Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel
Maraging 300 is an ultrahigh strength steel with significant alloy addition, resulting in a martensitic matrix hardened by precipitation through aging treatment. In these steels, intercritical tempering can provide reverted austenite and precipitation of intermetallic products, increasing the ductil...
- Autores:
-
Conde, Fábio Faria
Escobar, Julián David
Rodríguez, Johnnatan
Oliveira, Marcelo Falcão
Ávila, Julián Arnaldo
Conrado Ramos Moreira, Afonso
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13926
- Acceso en línea:
- https://hdl.handle.net/10614/13926
https://red.uao.edu.co/
- Palabra clave:
- Materiales - Propiedades mecánicas
Material - Mechanical properties
Austenite reversion
Maraging 300
Additive manufacturing
Laser powder-bed fusion
Mechanical properties
x-ray measurements
- Rights
- openAccess
- License
- Derechos reservados -Springer Nature, 2021
id |
REPOUAO2_e4fa4ef16c15847e36db8712a6901601 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13926 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel |
title |
Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel |
spellingShingle |
Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel Materiales - Propiedades mecánicas Material - Mechanical properties Austenite reversion Maraging 300 Additive manufacturing Laser powder-bed fusion Mechanical properties x-ray measurements |
title_short |
Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel |
title_full |
Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel |
title_fullStr |
Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel |
title_full_unstemmed |
Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel |
title_sort |
Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steel |
dc.creator.fl_str_mv |
Conde, Fábio Faria Escobar, Julián David Rodríguez, Johnnatan Oliveira, Marcelo Falcão Ávila, Julián Arnaldo Conrado Ramos Moreira, Afonso |
dc.contributor.author.none.fl_str_mv |
Conde, Fábio Faria Escobar, Julián David Rodríguez, Johnnatan Oliveira, Marcelo Falcão Ávila, Julián Arnaldo Conrado Ramos Moreira, Afonso |
dc.subject.armarc.spa.fl_str_mv |
Materiales - Propiedades mecánicas |
topic |
Materiales - Propiedades mecánicas Material - Mechanical properties Austenite reversion Maraging 300 Additive manufacturing Laser powder-bed fusion Mechanical properties x-ray measurements |
dc.subject.armarc.eng.fl_str_mv |
Material - Mechanical properties |
dc.subject.proposal.eng.fl_str_mv |
Austenite reversion Maraging 300 Additive manufacturing Laser powder-bed fusion Mechanical properties x-ray measurements |
description |
Maraging 300 is an ultrahigh strength steel with significant alloy addition, resulting in a martensitic matrix hardened by precipitation through aging treatment. In these steels, intercritical tempering can provide reverted austenite and precipitation of intermetallic products, increasing the ductility of additively manufactured parts due to austenite presence. Studies deal with postprocessing of additive manufactured parts of maraging steel; however, few focused on phases evolution during the heat treatments and their mechanical response. In the present work, a maraging 300 steel processed by laser-based powder-bed fusion was studied with a focus on microstructural and mechanical properties after applying several postprocessing heat treatments. Tensile tests assessed the mechanical properties, and the microstructure was analyzed by scanning and transmission electron microscopy. A synchrotron beamline with x-ray diffraction was used to conduct in situ measurements of martensite and austenite evolution. The in situ phase evolution revealed that isothermal heat treatments were efficient in promoting martensite-to-austenite reversion. Likewise, the presence of austenite significantly enhanced the ductility, however, at some mechanical strength expense |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-02-23 |
dc.date.accessioned.none.fl_str_mv |
2022-05-31T13:35:45Z |
dc.date.available.none.fl_str_mv |
2022-05-31T13:35:45Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
10599495 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13926 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
10599495 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13926 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
4936 |
dc.relation.citationissue.spa.fl_str_mv |
7 |
dc.relation.citationstartpage.spa.fl_str_mv |
4925 |
dc.relation.citationvolume.spa.fl_str_mv |
30 |
dc.relation.cites.eng.fl_str_mv |
Conde, F.F., Escobar, J.D., Rodriguez, J., Ramos Moreira Afonso., C., Oliveira, M. F., Ávila, J. A. (2021). Effect of Combined Tempering and Aging in the Austenite Reversion, Precipitation, and Tensile Properties of an Additively Manufactured Maraging 300 Steel. Journal of Materials Engineering and Performance. 30 (7), 4925–4936. https://www.researchgate.net/publication/349542356_Effect_of_Combined_Tempering_and_Aging_in_the_Austenite_Reversion_Precipitation_and_Tensile_Properties_of_an_Additively_Manufactured_Maraging_300_Steel |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of Materials Engineering and Performance |
dc.relation.references.none.fl_str_mv |
1. J. Milla´n, S. Sandlo¨bes, A. Al-Zubi, T. Hickel, P. Choi, J. Neugebauer, D. Ponge and D. Raabe, Designing Heusler Nanoprecipitates by Elastic Misfit Stabilization in Fe-Mn Maraging Steels, Acta Mater., 2014, 76, p 94–105 2. Z. Sha and W. Guo, Maraging Steels. Modelling of Microstructure, Properties and Applications, Woodhead Publishing Limited and CRC Press LLC, Cambridge, 2009 3. ASM, ASM Handbook - Heat Treatment, ASM Handb., 1991, 4, p 3470 4. J.W. Martin, ‘‘Precipitation Hardening,’’ 2nd ed., Butterworth, 1998 5. U.K. Viswanathan, G.K. Dey and M.K. Asundi, Precipitation Hardening in 350 Grade Maraging Steel, Metall. Trans. A, 1993, 24(11), p 2429–2442 6. R. Casati, J. Lemke, A. Tuissi and M. Vedani, Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting, Metals (Basel), 2016, 6(9), p 218. https://doi.org/10. 3390/met6090218 7. F.F. Conde, J.D. Escobar, J.P. Oliveira, A.L. Jardini, W.W. Bose Filho and J.A. Avila, Austenite Reversion Kinetics and Stability During Tempering of an Additively Manufactured Maraging 300 Steel, Addit. Manuf., 2019, 29, p 100804. https://doi.org/10.1016/j.addma.2019.10 0804 8. J.D. Escobar, G.A. Faria, L. Wu, J.P. Oliveira, P.R. Mei and A.J. Ramirez, Austenite Reversion Kinetics and Stability during Tempering of a Ti-Stabilized Supermartensitic Stainless Steel: Correlative in Situ Synchrotron x-ray Diffraction and Dilatometry, Acta Mater., 2017, 138, p 92–99. https://doi.org/10.1016/j.actamat.2017.07.036 9. O. Dmitrieva, D. Ponge, G. Inden, J. Milla´n, P. Choi, J. Sietsma and D. Raabe, Chemical Gradients Across Phase Boundaries between Martensite and Austenite in Steel Studied by Atom Probe Tomography and Simulation, Acta Mater., 2011, 59(1), p 364–374 10. M.-M. Wang, C.C. Tasan, D. Ponge and D. Raabe, Spectral TRIP Enables Ductile 1.1 GPa Martensite, Acta Mater., 2016, 111, p 262– 272. https://doi.org/10.1016/j.actamat.2016.03.070 11. M. Wang, C.C. Tasan, D. Ponge, A. Dippel and D. Raabe, ScienceDirect Nanolaminate Transformation-Induced Plasticity— Twinning-Induced Plasticity Steel with Dynamic Strain Partitioning and Enhanced Damage Resistance, Acta Mater., 2015, 85, p 216– 228 12. D. Raabe, D. Ponge, O. Dmitrieva and B. Sander, Nanoprecipitate- Hardened 1.5 GPa Steels with Unexpected High Ductility, Scr. Mater., 2009, 60(12), p 1141–1144. https://doi.org/10.1016/j.scriptamat.2009. 02.062 13. V.B. Dementyev, A.A. Sukhikh and T.M. Makhneva, On Problem of Increasing the Structural Strength of Maraging Steels, Inorg. Mater. Appl. Res., 2015, 6(4), p 343–349 14. A.A. Sukhikh, V.B. Dement ev and T.M. Makhneva, Properties of Austenite in Maraging Steel, Solid State Phenom., 2018, 284, p 386– 391. https://doi.org/10.4028/www.scientific.net/SSP.284.386 15. A.A. Sukhikh, T.M. Makhneva and V.B. Dement ev, Austenite in Nanostructured Maraging Steel, Inorg. Mater. Appl. Res., 2019, 10(4), p 966–973 16. ASTM E1282-11, Standard Guide for Specifying the Chemical Compositions and Selecting Sampling Practices and Quantitative Analysis Methods for Metals, Ores, and Related Materials, ASTM International, West Conshohocken, PA, 2016. http://www.astm.org/cg i-bin/resolver.cgi?E1282-11 17. ASTM B962-17, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes Principle, ASTM International, West Conshohocken, PA, 2017. htt p://www.astm.org/cgi-bin/resolver.cgi?B962-17 18. A.R. Oliveira, J.A.A. Diaz, A.D.C. Nizes, A.L. Jardini and E.G. Del Conte, Investigation of Building Orientation and Aging on Strength- Stiffness Performance of Additively Manufactured Maraging Steel, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-020-0541 4-4 19. Y. Yao, Y. Huang, B. Chen, C. Tan, Y. Su and J. Feng, Influence of Processing Parameters and Heat Treatment on the Mechanical Properties of 18Ni300 Manufactured by Laser Based Directed Energy Deposition, Opt. Laser Technol., 2018, 105, p 171–179 20. X. Yan, C. Huang, C. Chen, R. Bolot, L. Dembinski, R. Huang,W. Ma, H. Liao and M. Liu, Additive Manufacturing of WC Reinforced Maraging Steel 300 Composites by Cold Spraying and Selective Laser Melting, Surf. Coat. Technol., 2018 https://doi.org/10.1016/j.surfcoat. 2018.03.072 21. N. Raju, S. Kim and D.W. Rosen, A Characterization Method for Mechanical Properties of Metal Powder Bed Fusion Parts, Int. J. Adv. Manuf. Technol., 2020, 108(4), p 1189–1201. https://doi.org/10.1007/ s00170-020-05298-7 22. S. Bodziak, K.S. Al-Rubaie, L.D. Valentina, F.H. Lafratta, E.C. Santos, A.M. Zanatta and Y. Chen, Precipitation in 300 Grade Maraging Steel Built by Selective Laser Melting: Aging at 510 C for 2 h, Mater. Charact., 2019, 151, p 73–83. https://doi.org/10.1016/j.matchar.2019. 02.033 23. B. Mooney, K.I. Kourousis, R. Raghavendra and D. Agius, Process Phenomena Influencing the Tensile and Anisotropic Characteristics of Additively Manufactured Maraging Steel, Mater. Sci. Eng. A, 2019, 745, p 115–125. https://doi.org/10.1016/j.msea.2018.12.070 24. F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Be´resˇ, A.L. Jardini, W.W. Bose and J.A. Avila, Effect of Thermal Cycling and Aging Stages on the Microstructure and Bending Strength of a Selective Laser Melted 300-Grade Maraging Steel, Mater. Sci. Eng. A, 2019, 758, p 192–201. https://doi.org/10.1016/j.msea.2019.03.129 25. K. Kempen, E. Yasa, L. Thijs, J.-P.P. Kruth and J. Van Humbeeck, Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel, Phys. Procedia, 2011, 12(PART 1), p 255–263. h ttps://doi.org/10.1016/j.phpro.2011.03.033 26. ASTM E3-11, Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2017. http:// www.astm.org/cgi-bin/resolver.cgi?E3-11 27. ASTM E8/E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016. http://www.astm.org/cgi-bin/resolver.cgi?E8E8M-16ae1 28. C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu and T. Kuang, Microstructural Evolution, Nanoprecipitation Behavior and Mechanical Properties of Selective Laser Melted High-Performance Grade 300 Maraging Steel, Mater. Des., 2017, 134, p 23–34. https://doi.org/10. 1016/j.matdes.2017.08.026 29. S.A. Khairallah, A.T. Anderson, A. Rubenchik and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45. https://doi.org/10.1016/j.acta mat.2016.02.014 30. U.K. Viswanathan, G.K. Dey and V. Sethumadhavan, Effects of Austenite Reversion during Overageing on the Mechanical Properties of 18 Ni (350) Maraging Steel, Mater. Sci. Eng., 2005, 398, p 367–372 31. D. Raabe, S. Sandlo¨bes, J. Milla´n, D. Ponge, H. Assadi, M. Herbig and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: A Pathway to Ductile Martensite, Acta Mater., 2013, 61(16), p 6132–6152 32. J.D. Escobar, G.A. Faria, E.L. Maia, J.P. Oliveira, T. Boll, S. Seils, P.R. Mei, and A.J. Ramirez, Fundamentals of Isothermal Austenite Reversion in a Ti-Stabilized 12cr-6 Ni-2 Mo Super Martensitic Stainless Steels: Thermodynamics Versus Experimental Assessments, Acta Mater., 2019 33. X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki and T. Furuhara, Orientation of Austenite Reverted from Martensite in Fe 2Mn 1 5Si , Acta Mater., 2018, 144, p 601–612 34. D. Raabe, D. Ponge, O. Dmitrieva and B. Sander, Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging, Adv. Eng. Mater., 2009, 11(7), p 547–555. https://doi.org/10.1002/adem.200900061 35. M.-M. Wang, C.C. Tasan, D. Ponge, A.-C. Dippel and D. Raabe, Nanolaminate Transformation-Induced Plasticity–Twinning-Induced Plasticity Steel with Dynamic Strain Partitioning and Enhanced Damage Resistance, Acta Mater., 2015, 85, p 216–228. https://doi. org/10.1016/j.actamat.2014.11.010 36. F. Niessen, Austenite Reversion in Low-Carbon Martensitic Stainless Steels-a CALPHAD-Assisted Review, Mater. Sci. Technol. (United Kingdom), 2018, 34(12), p 1401–1414 37. P. Scardi and M. Leoni, Whole Powder Pattern Modelling Research Papers, Acta Crystallogr. A, 2002, 58, p 190–200 38. U.K. Viswanathan, T.R.G. Kutty and C. Ganguly, Dilatometric Technique for Evaluation of the Kinetics of Solid-State Transformation of Maraging Steel, Metall. Trans. A, 1993, 24(12), p 2653–2656 39. G. Casalino, S.L. Campanelli, N. Contuzzi and A.D. Ludovico, Experimental Investigation and Statistical Optimisation of the Selective Laser Melting Process of a Maraging Steel, Opt. Laser Technol., 2015, 65, p 151–158 40. M.-M. Wang, C.C. Tasan, D. Ponge, A. Kostka and D. Raabe, Smaller Is Less Stable: Size Effects on Twinning vs, Transformation of Reverted Austenite in TRIP-Maraging Steels, Acta Mater., 2014, 79, p 268–281 41. R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill, ‘‘Physical Metallurgy Principles,’’ Fourth Ed., Cengage Learning, 2009 |
dc.rights.spa.fl_str_mv |
Derechos reservados -Springer Nature, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados -Springer Nature, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Springer Nature |
dc.source.eng.fl_str_mv |
https://link.springer.com/article/10.1007/s11665-021-05553-2 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/97d9c66c-d889-4db9-84cf-a73f3a8f4776/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259776128811008 |
spelling |
Conde, Fábio Faria92c0f737551b8c425e9a3acc0664db3dEscobar, Julián David0c891098fe2b70753249739d6f428ecdRodríguez, Johnnatan1faea6354d9fcceaf0a957783d95df1aOliveira, Marcelo Falcão6640a74f9ef45579456e65040cef3172Ávila, Julián Arnaldo048c6c51e08938b18ce9dd5048ffbab3Conrado Ramos Moreira, Afonso9d276625c67d1157ff2760bbc0d546782022-05-31T13:35:45Z2022-05-31T13:35:45Z2021-02-2310599495https://hdl.handle.net/10614/13926Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/Maraging 300 is an ultrahigh strength steel with significant alloy addition, resulting in a martensitic matrix hardened by precipitation through aging treatment. In these steels, intercritical tempering can provide reverted austenite and precipitation of intermetallic products, increasing the ductility of additively manufactured parts due to austenite presence. Studies deal with postprocessing of additive manufactured parts of maraging steel; however, few focused on phases evolution during the heat treatments and their mechanical response. In the present work, a maraging 300 steel processed by laser-based powder-bed fusion was studied with a focus on microstructural and mechanical properties after applying several postprocessing heat treatments. Tensile tests assessed the mechanical properties, and the microstructure was analyzed by scanning and transmission electron microscopy. A synchrotron beamline with x-ray diffraction was used to conduct in situ measurements of martensite and austenite evolution. The in situ phase evolution revealed that isothermal heat treatments were efficient in promoting martensite-to-austenite reversion. Likewise, the presence of austenite significantly enhanced the ductility, however, at some mechanical strength expense12 páginasapplication/pdfengSpringer NatureDerechos reservados -Springer Nature, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://link.springer.com/article/10.1007/s11665-021-05553-2Effect of combined tempering and aging in the austenite reversion, precipitation, and tensile properties of an additively manufactured maraging 300 steelArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Materiales - Propiedades mecánicasMaterial - Mechanical propertiesAustenite reversionMaraging 300Additive manufacturingLaser powder-bed fusionMechanical propertiesx-ray measurements49367492530Conde, F.F., Escobar, J.D., Rodriguez, J., Ramos Moreira Afonso., C., Oliveira, M. F., Ávila, J. A. (2021). Effect of Combined Tempering and Aging in the Austenite Reversion, Precipitation, and Tensile Properties of an Additively Manufactured Maraging 300 Steel. Journal of Materials Engineering and Performance. 30 (7), 4925–4936. https://www.researchgate.net/publication/349542356_Effect_of_Combined_Tempering_and_Aging_in_the_Austenite_Reversion_Precipitation_and_Tensile_Properties_of_an_Additively_Manufactured_Maraging_300_SteelJournal of Materials Engineering and Performance1. J. Milla´n, S. Sandlo¨bes, A. Al-Zubi, T. Hickel, P. Choi, J. Neugebauer, D. Ponge and D. Raabe, Designing Heusler Nanoprecipitates by Elastic Misfit Stabilization in Fe-Mn Maraging Steels, Acta Mater., 2014, 76, p 94–1052. Z. Sha and W. Guo, Maraging Steels. Modelling of Microstructure, Properties and Applications, Woodhead Publishing Limited and CRC Press LLC, Cambridge, 20093. ASM, ASM Handbook - Heat Treatment, ASM Handb., 1991, 4, p 34704. J.W. Martin, ‘‘Precipitation Hardening,’’ 2nd ed., Butterworth, 19985. U.K. Viswanathan, G.K. Dey and M.K. Asundi, Precipitation Hardening in 350 Grade Maraging Steel, Metall. Trans. A, 1993, 24(11), p 2429–24426. R. Casati, J. Lemke, A. Tuissi and M. Vedani, Aging Behaviour and Mechanical Performance of 18-Ni 300 Steel Processed by Selective Laser Melting, Metals (Basel), 2016, 6(9), p 218. https://doi.org/10. 3390/met60902187. F.F. Conde, J.D. Escobar, J.P. Oliveira, A.L. Jardini, W.W. Bose Filho and J.A. Avila, Austenite Reversion Kinetics and Stability During Tempering of an Additively Manufactured Maraging 300 Steel, Addit. Manuf., 2019, 29, p 100804. https://doi.org/10.1016/j.addma.2019.10 08048. J.D. Escobar, G.A. Faria, L. Wu, J.P. Oliveira, P.R. Mei and A.J. Ramirez, Austenite Reversion Kinetics and Stability during Tempering of a Ti-Stabilized Supermartensitic Stainless Steel: Correlative in Situ Synchrotron x-ray Diffraction and Dilatometry, Acta Mater., 2017, 138, p 92–99. https://doi.org/10.1016/j.actamat.2017.07.0369. O. Dmitrieva, D. Ponge, G. Inden, J. Milla´n, P. Choi, J. Sietsma and D. Raabe, Chemical Gradients Across Phase Boundaries between Martensite and Austenite in Steel Studied by Atom Probe Tomography and Simulation, Acta Mater., 2011, 59(1), p 364–37410. M.-M. Wang, C.C. Tasan, D. Ponge and D. Raabe, Spectral TRIP Enables Ductile 1.1 GPa Martensite, Acta Mater., 2016, 111, p 262– 272. https://doi.org/10.1016/j.actamat.2016.03.07011. M. Wang, C.C. Tasan, D. Ponge, A. Dippel and D. Raabe, ScienceDirect Nanolaminate Transformation-Induced Plasticity— Twinning-Induced Plasticity Steel with Dynamic Strain Partitioning and Enhanced Damage Resistance, Acta Mater., 2015, 85, p 216– 22812. D. Raabe, D. Ponge, O. Dmitrieva and B. Sander, Nanoprecipitate- Hardened 1.5 GPa Steels with Unexpected High Ductility, Scr. Mater., 2009, 60(12), p 1141–1144. https://doi.org/10.1016/j.scriptamat.2009. 02.06213. V.B. Dementyev, A.A. Sukhikh and T.M. Makhneva, On Problem of Increasing the Structural Strength of Maraging Steels, Inorg. Mater. Appl. Res., 2015, 6(4), p 343–34914. A.A. Sukhikh, V.B. Dement ev and T.M. Makhneva, Properties of Austenite in Maraging Steel, Solid State Phenom., 2018, 284, p 386– 391. https://doi.org/10.4028/www.scientific.net/SSP.284.38615. A.A. Sukhikh, T.M. Makhneva and V.B. Dement ev, Austenite in Nanostructured Maraging Steel, Inorg. Mater. Appl. Res., 2019, 10(4), p 966–97316. ASTM E1282-11, Standard Guide for Specifying the Chemical Compositions and Selecting Sampling Practices and Quantitative Analysis Methods for Metals, Ores, and Related Materials, ASTM International, West Conshohocken, PA, 2016. http://www.astm.org/cg i-bin/resolver.cgi?E1282-1117. ASTM B962-17, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes Principle, ASTM International, West Conshohocken, PA, 2017. htt p://www.astm.org/cgi-bin/resolver.cgi?B962-1718. A.R. Oliveira, J.A.A. Diaz, A.D.C. Nizes, A.L. Jardini and E.G. Del Conte, Investigation of Building Orientation and Aging on Strength- Stiffness Performance of Additively Manufactured Maraging Steel, J. Mater. Eng. Perform., 2021 https://doi.org/10.1007/s11665-020-0541 4-419. Y. Yao, Y. Huang, B. Chen, C. Tan, Y. Su and J. Feng, Influence of Processing Parameters and Heat Treatment on the Mechanical Properties of 18Ni300 Manufactured by Laser Based Directed Energy Deposition, Opt. Laser Technol., 2018, 105, p 171–17920. X. Yan, C. Huang, C. Chen, R. Bolot, L. Dembinski, R. Huang,W. Ma, H. Liao and M. Liu, Additive Manufacturing of WC Reinforced Maraging Steel 300 Composites by Cold Spraying and Selective Laser Melting, Surf. Coat. Technol., 2018 https://doi.org/10.1016/j.surfcoat. 2018.03.07221. N. Raju, S. Kim and D.W. Rosen, A Characterization Method for Mechanical Properties of Metal Powder Bed Fusion Parts, Int. J. Adv. Manuf. Technol., 2020, 108(4), p 1189–1201. https://doi.org/10.1007/ s00170-020-05298-722. S. Bodziak, K.S. Al-Rubaie, L.D. Valentina, F.H. Lafratta, E.C. Santos, A.M. Zanatta and Y. Chen, Precipitation in 300 Grade Maraging Steel Built by Selective Laser Melting: Aging at 510 C for 2 h, Mater. Charact., 2019, 151, p 73–83. https://doi.org/10.1016/j.matchar.2019. 02.03323. B. Mooney, K.I. Kourousis, R. Raghavendra and D. Agius, Process Phenomena Influencing the Tensile and Anisotropic Characteristics of Additively Manufactured Maraging Steel, Mater. Sci. Eng. A, 2019, 745, p 115–125. https://doi.org/10.1016/j.msea.2018.12.07024. F.F. Conde, J.D. Escobar, J.P. Oliveira, M. Be´resˇ, A.L. Jardini, W.W. Bose and J.A. Avila, Effect of Thermal Cycling and Aging Stages on the Microstructure and Bending Strength of a Selective Laser Melted 300-Grade Maraging Steel, Mater. Sci. Eng. A, 2019, 758, p 192–201. https://doi.org/10.1016/j.msea.2019.03.12925. K. Kempen, E. Yasa, L. Thijs, J.-P.P. Kruth and J. Van Humbeeck, Microstructure and Mechanical Properties of Selective Laser Melted 18Ni-300 Steel, Phys. Procedia, 2011, 12(PART 1), p 255–263. h ttps://doi.org/10.1016/j.phpro.2011.03.03326. ASTM E3-11, Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2017. http:// www.astm.org/cgi-bin/resolver.cgi?E3-1127. ASTM E8/E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016. http://www.astm.org/cgi-bin/resolver.cgi?E8E8M-16ae128. C. Tan, K. Zhou, W. Ma, P. Zhang, M. Liu and T. Kuang, Microstructural Evolution, Nanoprecipitation Behavior and Mechanical Properties of Selective Laser Melted High-Performance Grade 300 Maraging Steel, Mater. Des., 2017, 134, p 23–34. https://doi.org/10. 1016/j.matdes.2017.08.02629. S.A. Khairallah, A.T. Anderson, A. Rubenchik and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45. https://doi.org/10.1016/j.acta mat.2016.02.01430. U.K. Viswanathan, G.K. Dey and V. Sethumadhavan, Effects of Austenite Reversion during Overageing on the Mechanical Properties of 18 Ni (350) Maraging Steel, Mater. Sci. Eng., 2005, 398, p 367–37231. D. Raabe, S. Sandlo¨bes, J. Milla´n, D. Ponge, H. Assadi, M. Herbig and P.P. Choi, Segregation Engineering Enables Nanoscale Martensite to Austenite Phase Transformation at Grain Boundaries: A Pathway to Ductile Martensite, Acta Mater., 2013, 61(16), p 6132–615232. J.D. Escobar, G.A. Faria, E.L. Maia, J.P. Oliveira, T. Boll, S. Seils, P.R. Mei, and A.J. Ramirez, Fundamentals of Isothermal Austenite Reversion in a Ti-Stabilized 12cr-6 Ni-2 Mo Super Martensitic Stainless Steels: Thermodynamics Versus Experimental Assessments, Acta Mater., 201933. X. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki and T. Furuhara, Orientation of Austenite Reverted from Martensite in Fe 2Mn 1 5Si , Acta Mater., 2018, 144, p 601–61234. D. Raabe, D. Ponge, O. Dmitrieva and B. Sander, Designing Ultrahigh Strength Steels with Good Ductility by Combining Transformation Induced Plasticity and Martensite Aging, Adv. Eng. Mater., 2009, 11(7), p 547–555. https://doi.org/10.1002/adem.20090006135. M.-M. Wang, C.C. Tasan, D. Ponge, A.-C. Dippel and D. Raabe, Nanolaminate Transformation-Induced Plasticity–Twinning-Induced Plasticity Steel with Dynamic Strain Partitioning and Enhanced Damage Resistance, Acta Mater., 2015, 85, p 216–228. https://doi. org/10.1016/j.actamat.2014.11.01036. F. Niessen, Austenite Reversion in Low-Carbon Martensitic Stainless Steels-a CALPHAD-Assisted Review, Mater. Sci. Technol. (United Kingdom), 2018, 34(12), p 1401–141437. P. Scardi and M. Leoni, Whole Powder Pattern Modelling Research Papers, Acta Crystallogr. A, 2002, 58, p 190–20038. U.K. Viswanathan, T.R.G. Kutty and C. Ganguly, Dilatometric Technique for Evaluation of the Kinetics of Solid-State Transformation of Maraging Steel, Metall. Trans. A, 1993, 24(12), p 2653–265639. G. Casalino, S.L. Campanelli, N. Contuzzi and A.D. Ludovico, Experimental Investigation and Statistical Optimisation of the Selective Laser Melting Process of a Maraging Steel, Opt. Laser Technol., 2015, 65, p 151–15840. M.-M. Wang, C.C. Tasan, D. Ponge, A. Kostka and D. Raabe, Smaller Is Less Stable: Size Effects on Twinning vs, Transformation of Reverted Austenite in TRIP-Maraging Steels, Acta Mater., 2014, 79, p 268–28141. R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill, ‘‘Physical Metallurgy Principles,’’ Fourth Ed., Cengage Learning, 2009Comunidad generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/97d9c66c-d889-4db9-84cf-a73f3a8f4776/download20b5ba22b1117f71589c7318baa2c560MD5210614/13926oai:dspace7-uao.metacatalogo.com:10614/139262024-01-19 15:35:03.949https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados -Springer Nature, 2021metadata.onlyhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |