EEG Signals classification using linear and non-linear discriminant methods
This article was developed with the particular interest of characterize and study EEG signals as a pattern which in general has a high dimensionality, and has obviously a particular behavior in frequency and time. Here we have developed a wavelet decomposition to reduce a little bit the dimensionali...
- Autores:
-
Mayor Torres, Juan Manuel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/10822
- Acceso en línea:
- http://hdl.handle.net/10614/10822
- Palabra clave:
- linear classifiers
feature extraction
biomedical signals
feature extraction
Biomedical signals
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_e5bce7f36942ad5286a306138ba2c5d3 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/10822 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.spa.fl_str_mv |
EEG Signals classification using linear and non-linear discriminant methods |
title |
EEG Signals classification using linear and non-linear discriminant methods |
spellingShingle |
EEG Signals classification using linear and non-linear discriminant methods linear classifiers feature extraction biomedical signals feature extraction Biomedical signals |
title_short |
EEG Signals classification using linear and non-linear discriminant methods |
title_full |
EEG Signals classification using linear and non-linear discriminant methods |
title_fullStr |
EEG Signals classification using linear and non-linear discriminant methods |
title_full_unstemmed |
EEG Signals classification using linear and non-linear discriminant methods |
title_sort |
EEG Signals classification using linear and non-linear discriminant methods |
dc.creator.fl_str_mv |
Mayor Torres, Juan Manuel |
dc.contributor.author.spa.fl_str_mv |
Mayor Torres, Juan Manuel |
dc.subject.spa.fl_str_mv |
linear classifiers feature extraction biomedical signals |
topic |
linear classifiers feature extraction biomedical signals feature extraction Biomedical signals |
dc.subject.lemb.spa.fl_str_mv |
feature extraction |
dc.subject.armarc.spa.fl_str_mv |
Biomedical signals |
description |
This article was developed with the particular interest of characterize and study EEG signals as a pattern which in general has a high dimensionality, and has obviously a particular behavior in frequency and time. Here we have developed a wavelet decomposition to reduce a little bit the dimensionality and PCA (Principal Components Analysis) to accurate the result in a better way (only two features representation). After that the EEG signals, with their respective characteristics and representation has been able to train and test some linear and non-linear classifiers such as (Parzen, k-NN, Radial Basis Neural Network, linear and non-linear perceptron and so on.) This evaluation is an analysis of general EEG’s behavior signals with this kind of characterization and classification processes respectively. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013-04 |
dc.date.accessioned.spa.fl_str_mv |
2019-04-08T13:29:45Z |
dc.date.available.spa.fl_str_mv |
2019-04-08T13:29:45Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0121-0777 |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/10822 |
identifier_str_mv |
0121-0777 |
url |
http://hdl.handle.net/10614/10822 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.spa.fl_str_mv |
El hombre y la máquina No. 41, (Ene.-Abr. 2013) |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
páginas 71-80 |
dc.coverage.spatial.spa.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.source.spa.fl_str_mv |
instname:Universidad Autónoma de Occidente reponame:Repositorio Institucional UAO |
instname_str |
Universidad Autónoma de Occidente |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/f1fb7450-3e32-4f61-b5be-1fa2967b02fd/download https://dspace7-uao.metacatalogo.com/bitstreams/cf63c53e-0806-47fe-b3cd-58fa4eb11285/download https://dspace7-uao.metacatalogo.com/bitstreams/48f1254f-8ac5-4dd6-a038-c8144b04be32/download https://dspace7-uao.metacatalogo.com/bitstreams/02bb191a-60ce-41ed-8c89-0f572de9d53f/download https://dspace7-uao.metacatalogo.com/bitstreams/8131b3d9-1cff-448f-9703-612ae707ed7a/download |
bitstream.checksum.fl_str_mv |
59b2cb293a75564704585d68b206857d 211190f45043c683aad1fbd4ba4016e8 9d7d4e054a856096a31d23b9303e50ab 4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260136442593280 |
spelling |
Mayor Torres, Juan Manuel16499d877864a84324711efac767c01a-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-04-08T13:29:45Z2019-04-08T13:29:45Z2013-040121-0777http://hdl.handle.net/10614/10822This article was developed with the particular interest of characterize and study EEG signals as a pattern which in general has a high dimensionality, and has obviously a particular behavior in frequency and time. Here we have developed a wavelet decomposition to reduce a little bit the dimensionality and PCA (Principal Components Analysis) to accurate the result in a better way (only two features representation). After that the EEG signals, with their respective characteristics and representation has been able to train and test some linear and non-linear classifiers such as (Parzen, k-NN, Radial Basis Neural Network, linear and non-linear perceptron and so on.) This evaluation is an analysis of general EEG’s behavior signals with this kind of characterization and classification processes respectively.application/pdfpáginas 71-80engUniversidad Autónoma de OccidenteEl hombre y la máquina No. 41, (Ene.-Abr. 2013)Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOlinear classifiersfeature extractionbiomedical signalsfeature extractionBiomedical signalsEEG Signals classification using linear and non-linear discriminant methodsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PublicationTEXTA0105.pdf.txtA0105.pdf.txtExtracted texttext/plain51291https://dspace7-uao.metacatalogo.com/bitstreams/f1fb7450-3e32-4f61-b5be-1fa2967b02fd/download59b2cb293a75564704585d68b206857dMD54THUMBNAILA0105.pdf.jpgA0105.pdf.jpgGenerated Thumbnailimage/jpeg11852https://dspace7-uao.metacatalogo.com/bitstreams/cf63c53e-0806-47fe-b3cd-58fa4eb11285/download211190f45043c683aad1fbd4ba4016e8MD55ORIGINALA0105.pdfA0105.pdfapplication/pdf2594511https://dspace7-uao.metacatalogo.com/bitstreams/48f1254f-8ac5-4dd6-a038-c8144b04be32/download9d7d4e054a856096a31d23b9303e50abMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/02bb191a-60ce-41ed-8c89-0f572de9d53f/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/8131b3d9-1cff-448f-9703-612ae707ed7a/download20b5ba22b1117f71589c7318baa2c560MD5310614/10822oai:dspace7-uao.metacatalogo.com:10614/108222024-01-19 17:10:42.219https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |