct 276:114520. https:// doi. org/ 10. 1016/j. comps truct. 2021. 114520 16. Cairns DS, Nelson JW, Woo K, Miller D (2016) Progressive damage analysis and testing of composite laminates with fiber waves. Compos Part A Appl Sci Manuf 90:51–61. https:// doi. org/ 10. 1016/j. compo sitesa. 2016. 03. 005 17 Matzenmiller A, Lubliner J, Taylor RL (1995) A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20:125–152 18 Barbero EJ, Shahbazi M (2017) Determination of material properties for ANSYS progressive damage analysis of laminated composites. Compos Struct 176:768–779 19. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: Part I - Constitutive model. Mech Mater 39(10):897–908. https:// doi. org/ 10. 1016/j. mechm at. 2007. 03. 005 20. Maimí P, Camanho PP, Mayugo JA, Dávila CG (2007) A continuum damage model for composite laminates: Part II - Computational implementation and validation. Mech Mater 39(10):909– 919. https:// doi. org/ 10. 1016/j. mechm at. 2007. 03. 006 21. Vyas GM, Pinho ST (2012) Computational implementation of a novel constitutive model for multidirectional composites. Comput Mater Sci 51(1):217–224. https:// doi. org/ 10. 1016/j. comma tsci. 2011. 07. 038 22. Zhan Z, Li H (2021) “A novel approach based on the elastoplastic fatigue damage and machine learning models for life prediction of aerospace alloy parts fabricated by additive manufacturing.” Int J Fatigue 145(December 2020):106089. https:// doi. org/ 10. 1016/j. ijfat igue. 2020. 106089 23. Yang Q, Cox B (2005) Cohesive models for damage evolution in laminated composites. Int J Fract 133(2):107–137. https:// doi. org/ 10. 1007/ s10704- 005- 4729-6 24 Han WQ, Hu KJ, Shi QH, Zhu FX (2020) Damage evolution analysis of open-hole tensile laminated composites using a progress damage model verified by AE and DIC. Compos Struct 247(May):112452. https:// doi. org/ 10. 1016/j. comps truct. 2020. 112452 25. Habibi M, Laperrière L (2020) Digital image correlation and acoustic emission for damage analysis during tensile loading of open-hole flax laminates. Eng Fract Mech 228:106921. https:// doi. org/ 10. 1016/j. engfr acmech. 2020. 106921 26 Miikki K et al (2021) An open-source camera system for experimental measurements. SoftwareX 14:100688. https:// doi. org/ 10. 1016/j. softx. 2021. 100688 27. Olufsen SN, Andersen ME, Fagerholt E (2020) μDIC: An opensource toolkit for digital image correlation. SoftwareX 11:100391. https:// doi. org/ 10. 1016/j. softx. 2019. 100391 28 Montalvo Navarrete JI, Hidalgo-Salazar MA, Escobar Nunez E, Rojas Arciniegas AJ (2018) Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf 12(2):449–458. https:// doi. org/ 10. 1007/ s12008- 017- 0411-2 29. Kim FH, Moylan SP, Phan TQ, Garboczi EJ (2020) Investigation of the effect of artificial internal defects on the tensile behavior of laser powder bed fusion 17–4 stainless steel samples: simultaneous tensile testing and X-ray computed tomography. Exp Mech 60(7):987–1004. https:// doi. org/ 10. 1007/ s11340- 020- 00604-6 30 Kabir SMF, Mathur K, Seyam AFM (2020) “A critical review on 3D printed continuous fiber-reinforced composites: history, mechanism, materials and properties.” Compos Struct 232(August 2019):111476. https:// doi. org/ 10. 1016/j. comps truct. 2019. 111476 31. Hou Z, et al. (2020) “Design and 3D printing of continuous fiber reinforced heterogeneous composites,” Compos Struct 237(August 2019). https:// doi. org/ 10. 1016/j. comps truct. 2020. 111945 32. Hou Z et al (2020) A constitutive model for 3D printed continuous fiber reinforced composite structures with variable fiber content. Compos B Eng 189(February):107893. https:// doi. org/ 10. 1016/j. compo sitesb. 2020. 107893 33. Díaz-Rodríguez JG, Pertúz-Comas AD, González CJA et al (2023) Monotonic crack propagation in a notched polymer matrix composite reinforced with continuous fiber and printed by material extrusion. Prog Addit Manuf. https:// doi. org/ 10. 1007/ s40964- 023- 00423-w 34 Juan Leon B, Díaz-Rodríguez JG, González-Estrada OA (2020) Daño en partes de manufactura aditiva reforzadas por fibras continuas. Rev UIS Ingenierías 19(2):161–175. https:// doi. org/ 10. 18273/ revuin. v19n2- 20200 18 35. León-Becerra JS, González-Estrada OA, and Pinto-Hernández W (2020) “Mechanical characterization of additive manufacturing composite parts,” Respuestas 25(2). https:// doi. org/ 10. 22463/ 01228 20x. 2189Continuum damage mechanicsFRAMFFFProgressive damage analysisComunidad generalPublication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::5679-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::5679-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::5679-10000-0002-6907-2091virtual::5679-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::5679-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/eb13d18c-ebe3-4d40-a76c-f4a3787a613b/download6987b791264a2b5525252450f99b10d1MD5110614/15811oai:red.uao.edu.co:10614/158112024-09-11 09:42:35.838https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer, 2023metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==