Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene
In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) andEpoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermo-compression and resin film infusion processes. Neat polymeric matrices and its biocomposites wereteste...
- Autores:
-
Correa Aguirre, Juan Pablo
Hidalgo Salazar, Miguel Ángel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11415
- Palabra clave:
- Compuestos epóxicos
Epoxy compounds
Biocomposites
Natural materials
Nonwoven Fique fiber mat
LLDPE
Epoxy Resin
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_e57d8ee09f84d368f214bd91ba0407e7 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11415 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene |
title |
Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene |
spellingShingle |
Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene Compuestos epóxicos Epoxy compounds Biocomposites Natural materials Nonwoven Fique fiber mat LLDPE Epoxy Resin |
title_short |
Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene |
title_full |
Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene |
title_fullStr |
Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene |
title_full_unstemmed |
Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene |
title_sort |
Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene |
dc.creator.fl_str_mv |
Correa Aguirre, Juan Pablo Hidalgo Salazar, Miguel Ángel |
dc.contributor.author.none.fl_str_mv |
Correa Aguirre, Juan Pablo Hidalgo Salazar, Miguel Ángel |
dc.subject.armarc.spa.fl_str_mv |
Compuestos epóxicos |
topic |
Compuestos epóxicos Epoxy compounds Biocomposites Natural materials Nonwoven Fique fiber mat LLDPE Epoxy Resin |
dc.subject.armarc.eng.fl_str_mv |
Epoxy compounds |
dc.subject.proposal.eng.fl_str_mv |
Biocomposites Natural materials Nonwoven Fique fiber mat LLDPE Epoxy Resin |
description |
In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) andEpoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermo-compression and resin film infusion processes. Neat polymeric matrices and its biocomposites weretested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also,thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and ther-mogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced com-posites exhibited higher modulus and strength but lower deformation capability as compared withLLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation hasan effect on the thermal stability of the composites. On the other hand, Fique fibers did not change thecrystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromoleculeschains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of consid-ering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture ofbiocomposites for automotive applications. In addition to the processing test specimens, it was also pos-sible to manufacture a part of LLDPE-Fique, and one part of EP-Fique |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2019-11-06T14:39:06Z |
dc.date.available.none.fl_str_mv |
2019-11-06T14:39:06Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2211-3797 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11415 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.rinp.2017.12.025 |
identifier_str_mv |
2211-3797 |
url |
http://hdl.handle.net/10614/11415 https://doi.org/10.1016/j.rinp.2017.12.025 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Results In Physics, volumen 8, páginas 461-467, (march, 2018) |
dc.relation.citationendpage.none.fl_str_mv |
467 |
dc.relation.citationstartpage.none.fl_str_mv |
461 |
dc.relation.citationvolume.none.fl_str_mv |
8 |
dc.relation.cites.eng.fl_str_mv |
Hidalgo-Salazar, M. A., & Correa, J. P. (2018). Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results in physics, 8, 461-467. |
dc.relation.ispartofjournal.eng.fl_str_mv |
Results In Physics |
dc.relation.references.none.fl_str_mv |
[1] Chand S. Review carbon fibers for composites. J Mater Sci 2000;35(6):1303–13. [2] Stickel JM, Nagarajan M. Glass fiber-reinforced composites: from formulation to application. Int J Appl Glass Sci 2012;3(2):122–36. [3] Koronis G, Silva A, Fontul M. Green composites: a review of adequate materials for automotive applications. Compos B Eng 2013;44(1):120–7. [4] Pickering KL, Efendy MGA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A: Appl Sci Manuf 2016;83(Supplement C):98–112. [5] Ramesh M, Palanikumar K, Reddy KH. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 2017;79(Supplement C):558–84. [6] Väisänen T, Das O, Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. J Cleaner Prod 2017;149:582–96. [7] Gañán P, Mondragon I. Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites. J Therm Anal Calorim 2003;73 (3):783–95. [8] Gañán P, Mondragon I. Fique fiber-reinforced polyester composites: effects of fiber surface treatments on mechanical behavior. J Mater Sci 2004;39 (9):3121–8. [9] Hidalgo-Salazar MA, Mina-Hernandez JH, Herrera-Franco PJ. The effect of interfacial adhesion on the creep behaviour of LDPE–Al–Fique composite materials. Compos B Eng 2013;55:345–51. [10] Hidalgo-Salazar MA, Muñoz-Velez MF, Mina-Hernandez JH. Influence of incorporation of natural fibers on the physical, mechanical, and termal properties of composites LDPE-Al reinforced with fique fibers. Int J Polymer Sci 2015;2015. [11] Muñoz-Velez MF, Hidalgo-Salazar MA, Mina-Hernandez JH. Fique fiber an alternative for reinforced plastics. Influence of surface modification. Biotecnología en el Sector Agropecuario y Agroindustrial 2014;12(2). [12] Krupa I, Luyt A. Thermal and mechanical properties of extruded LLDPE/wax blends. Polymer Degradation Stability 2001;73(1):157–61. [13] Pickering KL, Efendy MA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 2016;83:98–112. [14] Mohammed L et al. A review on natural fiber reinforced polymer composite and its applications. Int J Polymer Sci 2015;2015. [15] Navarrete-Montalvo JI et al. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf (IJIDeM) 2017:1–10. [16] ASTM D638-14. Standard Test Method for Tensile Properties of Plastics. West Conshohocken, PA: ASTM International; 2014. [17] ASTM D790-17. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. West Conshohocken, PA: ASTM International; 2017. [18] Khan MN et al. Production and properties of short jute and short e-glass fiber reinforced polypropylene-based composites. Open J Compos Mater 2012;2 (02):40. [19] Wei J et al. N, N-Dimethylformamide (DMF) usage in epoxy/Graphene nanocomposites: problems associated with reaggregation. Polymers 2017;9 (6):193. [20] De Rosa IM, Santulli C, Sarasini F. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater Des 2010;31(5):2397–405. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2211379717322829 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/6f8d5fd4-769a-40fa-8176-ae9fdd3eee29/download https://red.uao.edu.co/bitstreams/b888872c-d671-4fd5-90ab-c373449c3a7d/download https://red.uao.edu.co/bitstreams/81ef2b79-ce09-4598-a7e0-2dc37dc0ba26/download https://red.uao.edu.co/bitstreams/b0ede4a9-75de-4b66-9ff2-35c08f95b9e0/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 4460e5956bc1d1639be9ae6146a50347 1e1cd9ca2e94d9cb1055841b28390413 75ff486cc9f662144b83735156878927 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260178128732160 |
spelling |
Correa Aguirre, Juan Pabloe37041bc496bde8cf2fdefb8ed0a7675Hidalgo Salazar, Miguel Ángelvirtual::2133-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-06T14:39:06Z2019-11-06T14:39:06Z20182211-3797http://hdl.handle.net/10614/11415https://doi.org/10.1016/j.rinp.2017.12.025In this work Linear Low Density Polyethylene-nonwoven industrial Fique fiber mat (LLDPE-Fique) andEpoxy Resin-nonwoven industrial Fique fiber mat (EP-Fique) biocomposites were prepared using thermo-compression and resin film infusion processes. Neat polymeric matrices and its biocomposites weretested following ASTM standards in order to evaluate tensile and flexural mechanical properties. Also,thermal behavior of these materials has been studied by differential scanning calorimetry (DSC) and ther-mogravimetric analysis (TGA). Tensile and flexural test revealed that nonwoven Fique reinforced com-posites exhibited higher modulus and strength but lower deformation capability as compared withLLDPE and EP neat matrices. TG thermograms showed that nonwoven Fique fibers incorporation hasan effect on the thermal stability of the composites. On the other hand, Fique fibers did not change thecrystallization and melting processes of the LLDPE matrix but restricts the motion of EP macromoleculeschains thus increases the Tg of the EP-Fique composite. Finally, this work opens the possibility of consid-ering non-woven Fique fibers as a reinforcement material with a high potential for the manufacture ofbiocomposites for automotive applications. In addition to the processing test specimens, it was also pos-sible to manufacture a part of LLDPE-Fique, and one part of EP-Fiqueapplication/pdf7 páginasengElsevierResults In Physics, volumen 8, páginas 461-467, (march, 2018)4674618Hidalgo-Salazar, M. A., & Correa, J. P. (2018). Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results in physics, 8, 461-467.Results In Physics[1] Chand S. Review carbon fibers for composites. J Mater Sci 2000;35(6):1303–13.[2] Stickel JM, Nagarajan M. Glass fiber-reinforced composites: from formulation to application. Int J Appl Glass Sci 2012;3(2):122–36.[3] Koronis G, Silva A, Fontul M. Green composites: a review of adequate materials for automotive applications. Compos B Eng 2013;44(1):120–7.[4] Pickering KL, Efendy MGA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A: Appl Sci Manuf 2016;83(Supplement C):98–112.[5] Ramesh M, Palanikumar K, Reddy KH. Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 2017;79(Supplement C):558–84.[6] Väisänen T, Das O, Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. J Cleaner Prod 2017;149:582–96.[7] Gañán P, Mondragon I. Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites. J Therm Anal Calorim 2003;73 (3):783–95.[8] Gañán P, Mondragon I. Fique fiber-reinforced polyester composites: effects of fiber surface treatments on mechanical behavior. J Mater Sci 2004;39 (9):3121–8.[9] Hidalgo-Salazar MA, Mina-Hernandez JH, Herrera-Franco PJ. The effect of interfacial adhesion on the creep behaviour of LDPE–Al–Fique composite materials. Compos B Eng 2013;55:345–51.[10] Hidalgo-Salazar MA, Muñoz-Velez MF, Mina-Hernandez JH. Influence of incorporation of natural fibers on the physical, mechanical, and termal properties of composites LDPE-Al reinforced with fique fibers. Int J Polymer Sci 2015;2015.[11] Muñoz-Velez MF, Hidalgo-Salazar MA, Mina-Hernandez JH. Fique fiber an alternative for reinforced plastics. Influence of surface modification. Biotecnología en el Sector Agropecuario y Agroindustrial 2014;12(2).[12] Krupa I, Luyt A. Thermal and mechanical properties of extruded LLDPE/waxblends. Polymer Degradation Stability 2001;73(1):157–61.[13] Pickering KL, Efendy MA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf 2016;83:98–112.[14] Mohammed L et al. A review on natural fiber reinforced polymer composite and its applications. Int J Polymer Sci 2015;2015.[15] Navarrete-Montalvo JI et al. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf (IJIDeM) 2017:1–10.[16] ASTM D638-14. Standard Test Method for Tensile Properties of Plastics. West Conshohocken, PA: ASTM International; 2014.[17] ASTM D790-17. Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. West Conshohocken, PA: ASTM International; 2017.[18] Khan MN et al. Production and properties of short jute and short e-glass fiber reinforced polypropylene-based composites. Open J Compos Mater 2012;2 (02):40.[19] Wei J et al. N, N-Dimethylformamide (DMF) usage in epoxy/Graphene nanocomposites: problems associated with reaggregation. Polymers 2017;9 (6):193.[20] De Rosa IM, Santulli C, Sarasini F. Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater Des 2010;31(5):2397–405.Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S2211379717322829Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethyleneArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Compuestos epóxicosEpoxy compoundsBiocompositesNatural materialsNonwoven Fique fiber matLLDPEEpoxy ResinPublication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2133-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2133-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::2133-10000-0002-6907-2091virtual::2133-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::2133-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/6f8d5fd4-769a-40fa-8176-ae9fdd3eee29/download20b5ba22b1117f71589c7318baa2c560MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/b888872c-d671-4fd5-90ab-c373449c3a7d/download4460e5956bc1d1639be9ae6146a50347MD52TEXTMechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene.pdf.txtMechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene.pdf.txtExtracted texttext/plain27827https://red.uao.edu.co/bitstreams/81ef2b79-ce09-4598-a7e0-2dc37dc0ba26/download1e1cd9ca2e94d9cb1055841b28390413MD55THUMBNAILMechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene.pdf.jpgMechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene.pdf.jpgGenerated Thumbnailimage/jpeg15454https://red.uao.edu.co/bitstreams/b0ede4a9-75de-4b66-9ff2-35c08f95b9e0/download75ff486cc9f662144b83735156878927MD5610614/11415oai:red.uao.edu.co:10614/114152024-03-06 09:44:57.911https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |