Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
The prediction of the wear behaviour of components under conditions of cavitation and hard particle erosion requires the implementation of a new model capable of accounting for the accelerated damage due to the synergic effect of both phenomena. In a previous research, several simulations were perfo...
- Autores:
-
Teran, Leonel A.
Laín Beatove, Santiago
Rodríguez, Sara A.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13920
- Acceso en línea:
- https://hdl.handle.net/10614/13920
https://red.uao.edu.co/
- Palabra clave:
- Dinámica de fluidos
Fluid dynamics
Cavitation
Hard particle erosion
Computational fluid dynamics
Synergy model
- Rights
- openAccess
- License
- Derechos reservados - Elsevier B.V., 2021
id |
REPOUAO2_e634ee6d64b65f9d84e1cc9d6e828d66 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13920 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Synergy effect modelling of cavitation and hard particle erosion: implementation and validation |
title |
Synergy effect modelling of cavitation and hard particle erosion: implementation and validation |
spellingShingle |
Synergy effect modelling of cavitation and hard particle erosion: implementation and validation Dinámica de fluidos Fluid dynamics Cavitation Hard particle erosion Computational fluid dynamics Synergy model |
title_short |
Synergy effect modelling of cavitation and hard particle erosion: implementation and validation |
title_full |
Synergy effect modelling of cavitation and hard particle erosion: implementation and validation |
title_fullStr |
Synergy effect modelling of cavitation and hard particle erosion: implementation and validation |
title_full_unstemmed |
Synergy effect modelling of cavitation and hard particle erosion: implementation and validation |
title_sort |
Synergy effect modelling of cavitation and hard particle erosion: implementation and validation |
dc.creator.fl_str_mv |
Teran, Leonel A. Laín Beatove, Santiago Rodríguez, Sara A. |
dc.contributor.author.none.fl_str_mv |
Teran, Leonel A. Laín Beatove, Santiago Rodríguez, Sara A. |
dc.subject.armarc.spa.fl_str_mv |
Dinámica de fluidos |
topic |
Dinámica de fluidos Fluid dynamics Cavitation Hard particle erosion Computational fluid dynamics Synergy model |
dc.subject.armarc.eng.fl_str_mv |
Fluid dynamics |
dc.subject.proposal.eng.fl_str_mv |
Cavitation Hard particle erosion Computational fluid dynamics Synergy model |
description |
The prediction of the wear behaviour of components under conditions of cavitation and hard particle erosion requires the implementation of a new model capable of accounting for the accelerated damage due to the synergic effect of both phenomena. In a previous research, several simulations were performed to investigate why the damage on a surface is increased when a particle interacts with a collapsing bubble. Then those simulations were modified to develop a predictive equation that estimates the impact velocity of a particle when it is trapped by the microjet of a collapsing bubble near a solid wall. Subsequently, through the implementation in a computational fluid dynamics (CFD) software, the obtained expression is combined with the traditional Grant and Tabakoff hard particle erosion model for AISI 304 steel to develop a new model capable of predicting the synergic effect of cavitation damage and hard particle erosion. This new model is used in CFD simulations to calibrate and validate the predicted erosion rate with experimental results obtained using a slurry pot erosion tester under two conditions of particle concentration and two conditions of particle size combined with four triangular cavitation inducers that produced different cavitation conditions. Good agreement was found between the experimental and the predicted results using the developed model |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-05-27T14:36:34Z |
dc.date.available.none.fl_str_mv |
2022-05-27T14:36:34Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
431648 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13920 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.wear.2021.203901 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
431648 10.1016/j.wear.2021.203901 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13920 https://red.uao.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
15 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
478-479 |
dc.relation.cites.spa.fl_str_mv |
Teran, L. A., Laín Behatove, S., Rodríguez, S.A. (2021). Synergy effect modelling of cavitation and hard particle erosion: implementation and validation. Wear. 478-479, pp. 1-15. https://www.sciencedirect.com/science/article/pii/S0043164821002908 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Wear |
dc.relation.references.none.fl_str_mv |
[1] I. Finnie, Erosion of surfaces by solid particles, Wear 3 (1960) 87–103. [2] G. Grant, W. Tabakoff, An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy, Department of Aerospace Engineering, University of Cincinnati, 1973. [3] B. McLaury, J. Wang, S. Shirazi, J. Shadley, E. Rybicki, Solid particle erosion in long radius elbows and straight pipes, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1997. [4] Y.I. Oka, K. Okamura, T. Yoshida, Practical estimation of erosion damage caused by solid particle impact: Part 1: effects of impact parameters on a predictive equation, Wear 259 (2005) 95–101. [5] Y. Zhang, E. Reuterfors, B.S. McLaury, S. Shirazi, E. Rybicki, Comparison of computed and measured particle velocities and erosion in water and air flows, Wear 263 (2007) 330–338. [6] A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluid Eng. 124 (2002) 617–624. [7] P.J. Zwart, A.G. Gerber, T. Belamri, A Two-phase Flow Model for Predicting Cavitation Dynamics, Fifth international conference on multiphase flow, Yokohama, Japan, 2004. [8] G.H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in: Fourth International Conference on Multiphase Flow, ICMF New Orleans, 2001. [9] H. Kato, A. Konno, M. Maeda, H. Yamaguchi, Possibility of Quantitative prediction of cavitation erosion without model test, J. Fluid Eng. 118 (1996) 582–588. [10] G. Bark, N. Berchiche, M. Grekula, Application of Principles for Observation and Analysis of Eroding Cavitation, EROCAV Observation Handbook, Chalmers University of Technology, Sweden, 2004. [11] R. Fortes-Patella, J. Reboud, L. Briancon-Marjollet, A Phenomenological and Numerical Model for Scaling the Flow Aggressiveness in Cavitation Erosion, EROCAV Workshop, Val de Reuil, France, 2004, pp. 283–290. [12] M. Dular, B. ˇSirok, B. Stoffel, Experimental and numerical modelling of cavitation erosion, in: Sixth International Symposium on Cavitation, 2006. CAV2006, Wageningen. [13] H. Amarendra, G. Chaudhari, S. Nath, Synergy of cavitation and slurry erosion in the slurry pot tester, Wear 290 (2012) 25–31. [14] S. Li, Cavitation enhancement of silt erosion—an envisaged micro model, Wear 260 (2006) 1145–1150. [15] Y. Tang, L. Liang, Y.X. Pang, Z.M. Zhu, Y. Xu, Research of Erosion, Cavitation and Their Interactive Wears of Fluid Machinery Three-phase Flow, Applied Mechanics and Materials, Trans Tech Publications, 2012, pp. 1261–1266. [16] Z. Tao, C. Cichang, L. Dongli, L. Dan, Mechanism of silt abrasion enhanced by cavitation in silt laden water flow, Journal of Drainage and Irrigation Machinery Engineering 4 (2011), 007. [17] T. Zhang, C. Chen, D. Li, D. Lv, Experimental study of mechanism of silt abrasion influenced by cavitation in hydraulic machinery, in: ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, American Society of Mechanical Engineers, 2011, pp. 195–201. [18] C. Peng, S. Tian, G. Li, M. Wei, Enhancement of cavitation intensity and erosion ability of submerged cavitation jet by adding micro-particles, Ocean Engineering 209 (2020), 107516. [19] H. Hu, Y. Zheng, The effect of sand particle concentrations on the vibratory cavitation erosion, Wear 384 (2017) 95–105. [20] R. Romero, L. Teran, J. Coronado, J. Ladino, S. Rodríguez, Synergy between cavitation and solid particle erosion in an ultrasonic tribometer, Wear 428 (2019) 395–403. [21] K. Su, D. Xia, Z. Ding, Cavitation damage in particle-laden liquids with considering particle concentration and size, in: 22nd IAHR-APD Congress, Sapporo, Japan, 2020. [22] D. Yan, J. Wang, F. Liu, Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures, AIP Adv. 5 (2015), 077159. [23] P. Dunstan, S. Li, Cavitation enhancement of silt erosion: numerical studies, Wear 268 (2010) 946–954. [24] L.A. Teran, S.A. Rodríguez, S. Laín, S. Jung, Interaction of particles with a cavitation bubble near a solid wall, Phys. Fluids 30 (2018), 123304. [25] L. Teran, C. Roa, J. Mu˜noz-Cubillos, R. Aponte, J. Valdes, F. Larrahondo, S. Rodríguez, J. Coronado, Failure analysis of a run-of-the-river hydroelectric power plant, Eng. Fail. Anal. 68 (2016) 87–100. [26] M. Lin, L. Chang, H. Lin, C. Yang, K. Lin, A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating, Surf. Coating. Technol. 201 (2006) 3193–3198. [27] A. Mansouri, A Combined CFD-Experimental Method for Developing an Erosion Equation for Both Gas-Sand and Liquid-Sand Flows, The University of Tulsa, 2016. [28] R. Aponte, L. Teran, J. Ladino, F. Larrahondo, J. Coronado, S. Rodríguez, Computational study of the particle size effect on a jet erosion wear device, Wear 374 (2017) 97–103. [29] ANSYS, Fluent Customization Manual, 16.1, ANSYS, Inc., Canonsburg, 2015. Release. [30] ANSYS, Fluent Theory Guide, 16.1, ANSYS, Inc., Canonsburg, 2015. Release. [31] J.-P. Franc, J.-M. Michel, Fundamentals of Cavitation, Springer Science & Business Media, 2006. [32] C.V. Roa, J. Mu˜noz, L.A. Teran, J.A. Valdes, S.A. Rodríguez, J.J. Coronado, A. Ladino, Effect of tribometer configuration on the analysis of hydromachinery wear failure, Wear 332–333 (2015) 1164–1175. [33] G.L. Chahine, C.-T. Hsiao, Modelling cavitation erosion using fluid–material interaction simulations, Interface focus 5 (2015), 20150016. [34] ANSYS, Fluent User’s Guide, 16.1, ANSYS, Inc., Canonsburg, 2015. Release. [35] H. Arabnejad, Development of Erosion Equations for Solid Particle and Liquid Droplet Impact, The University of Tulsa, 2015 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Elsevier B.V., 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsevier B.V., 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
15 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/67f225f3-3d02-4717-b3ca-453a1a44091e/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259898647576576 |
spelling |
Teran, Leonel A.bb6453b379b3aeca44276245b0dd2741Laín Beatove, Santiagovirtual::2556-1Rodríguez, Sara A.cc51eaa9cc961e0cc9391d3148429cab2022-05-27T14:36:34Z2022-05-27T14:36:34Z2021431648https://hdl.handle.net/10614/1392010.1016/j.wear.2021.203901Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/The prediction of the wear behaviour of components under conditions of cavitation and hard particle erosion requires the implementation of a new model capable of accounting for the accelerated damage due to the synergic effect of both phenomena. In a previous research, several simulations were performed to investigate why the damage on a surface is increased when a particle interacts with a collapsing bubble. Then those simulations were modified to develop a predictive equation that estimates the impact velocity of a particle when it is trapped by the microjet of a collapsing bubble near a solid wall. Subsequently, through the implementation in a computational fluid dynamics (CFD) software, the obtained expression is combined with the traditional Grant and Tabakoff hard particle erosion model for AISI 304 steel to develop a new model capable of predicting the synergic effect of cavitation damage and hard particle erosion. This new model is used in CFD simulations to calibrate and validate the predicted erosion rate with experimental results obtained using a slurry pot erosion tester under two conditions of particle concentration and two conditions of particle size combined with four triangular cavitation inducers that produced different cavitation conditions. Good agreement was found between the experimental and the predicted results using the developed model15 páginasapplication/pdfengElsevier B.V.Derechos reservados - Elsevier B.V., 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Synergy effect modelling of cavitation and hard particle erosion: implementation and validationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosFluid dynamicsCavitationHard particle erosionComputational fluid dynamicsSynergy model151478-479Teran, L. A., Laín Behatove, S., Rodríguez, S.A. (2021). Synergy effect modelling of cavitation and hard particle erosion: implementation and validation. Wear. 478-479, pp. 1-15. https://www.sciencedirect.com/science/article/pii/S0043164821002908Wear[1] I. Finnie, Erosion of surfaces by solid particles, Wear 3 (1960) 87–103.[2] G. Grant, W. Tabakoff, An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy, Department of Aerospace Engineering, University of Cincinnati, 1973.[3] B. McLaury, J. Wang, S. Shirazi, J. Shadley, E. Rybicki, Solid particle erosion in long radius elbows and straight pipes, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1997.[4] Y.I. Oka, K. Okamura, T. Yoshida, Practical estimation of erosion damage caused by solid particle impact: Part 1: effects of impact parameters on a predictive equation, Wear 259 (2005) 95–101.[5] Y. Zhang, E. Reuterfors, B.S. McLaury, S. Shirazi, E. Rybicki, Comparison of computed and measured particle velocities and erosion in water and air flows, Wear 263 (2007) 330–338.[6] A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluid Eng. 124 (2002) 617–624.[7] P.J. Zwart, A.G. Gerber, T. Belamri, A Two-phase Flow Model for Predicting Cavitation Dynamics, Fifth international conference on multiphase flow, Yokohama, Japan, 2004.[8] G.H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in: Fourth International Conference on Multiphase Flow, ICMF New Orleans, 2001.[9] H. Kato, A. Konno, M. Maeda, H. Yamaguchi, Possibility of Quantitative prediction of cavitation erosion without model test, J. Fluid Eng. 118 (1996) 582–588.[10] G. Bark, N. Berchiche, M. Grekula, Application of Principles for Observation and Analysis of Eroding Cavitation, EROCAV Observation Handbook, Chalmers University of Technology, Sweden, 2004.[11] R. Fortes-Patella, J. Reboud, L. Briancon-Marjollet, A Phenomenological and Numerical Model for Scaling the Flow Aggressiveness in Cavitation Erosion, EROCAV Workshop, Val de Reuil, France, 2004, pp. 283–290.[12] M. Dular, B. ˇSirok, B. Stoffel, Experimental and numerical modelling of cavitation erosion, in: Sixth International Symposium on Cavitation, 2006. CAV2006, Wageningen.[13] H. Amarendra, G. Chaudhari, S. Nath, Synergy of cavitation and slurry erosion in the slurry pot tester, Wear 290 (2012) 25–31.[14] S. Li, Cavitation enhancement of silt erosion—an envisaged micro model, Wear 260 (2006) 1145–1150.[15] Y. Tang, L. Liang, Y.X. Pang, Z.M. Zhu, Y. Xu, Research of Erosion, Cavitation and Their Interactive Wears of Fluid Machinery Three-phase Flow, Applied Mechanics and Materials, Trans Tech Publications, 2012, pp. 1261–1266.[16] Z. Tao, C. Cichang, L. Dongli, L. Dan, Mechanism of silt abrasion enhanced by cavitation in silt laden water flow, Journal of Drainage and Irrigation Machinery Engineering 4 (2011), 007.[17] T. Zhang, C. Chen, D. Li, D. Lv, Experimental study of mechanism of silt abrasion influenced by cavitation in hydraulic machinery, in: ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, American Society of Mechanical Engineers, 2011, pp. 195–201.[18] C. Peng, S. Tian, G. Li, M. Wei, Enhancement of cavitation intensity and erosion ability of submerged cavitation jet by adding micro-particles, Ocean Engineering 209 (2020), 107516.[19] H. Hu, Y. Zheng, The effect of sand particle concentrations on the vibratory cavitation erosion, Wear 384 (2017) 95–105.[20] R. Romero, L. Teran, J. Coronado, J. Ladino, S. Rodríguez, Synergy between cavitation and solid particle erosion in an ultrasonic tribometer, Wear 428 (2019) 395–403.[21] K. Su, D. Xia, Z. Ding, Cavitation damage in particle-laden liquids with considering particle concentration and size, in: 22nd IAHR-APD Congress, Sapporo, Japan, 2020.[22] D. Yan, J. Wang, F. Liu, Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures, AIP Adv. 5 (2015), 077159.[23] P. Dunstan, S. Li, Cavitation enhancement of silt erosion: numerical studies, Wear 268 (2010) 946–954.[24] L.A. Teran, S.A. Rodríguez, S. Laín, S. Jung, Interaction of particles with a cavitation bubble near a solid wall, Phys. Fluids 30 (2018), 123304.[25] L. Teran, C. Roa, J. Mu˜noz-Cubillos, R. Aponte, J. Valdes, F. Larrahondo, S. Rodríguez, J. Coronado, Failure analysis of a run-of-the-river hydroelectric power plant, Eng. Fail. Anal. 68 (2016) 87–100.[26] M. Lin, L. Chang, H. Lin, C. Yang, K. Lin, A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating, Surf. Coating. Technol. 201 (2006) 3193–3198.[27] A. Mansouri, A Combined CFD-Experimental Method for Developing an Erosion Equation for Both Gas-Sand and Liquid-Sand Flows, The University of Tulsa, 2016.[28] R. Aponte, L. Teran, J. Ladino, F. Larrahondo, J. Coronado, S. Rodríguez, Computational study of the particle size effect on a jet erosion wear device, Wear 374 (2017) 97–103.[29] ANSYS, Fluent Customization Manual, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.[30] ANSYS, Fluent Theory Guide, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.[31] J.-P. Franc, J.-M. Michel, Fundamentals of Cavitation, Springer Science & Business Media, 2006.[32] C.V. Roa, J. Mu˜noz, L.A. Teran, J.A. Valdes, S.A. Rodríguez, J.J. Coronado, A. Ladino, Effect of tribometer configuration on the analysis of hydromachinery wear failure, Wear 332–333 (2015) 1164–1175.[33] G.L. Chahine, C.-T. Hsiao, Modelling cavitation erosion using fluid–material interaction simulations, Interface focus 5 (2015), 20150016.[34] ANSYS, Fluent User’s Guide, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.[35] H. Arabnejad, Development of Erosion Equations for Solid Particle and Liquid Droplet Impact, The University of Tulsa, 2015Comunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2556-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2556-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2556-10000-0002-0269-2608virtual::2556-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2556-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/67f225f3-3d02-4717-b3ca-453a1a44091e/download20b5ba22b1117f71589c7318baa2c560MD5210614/13920oai:red.uao.edu.co:10614/139202024-03-06 16:41:13.081https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier B.V., 2021metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |