A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs

With the aim to study disc degeneration and the risk of injury during occupational activities, a new finite element (FE) model of the L4-L5-S1 segment of the human spine was developed based on the anthropometry of a typical Colombian worker. Beginning with medical images, the programs CATIA and SOLI...

Full description

Autores:
Jaramillo Suárez, Héctor Enrique
Gómez Salazar, Lessby
García Alvarez, José Jaime
Tipo de recurso:
Article of journal
Fecha de publicación:
2015
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/11562
Acceso en línea:
http://hdl.handle.net/10614/11562
http://www.actabio.pwr.wroc.pl/Vol17No2/2.pdf
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-5b9f437c-0395-4c03-95a3-db7722f12e80
Palabra clave:
Intervertebral disc
L4-L5-S1 segment
Finite element model
Human spine
Hyperelastic model
Columna vertebral
Spine
Canal espinal
Spinal canal
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_dc85112a3950f75494e3707bc744b833
oai_identifier_str oai:red.uao.edu.co:10614/11562
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs
title A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs
spellingShingle A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs
Intervertebral disc
L4-L5-S1 segment
Finite element model
Human spine
Hyperelastic model
Columna vertebral
Spine
Canal espinal
Spinal canal
title_short A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs
title_full A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs
title_fullStr A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs
title_full_unstemmed A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs
title_sort A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs
dc.creator.fl_str_mv Jaramillo Suárez, Héctor Enrique
Gómez Salazar, Lessby
García Alvarez, José Jaime
dc.contributor.author.none.fl_str_mv Jaramillo Suárez, Héctor Enrique
dc.contributor.author.spa.fl_str_mv Gómez Salazar, Lessby
García Alvarez, José Jaime
dc.subject.eng.fl_str_mv Intervertebral disc
L4-L5-S1 segment
Finite element model
Human spine
Hyperelastic model
topic Intervertebral disc
L4-L5-S1 segment
Finite element model
Human spine
Hyperelastic model
Columna vertebral
Spine
Canal espinal
Spinal canal
dc.subject.lemb.spa.fl_str_mv Columna vertebral
dc.subject.lemb.eng.fl_str_mv Spine
dc.subject.armarc.spa.fl_str_mv Canal espinal
dc.subject.armarc.eng.fl_str_mv Spinal canal
description With the aim to study disc degeneration and the risk of injury during occupational activities, a new finite element (FE) model of the L4-L5-S1 segment of the human spine was developed based on the anthropometry of a typical Colombian worker. Beginning with medical images, the programs CATIA and SOLIDWORKS were used to generate and assemble the vertebrae and create the soft structures of the segment. The software ABAQUS was used to run the analyses, which included a detailed model calibration using the experimental step-wise reduction data for the L4-L5 component, while the L5-S1 segment was calibrated in the intact condition. The range of motion curves, the intradiscal pressure and the lateral bulging under pure moments were considered for the calibration. As opposed to other FE models that include the L5-S1 disc, the model developed in this study considered the regional variations and anisotropy of the annulus as well as a realistic description of the nucleus geometry, which allowed an improved representation of experimental data during the validation process. Hence, the model can be used to analyze the stress and strain distributions in the L4-L5 and L5-S1 discs of workers performing activities such as lifting and carrying tasks
publishDate 2015
dc.date.issued.spa.fl_str_mv 2015
dc.date.accessioned.spa.fl_str_mv 2019-11-25T15:10:23Z
dc.date.available.spa.fl_str_mv 2019-11-25T15:10:23Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1509409X
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11562
http://www.actabio.pwr.wroc.pl/Vol17No2/2.pdf
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-5b9f437c-0395-4c03-95a3-db7722f12e80
dc.identifier.doi.spa.fl_str_mv 10.5277/ ABB-00046-2014-02
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital, UAO
identifier_str_mv 1509409X
10.5277/ ABB-00046-2014-02
Universidad Autónoma de Occidente
Repositorio Educativo Digital, UAO
url http://hdl.handle.net/10614/11562
http://www.actabio.pwr.wroc.pl/Vol17No2/2.pdf
https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-5b9f437c-0395-4c03-95a3-db7722f12e80
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv Acta of Bioengineering and Biomechanics. Volúmen 17, issue 2, páginas 15-24, (august, 2015)
dc.relation.citationendpage.spa.fl_str_mv 24
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 15
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.cites.eng.fl_str_mv Jaramillo, H., Gomez, L. E. S. S. B. Y., & Garcia, J. J. (2015). A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs. Acta of bioengineering and biomechanics, 17(2). 15-24. http://hdl.handle.net/10614/11562
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Institute of Machine Design and Operation
dc.publisher.place.eng.fl_str_mv Warszawa, Polonia
institution Universidad Autónoma de Occidente
dc.source.bibliographiccitation.spa.fl_str_mv ADAMS M.A., MCNALLY D.S., DOLAN P., “stress” Distributions Inside Intervertebral Discs the Effects of Age and Degeneration, J. Bone Joint. Surg. Br., 1996, 78-B, 965– 972.
AYTURK U.M., GARCIA J.J., PUTTLITZ C.M., The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine, J. Biomech. Eng., 2010, 132, 061007–061007.
BELLINI C.M., GALBUSERA F., RAIMONDI M.T., MINEO G.V., BRAYDA-BRUNO M., Biomechanics of the lumbar spine after dynamic stabilization, J. Spinal Disord. Tech., 2007, 20, 423–429.
BOGDUK N., Clinical Anatomy of the Lumbar Spine & Sacrum, 1995.
CORTES D.H., HAN W.M., SMITH L.J., ELLIOTT D.M., Mechanical properties of the extra-fibrillar matrix of human annulus fibrosus are location and age dependent, J. Orthop. Res., 2013, 31(11), 1725–1732.
DIAZ C.A., GARCÍA J.J., PUTTLITZ C., Influence of vertebra stiffness in the finite element analysis of the intervertebral disc, ASME, Fajarado, Puerto Rico, USA, 2012, 2.
EZQUERRO F., SIMÓN A., PRADO M., PÉREZ A., Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation, Med. Eng. Phys., 2004, 26, 11–22.
EZQUERRO F., VACAS F.G., POSTIGO S., PRADO M., SIMÓN A., Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution, Med. Eng. Phys., 2011, 33, 89–95.
EZQUERRO JUANCO F., SIMÓN MATA A., MELLADO ARJONA E., VILLANUEVA PAREJA F., Modelo de elementos finitos de la columna lumbar, Biomecánica. 1999, VII, 46–52.
GUAN Y., YOGANANDAN N., MOORE J., PINTAR F.A., ZHANG J., MAIMAN D.J. et al., Moment–rotation responses of the human lumbosacral spinal column, J. Biomech., 2007, 40, 1975–1980.
GUAN Y., YOGANANDAN N., ZHANG J., PINTAR F.A., CUSICK J.F., WOLFLA C.E. et al., Validation of a clinical finite element model of the human lumbosacral spine, Med. Bio. Eng. Comput., 2006, 44, 633–641.
HEUER F., SCHMIDT H., L. CLAES, WILKE H.-J., Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure, J. Biomech., 2007, 40, 795–803.
HEUER F., SCHMIDT H., KLEZL Z., CLAES L., WILKE H.-J., Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle, J. Biomech., 2007, 40, 271–280.
HEUER F., SCHMIDT H., WILKE H.-J., Stepwise reduction of functional spinal structures increase disc bulge and surface strains, J. Biomech., 2008, 41, 1953–1960.
JARAMILLO H.E., GARCÍA A., GÓMEZ L., ESCOBAR W., GARCÍA J.J., Procedimiento para generar mallas de elementos finitos de la columna vertebral humana a partir de imágenes médicas, Revista el Hombre y la Máquina, 2012, 40, 79–86.
MEIJER G.J.M., HOMMINGA J., HEKMAN E.E.G., VELDHUIZEN A.G., VERKERKE G.J., The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment, J. Biomech., 2010, 43, 1590–1597.
MORAMARCO V., PÉREZ DEL PALOMAR A., PAPPALETTERE C., DOBLARÉ M., An accurate validation of a computational model of a human lumbosacral segment, J. Biomech., 2010, 43, 334–342.
NOAILLY J., WILKE H.-J., PLANELL J.A., LACROIX D., How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process, J. Biomech., 2007, 40, 2414–2425.
NOAILLY J., Model Developments for In Silico Studies of the Lumbar Spine Biomechanics, Universidad Politecnica de Cataluña, Universidad Politecnica de Cataluña, España, 2009.
O’CONNELL G.D., GUERIN H.L., ELLIOTT D.M., Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration, J. Biomech. Eng., 2009, 131, 111007.
PANJABI M.M., OXLAND T.R., YAMAMOTO I., CRISCO J.J., Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves, J. Bone Joint. Surg., Series A, 1994, 76, 413–424.
SCHMIDT H., HEUER F., SIMON U., KETTLER A., ROHLMANN A., CLAES L. et al., Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus, Clin. Biomech., 2006, 21, 337– 344.
Seguro Social, Parámetros antropométricos de la población laboral Colombiana – 1995 Acopla 95, Seguro Social, Bogotá, 2002.
TYNDYK M.A., BARRON V., MCHUGH P.E., O’MAHONEY D., Generation of a finite element model of the thoracolumbar spine, Acta Bioeng. Biomech., 2007, 9, 35–46.
WANG J.L., PARNIANPOUR M., SHIRAZI-ADL A., ENGIN A.E., LI S., PATWARDHAN A., Development and validation of a viscoelastic finite element model of an L2/L3 motion segment, Theor. Appl. Fract. Mec., 1997, 28, 81–93
WEISSE B., AIYANGAR A.K., AFFOLTER C., GANDER R., TERRASI G.P., PLOEG H., Determination of the translational and rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model, J. Mech. Behav. Biomed. Mater, 2012, 13, 45–61.
WILKE H.-J., NEEF P., CAIMI M., HOOGLAND T., CLAES L.E., New in vivo measurements of pressures in the intervertebral disc in daily life, Spine, 1999, 24, 755–762.
WOLDTVEDT D.J., WOMACK W., GADOMSKI B.C., SCHULDT D., PUTTLITZ C.M., Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size, J. Biomech. Eng., 2011, 133(6), 061009
YOGANANDAN N., MYKLEBUST J.B., RAY G., PINTAR F., SANCES A., A non-linear finite element model of a spinal segment, Mathematical Modelling, 1987, 8, 617–622.
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/890ff7a7-28f4-43d8-be08-0dcfb1a5ecdf/download
https://red.uao.edu.co/bitstreams/cd0a0b75-08d2-4f4c-88f8-dbaf50458152/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260070992576512
spelling Jaramillo Suárez, Héctor Enriquevirtual::2367-1Gómez Salazar, Lessby662ff1d856c731d4fef7b919d0679402-1García Alvarez, José Jaimeb3742ec94e9fbf1f05363fdc30eac67a-12019-11-25T15:10:23Z2019-11-25T15:10:23Z20151509409Xhttp://hdl.handle.net/10614/11562http://www.actabio.pwr.wroc.pl/Vol17No2/2.pdfhttps://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-5b9f437c-0395-4c03-95a3-db7722f12e8010.5277/ ABB-00046-2014-02Universidad Autónoma de OccidenteRepositorio Educativo Digital, UAOWith the aim to study disc degeneration and the risk of injury during occupational activities, a new finite element (FE) model of the L4-L5-S1 segment of the human spine was developed based on the anthropometry of a typical Colombian worker. Beginning with medical images, the programs CATIA and SOLIDWORKS were used to generate and assemble the vertebrae and create the soft structures of the segment. The software ABAQUS was used to run the analyses, which included a detailed model calibration using the experimental step-wise reduction data for the L4-L5 component, while the L5-S1 segment was calibrated in the intact condition. The range of motion curves, the intradiscal pressure and the lateral bulging under pure moments were considered for the calibration. As opposed to other FE models that include the L5-S1 disc, the model developed in this study considered the regional variations and anisotropy of the annulus as well as a realistic description of the nucleus geometry, which allowed an improved representation of experimental data during the validation process. Hence, the model can be used to analyze the stress and strain distributions in the L4-L5 and L5-S1 discs of workers performing activities such as lifting and carrying tasksapplication/pdf10 páginasapplication/pdfspaInstitute of Machine Design and OperationWarszawa, PoloniaActa of Bioengineering and Biomechanics. Volúmen 17, issue 2, páginas 15-24, (august, 2015)2421517Jaramillo, H., Gomez, L. E. S. S. B. Y., & Garcia, J. J. (2015). A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs. Acta of bioengineering and biomechanics, 17(2). 15-24. http://hdl.handle.net/10614/11562Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Intervertebral discL4-L5-S1 segmentFinite element modelHuman spineHyperelastic modelColumna vertebralSpineCanal espinalSpinal canalA finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ADAMS M.A., MCNALLY D.S., DOLAN P., “stress” Distributions Inside Intervertebral Discs the Effects of Age and Degeneration, J. Bone Joint. Surg. Br., 1996, 78-B, 965– 972.AYTURK U.M., GARCIA J.J., PUTTLITZ C.M., The Micromechanical Role of the Annulus Fibrosus Components Under Physiological Loading of the Lumbar Spine, J. Biomech. Eng., 2010, 132, 061007–061007.BELLINI C.M., GALBUSERA F., RAIMONDI M.T., MINEO G.V., BRAYDA-BRUNO M., Biomechanics of the lumbar spine after dynamic stabilization, J. Spinal Disord. Tech., 2007, 20, 423–429.BOGDUK N., Clinical Anatomy of the Lumbar Spine & Sacrum, 1995.CORTES D.H., HAN W.M., SMITH L.J., ELLIOTT D.M., Mechanical properties of the extra-fibrillar matrix of human annulus fibrosus are location and age dependent, J. Orthop. Res., 2013, 31(11), 1725–1732.DIAZ C.A., GARCÍA J.J., PUTTLITZ C., Influence of vertebra stiffness in the finite element analysis of the intervertebral disc, ASME, Fajarado, Puerto Rico, USA, 2012, 2.EZQUERRO F., SIMÓN A., PRADO M., PÉREZ A., Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax–pelvis orientation, Med. Eng. Phys., 2004, 26, 11–22.EZQUERRO F., VACAS F.G., POSTIGO S., PRADO M., SIMÓN A., Calibration of the finite element model of a lumbar functional spinal unit using an optimization technique based on differential evolution, Med. Eng. Phys., 2011, 33, 89–95.EZQUERRO JUANCO F., SIMÓN MATA A., MELLADO ARJONA E., VILLANUEVA PAREJA F., Modelo de elementos finitos de la columna lumbar, Biomecánica. 1999, VII, 46–52.GUAN Y., YOGANANDAN N., MOORE J., PINTAR F.A., ZHANG J., MAIMAN D.J. et al., Moment–rotation responses of the human lumbosacral spinal column, J. Biomech., 2007, 40, 1975–1980.GUAN Y., YOGANANDAN N., ZHANG J., PINTAR F.A., CUSICK J.F., WOLFLA C.E. et al., Validation of a clinical finite element model of the human lumbosacral spine, Med. Bio. Eng. Comput., 2006, 44, 633–641.HEUER F., SCHMIDT H., L. CLAES, WILKE H.-J., Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure, J. Biomech., 2007, 40, 795–803.HEUER F., SCHMIDT H., KLEZL Z., CLAES L., WILKE H.-J., Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle, J. Biomech., 2007, 40, 271–280.HEUER F., SCHMIDT H., WILKE H.-J., Stepwise reduction of functional spinal structures increase disc bulge and surface strains, J. Biomech., 2008, 41, 1953–1960.JARAMILLO H.E., GARCÍA A., GÓMEZ L., ESCOBAR W., GARCÍA J.J., Procedimiento para generar mallas de elementos finitos de la columna vertebral humana a partir de imágenes médicas, Revista el Hombre y la Máquina, 2012, 40, 79–86.MEIJER G.J.M., HOMMINGA J., HEKMAN E.E.G., VELDHUIZEN A.G., VERKERKE G.J., The effect of three-dimensional geometrical changes during adolescent growth on the biomechanics of a spinal motion segment, J. Biomech., 2010, 43, 1590–1597.MORAMARCO V., PÉREZ DEL PALOMAR A., PAPPALETTERE C., DOBLARÉ M., An accurate validation of a computational model of a human lumbosacral segment, J. Biomech., 2010, 43, 334–342.NOAILLY J., WILKE H.-J., PLANELL J.A., LACROIX D., How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process, J. Biomech., 2007, 40, 2414–2425.NOAILLY J., Model Developments for In Silico Studies of the Lumbar Spine Biomechanics, Universidad Politecnica de Cataluña, Universidad Politecnica de Cataluña, España, 2009.O’CONNELL G.D., GUERIN H.L., ELLIOTT D.M., Theoretical and Uniaxial Experimental Evaluation of Human Annulus Fibrosus Degeneration, J. Biomech. Eng., 2009, 131, 111007.PANJABI M.M., OXLAND T.R., YAMAMOTO I., CRISCO J.J., Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves, J. Bone Joint. Surg., Series A, 1994, 76, 413–424.SCHMIDT H., HEUER F., SIMON U., KETTLER A., ROHLMANN A., CLAES L. et al., Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus, Clin. Biomech., 2006, 21, 337– 344.Seguro Social, Parámetros antropométricos de la población laboral Colombiana – 1995 Acopla 95, Seguro Social, Bogotá, 2002.TYNDYK M.A., BARRON V., MCHUGH P.E., O’MAHONEY D., Generation of a finite element model of the thoracolumbar spine, Acta Bioeng. Biomech., 2007, 9, 35–46.WANG J.L., PARNIANPOUR M., SHIRAZI-ADL A., ENGIN A.E., LI S., PATWARDHAN A., Development and validation of a viscoelastic finite element model of an L2/L3 motion segment, Theor. Appl. Fract. Mec., 1997, 28, 81–93WEISSE B., AIYANGAR A.K., AFFOLTER C., GANDER R., TERRASI G.P., PLOEG H., Determination of the translational and rotational stiffnesses of an L4-L5 functional spinal unit using a specimen-specific finite element model, J. Mech. Behav. Biomed. Mater, 2012, 13, 45–61.WILKE H.-J., NEEF P., CAIMI M., HOOGLAND T., CLAES L.E., New in vivo measurements of pressures in the intervertebral disc in daily life, Spine, 1999, 24, 755–762.WOLDTVEDT D.J., WOMACK W., GADOMSKI B.C., SCHULDT D., PUTTLITZ C.M., Finite element lumbar spine facet contact parameter predictions are affected by the cartilage thickness distribution and initial joint gap size, J. Biomech. Eng., 2011, 133(6), 061009YOGANANDAN N., MYKLEBUST J.B., RAY G., PINTAR F., SANCES A., A non-linear finite element model of a spinal segment, Mathematical Modelling, 1987, 8, 617–622.Publicationada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2367-1ada2f35e-57bd-4bbb-91d3-e197573bfab8virtual::2367-1https://scholar.google.com.co/citations?user=GEzrsjQAAAAJ&hl=esvirtual::2367-10000-0002-7324-9478virtual::2367-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144967virtual::2367-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/890ff7a7-28f4-43d8-be08-0dcfb1a5ecdf/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/cd0a0b75-08d2-4f4c-88f8-dbaf50458152/download20b5ba22b1117f71589c7318baa2c560MD5310614/11562oai:red.uao.edu.co:10614/115622024-04-18 10:55:51.55https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K