Synergy effect modelling of cavitation and hard particle erosion: implementation and validation

The prediction of the wear behaviour of components under conditions of cavitation and hard particle erosion requires the implementation of a new model capable of accounting for the accelerated damage due to the synergic effect of both phenomena. In a previous research, several simulations were perfo...

Full description

Autores:
Teran, Leonel A.
Laín Beatove, Santiago
Rodríguez, Sara A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13920
Acceso en línea:
https://hdl.handle.net/10614/13920
https://red.uao.edu.co/
Palabra clave:
Dinámica de fluidos
Fluid dynamics
Cavitation
Hard particle erosion
Computational fluid dynamics
Synergy model
Rights
openAccess
License
Derechos reservados - Elsevier B.V., 2021
id REPOUAO2_e634ee6d64b65f9d84e1cc9d6e828d66
oai_identifier_str oai:red.uao.edu.co:10614/13920
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
title Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
spellingShingle Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
Dinámica de fluidos
Fluid dynamics
Cavitation
Hard particle erosion
Computational fluid dynamics
Synergy model
title_short Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
title_full Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
title_fullStr Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
title_full_unstemmed Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
title_sort Synergy effect modelling of cavitation and hard particle erosion: implementation and validation
dc.creator.fl_str_mv Teran, Leonel A.
Laín Beatove, Santiago
Rodríguez, Sara A.
dc.contributor.author.none.fl_str_mv Teran, Leonel A.
Laín Beatove, Santiago
Rodríguez, Sara A.
dc.subject.armarc.spa.fl_str_mv Dinámica de fluidos
topic Dinámica de fluidos
Fluid dynamics
Cavitation
Hard particle erosion
Computational fluid dynamics
Synergy model
dc.subject.armarc.eng.fl_str_mv Fluid dynamics
dc.subject.proposal.eng.fl_str_mv Cavitation
Hard particle erosion
Computational fluid dynamics
Synergy model
description The prediction of the wear behaviour of components under conditions of cavitation and hard particle erosion requires the implementation of a new model capable of accounting for the accelerated damage due to the synergic effect of both phenomena. In a previous research, several simulations were performed to investigate why the damage on a surface is increased when a particle interacts with a collapsing bubble. Then those simulations were modified to develop a predictive equation that estimates the impact velocity of a particle when it is trapped by the microjet of a collapsing bubble near a solid wall. Subsequently, through the implementation in a computational fluid dynamics (CFD) software, the obtained expression is combined with the traditional Grant and Tabakoff hard particle erosion model for AISI 304 steel to develop a new model capable of predicting the synergic effect of cavitation damage and hard particle erosion. This new model is used in CFD simulations to calibrate and validate the predicted erosion rate with experimental results obtained using a slurry pot erosion tester under two conditions of particle concentration and two conditions of particle size combined with four triangular cavitation inducers that produced different cavitation conditions. Good agreement was found between the experimental and the predicted results using the developed model
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-05-27T14:36:34Z
dc.date.available.none.fl_str_mv 2022-05-27T14:36:34Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 431648
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13920
dc.identifier.doi.none.fl_str_mv 10.1016/j.wear.2021.203901
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 431648
10.1016/j.wear.2021.203901
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13920
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 478-479
dc.relation.cites.spa.fl_str_mv Teran, L. A., Laín Behatove, S., Rodríguez, S.A. (2021). Synergy effect modelling of cavitation and hard particle erosion: implementation and validation. Wear. 478-479, pp. 1-15. https://www.sciencedirect.com/science/article/pii/S0043164821002908
dc.relation.ispartofjournal.eng.fl_str_mv Wear
dc.relation.references.none.fl_str_mv [1] I. Finnie, Erosion of surfaces by solid particles, Wear 3 (1960) 87–103.
[2] G. Grant, W. Tabakoff, An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy, Department of Aerospace Engineering, University of Cincinnati, 1973.
[3] B. McLaury, J. Wang, S. Shirazi, J. Shadley, E. Rybicki, Solid particle erosion in long radius elbows and straight pipes, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1997.
[4] Y.I. Oka, K. Okamura, T. Yoshida, Practical estimation of erosion damage caused by solid particle impact: Part 1: effects of impact parameters on a predictive equation, Wear 259 (2005) 95–101.
[5] Y. Zhang, E. Reuterfors, B.S. McLaury, S. Shirazi, E. Rybicki, Comparison of computed and measured particle velocities and erosion in water and air flows, Wear 263 (2007) 330–338.
[6] A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluid Eng. 124 (2002) 617–624.
[7] P.J. Zwart, A.G. Gerber, T. Belamri, A Two-phase Flow Model for Predicting Cavitation Dynamics, Fifth international conference on multiphase flow, Yokohama, Japan, 2004.
[8] G.H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in: Fourth International Conference on Multiphase Flow, ICMF New Orleans, 2001.
[9] H. Kato, A. Konno, M. Maeda, H. Yamaguchi, Possibility of Quantitative prediction of cavitation erosion without model test, J. Fluid Eng. 118 (1996) 582–588.
[10] G. Bark, N. Berchiche, M. Grekula, Application of Principles for Observation and Analysis of Eroding Cavitation, EROCAV Observation Handbook, Chalmers University of Technology, Sweden, 2004.
[11] R. Fortes-Patella, J. Reboud, L. Briancon-Marjollet, A Phenomenological and Numerical Model for Scaling the Flow Aggressiveness in Cavitation Erosion, EROCAV Workshop, Val de Reuil, France, 2004, pp. 283–290.
[12] M. Dular, B. ˇSirok, B. Stoffel, Experimental and numerical modelling of cavitation erosion, in: Sixth International Symposium on Cavitation, 2006. CAV2006, Wageningen.
[13] H. Amarendra, G. Chaudhari, S. Nath, Synergy of cavitation and slurry erosion in the slurry pot tester, Wear 290 (2012) 25–31.
[14] S. Li, Cavitation enhancement of silt erosion—an envisaged micro model, Wear 260 (2006) 1145–1150.
[15] Y. Tang, L. Liang, Y.X. Pang, Z.M. Zhu, Y. Xu, Research of Erosion, Cavitation and Their Interactive Wears of Fluid Machinery Three-phase Flow, Applied Mechanics and Materials, Trans Tech Publications, 2012, pp. 1261–1266.
[16] Z. Tao, C. Cichang, L. Dongli, L. Dan, Mechanism of silt abrasion enhanced by cavitation in silt laden water flow, Journal of Drainage and Irrigation Machinery Engineering 4 (2011), 007.
[17] T. Zhang, C. Chen, D. Li, D. Lv, Experimental study of mechanism of silt abrasion influenced by cavitation in hydraulic machinery, in: ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, American Society of Mechanical Engineers, 2011, pp. 195–201.
[18] C. Peng, S. Tian, G. Li, M. Wei, Enhancement of cavitation intensity and erosion ability of submerged cavitation jet by adding micro-particles, Ocean Engineering 209 (2020), 107516.
[19] H. Hu, Y. Zheng, The effect of sand particle concentrations on the vibratory cavitation erosion, Wear 384 (2017) 95–105.
[20] R. Romero, L. Teran, J. Coronado, J. Ladino, S. Rodríguez, Synergy between cavitation and solid particle erosion in an ultrasonic tribometer, Wear 428 (2019) 395–403.
[21] K. Su, D. Xia, Z. Ding, Cavitation damage in particle-laden liquids with considering particle concentration and size, in: 22nd IAHR-APD Congress, Sapporo, Japan, 2020.
[22] D. Yan, J. Wang, F. Liu, Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures, AIP Adv. 5 (2015), 077159.
[23] P. Dunstan, S. Li, Cavitation enhancement of silt erosion: numerical studies, Wear 268 (2010) 946–954.
[24] L.A. Teran, S.A. Rodríguez, S. Laín, S. Jung, Interaction of particles with a cavitation bubble near a solid wall, Phys. Fluids 30 (2018), 123304.
[25] L. Teran, C. Roa, J. Mu˜noz-Cubillos, R. Aponte, J. Valdes, F. Larrahondo, S. Rodríguez, J. Coronado, Failure analysis of a run-of-the-river hydroelectric power plant, Eng. Fail. Anal. 68 (2016) 87–100.
[26] M. Lin, L. Chang, H. Lin, C. Yang, K. Lin, A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating, Surf. Coating. Technol. 201 (2006) 3193–3198.
[27] A. Mansouri, A Combined CFD-Experimental Method for Developing an Erosion Equation for Both Gas-Sand and Liquid-Sand Flows, The University of Tulsa, 2016.
[28] R. Aponte, L. Teran, J. Ladino, F. Larrahondo, J. Coronado, S. Rodríguez, Computational study of the particle size effect on a jet erosion wear device, Wear 374 (2017) 97–103.
[29] ANSYS, Fluent Customization Manual, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.
[30] ANSYS, Fluent Theory Guide, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.
[31] J.-P. Franc, J.-M. Michel, Fundamentals of Cavitation, Springer Science & Business Media, 2006.
[32] C.V. Roa, J. Mu˜noz, L.A. Teran, J.A. Valdes, S.A. Rodríguez, J.J. Coronado, A. Ladino, Effect of tribometer configuration on the analysis of hydromachinery wear failure, Wear 332–333 (2015) 1164–1175.
[33] G.L. Chahine, C.-T. Hsiao, Modelling cavitation erosion using fluid–material interaction simulations, Interface focus 5 (2015), 20150016.
[34] ANSYS, Fluent User’s Guide, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.
[35] H. Arabnejad, Development of Erosion Equations for Solid Particle and Liquid Droplet Impact, The University of Tulsa, 2015
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier B.V., 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier B.V., 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier B.V.
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/67f225f3-3d02-4717-b3ca-453a1a44091e/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478766161199104
spelling Teran, Leonel A.bb6453b379b3aeca44276245b0dd2741Laín Beatove, Santiagovirtual::2556-1Rodríguez, Sara A.cc51eaa9cc961e0cc9391d3148429cab2022-05-27T14:36:34Z2022-05-27T14:36:34Z2021431648https://hdl.handle.net/10614/1392010.1016/j.wear.2021.203901Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/The prediction of the wear behaviour of components under conditions of cavitation and hard particle erosion requires the implementation of a new model capable of accounting for the accelerated damage due to the synergic effect of both phenomena. In a previous research, several simulations were performed to investigate why the damage on a surface is increased when a particle interacts with a collapsing bubble. Then those simulations were modified to develop a predictive equation that estimates the impact velocity of a particle when it is trapped by the microjet of a collapsing bubble near a solid wall. Subsequently, through the implementation in a computational fluid dynamics (CFD) software, the obtained expression is combined with the traditional Grant and Tabakoff hard particle erosion model for AISI 304 steel to develop a new model capable of predicting the synergic effect of cavitation damage and hard particle erosion. This new model is used in CFD simulations to calibrate and validate the predicted erosion rate with experimental results obtained using a slurry pot erosion tester under two conditions of particle concentration and two conditions of particle size combined with four triangular cavitation inducers that produced different cavitation conditions. Good agreement was found between the experimental and the predicted results using the developed model15 páginasapplication/pdfengElsevier B.V.Derechos reservados - Elsevier B.V., 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Synergy effect modelling of cavitation and hard particle erosion: implementation and validationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dinámica de fluidosFluid dynamicsCavitationHard particle erosionComputational fluid dynamicsSynergy model151478-479Teran, L. A., Laín Behatove, S., Rodríguez, S.A. (2021). Synergy effect modelling of cavitation and hard particle erosion: implementation and validation. Wear. 478-479, pp. 1-15. https://www.sciencedirect.com/science/article/pii/S0043164821002908Wear[1] I. Finnie, Erosion of surfaces by solid particles, Wear 3 (1960) 87–103.[2] G. Grant, W. Tabakoff, An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy, Department of Aerospace Engineering, University of Cincinnati, 1973.[3] B. McLaury, J. Wang, S. Shirazi, J. Shadley, E. Rybicki, Solid particle erosion in long radius elbows and straight pipes, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 1997.[4] Y.I. Oka, K. Okamura, T. Yoshida, Practical estimation of erosion damage caused by solid particle impact: Part 1: effects of impact parameters on a predictive equation, Wear 259 (2005) 95–101.[5] Y. Zhang, E. Reuterfors, B.S. McLaury, S. Shirazi, E. Rybicki, Comparison of computed and measured particle velocities and erosion in water and air flows, Wear 263 (2007) 330–338.[6] A.K. Singhal, M.M. Athavale, H. Li, Y. Jiang, Mathematical basis and validation of the full cavitation model, J. Fluid Eng. 124 (2002) 617–624.[7] P.J. Zwart, A.G. Gerber, T. Belamri, A Two-phase Flow Model for Predicting Cavitation Dynamics, Fifth international conference on multiphase flow, Yokohama, Japan, 2004.[8] G.H. Schnerr, J. Sauer, Physical and numerical modeling of unsteady cavitation dynamics, in: Fourth International Conference on Multiphase Flow, ICMF New Orleans, 2001.[9] H. Kato, A. Konno, M. Maeda, H. Yamaguchi, Possibility of Quantitative prediction of cavitation erosion without model test, J. Fluid Eng. 118 (1996) 582–588.[10] G. Bark, N. Berchiche, M. Grekula, Application of Principles for Observation and Analysis of Eroding Cavitation, EROCAV Observation Handbook, Chalmers University of Technology, Sweden, 2004.[11] R. Fortes-Patella, J. Reboud, L. Briancon-Marjollet, A Phenomenological and Numerical Model for Scaling the Flow Aggressiveness in Cavitation Erosion, EROCAV Workshop, Val de Reuil, France, 2004, pp. 283–290.[12] M. Dular, B. ˇSirok, B. Stoffel, Experimental and numerical modelling of cavitation erosion, in: Sixth International Symposium on Cavitation, 2006. CAV2006, Wageningen.[13] H. Amarendra, G. Chaudhari, S. Nath, Synergy of cavitation and slurry erosion in the slurry pot tester, Wear 290 (2012) 25–31.[14] S. Li, Cavitation enhancement of silt erosion—an envisaged micro model, Wear 260 (2006) 1145–1150.[15] Y. Tang, L. Liang, Y.X. Pang, Z.M. Zhu, Y. Xu, Research of Erosion, Cavitation and Their Interactive Wears of Fluid Machinery Three-phase Flow, Applied Mechanics and Materials, Trans Tech Publications, 2012, pp. 1261–1266.[16] Z. Tao, C. Cichang, L. Dongli, L. Dan, Mechanism of silt abrasion enhanced by cavitation in silt laden water flow, Journal of Drainage and Irrigation Machinery Engineering 4 (2011), 007.[17] T. Zhang, C. Chen, D. Li, D. Lv, Experimental study of mechanism of silt abrasion influenced by cavitation in hydraulic machinery, in: ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, American Society of Mechanical Engineers, 2011, pp. 195–201.[18] C. Peng, S. Tian, G. Li, M. Wei, Enhancement of cavitation intensity and erosion ability of submerged cavitation jet by adding micro-particles, Ocean Engineering 209 (2020), 107516.[19] H. Hu, Y. Zheng, The effect of sand particle concentrations on the vibratory cavitation erosion, Wear 384 (2017) 95–105.[20] R. Romero, L. Teran, J. Coronado, J. Ladino, S. Rodríguez, Synergy between cavitation and solid particle erosion in an ultrasonic tribometer, Wear 428 (2019) 395–403.[21] K. Su, D. Xia, Z. Ding, Cavitation damage in particle-laden liquids with considering particle concentration and size, in: 22nd IAHR-APD Congress, Sapporo, Japan, 2020.[22] D. Yan, J. Wang, F. Liu, Inhibition of the ultrasonic microjet-pits on the carbon steel in the particles-water mixtures, AIP Adv. 5 (2015), 077159.[23] P. Dunstan, S. Li, Cavitation enhancement of silt erosion: numerical studies, Wear 268 (2010) 946–954.[24] L.A. Teran, S.A. Rodríguez, S. Laín, S. Jung, Interaction of particles with a cavitation bubble near a solid wall, Phys. Fluids 30 (2018), 123304.[25] L. Teran, C. Roa, J. Mu˜noz-Cubillos, R. Aponte, J. Valdes, F. Larrahondo, S. Rodríguez, J. Coronado, Failure analysis of a run-of-the-river hydroelectric power plant, Eng. Fail. Anal. 68 (2016) 87–100.[26] M. Lin, L. Chang, H. Lin, C. Yang, K. Lin, A study of high-speed slurry erosion of NiCrBSi thermal-sprayed coating, Surf. Coating. Technol. 201 (2006) 3193–3198.[27] A. Mansouri, A Combined CFD-Experimental Method for Developing an Erosion Equation for Both Gas-Sand and Liquid-Sand Flows, The University of Tulsa, 2016.[28] R. Aponte, L. Teran, J. Ladino, F. Larrahondo, J. Coronado, S. Rodríguez, Computational study of the particle size effect on a jet erosion wear device, Wear 374 (2017) 97–103.[29] ANSYS, Fluent Customization Manual, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.[30] ANSYS, Fluent Theory Guide, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.[31] J.-P. Franc, J.-M. Michel, Fundamentals of Cavitation, Springer Science & Business Media, 2006.[32] C.V. Roa, J. Mu˜noz, L.A. Teran, J.A. Valdes, S.A. Rodríguez, J.J. Coronado, A. Ladino, Effect of tribometer configuration on the analysis of hydromachinery wear failure, Wear 332–333 (2015) 1164–1175.[33] G.L. Chahine, C.-T. Hsiao, Modelling cavitation erosion using fluid–material interaction simulations, Interface focus 5 (2015), 20150016.[34] ANSYS, Fluent User’s Guide, 16.1, ANSYS, Inc., Canonsburg, 2015. Release.[35] H. Arabnejad, Development of Erosion Equations for Solid Particle and Liquid Droplet Impact, The University of Tulsa, 2015Comunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2556-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2556-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2556-10000-0002-0269-2608virtual::2556-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2556-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/67f225f3-3d02-4717-b3ca-453a1a44091e/download20b5ba22b1117f71589c7318baa2c560MD5210614/13920oai:red.uao.edu.co:10614/139202024-03-06 16:41:13.081https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier B.V., 2021metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K