An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture

This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread...

Full description

Autores:
Cantillo-Luna, Sergio
Moreno-Chuquen, Ricardo
López Sotelo, Jesús Alfonso
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/15861
Acceso en línea:
https://hdl.handle.net/10614/15861
https://red.uao.edu.co/
Palabra clave:
Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
Rights
openAccess
License
Derechos reservados -MDPI, 2023
id REPOUAO2_d9a802e1f4db26b6370d0f455947f82a
oai_identifier_str oai:red.uao.edu.co:10614/15861
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
spellingShingle An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
title_short An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title_full An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title_fullStr An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title_full_unstemmed An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
title_sort An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture
dc.creator.fl_str_mv Cantillo-Luna, Sergio
Moreno-Chuquen, Ricardo
López Sotelo, Jesús Alfonso
dc.contributor.author.none.fl_str_mv Cantillo-Luna, Sergio
Moreno-Chuquen, Ricardo
López Sotelo, Jesús Alfonso
dc.subject.proposal.eng.fl_str_mv Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
topic Decision making
Deep learning
Electricity price forecasting (EPF)
Probabilistic forecasting
Time series forecasting
description This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-10-15T14:50:02Z
dc.date.available.none.fl_str_mv 2024-10-15T14:50:02Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv Cantillo-Luna, S.; Moreno-Chuquen, R.; Lopez-Sotelo, J.; Celeita, D. (2023). An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture. Energies. 16(19). https://doi.org/10.3390/en16196767
dc.identifier.issn.spa.fl_str_mv 19961073
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15861
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Cantillo-Luna, S.; Moreno-Chuquen, R.; Lopez-Sotelo, J.; Celeita, D. (2023). An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture. Energies. 16(19). https://doi.org/10.3390/en16196767
19961073
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15861
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationendpage.spa.fl_str_mv 24
dc.relation.citationissue.spa.fl_str_mv 19
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 16
dc.relation.ispartofjournal.spa.fl_str_mv Energies
dc.relation.references.none.fl_str_mv 1. Cantillo-Luna, S.; Moreno-Chuquen, R.; Lopez-Sotelo, J.A. Intra-day Electricity Price Forecasting Based on a Time2Vec-LSTM Neural Network Model. In Proceedings of the 2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), Bogota, Colombia, 26–28 July 2023; pp. 1–6.
2. Trivedi, R.; Patra, S.; Sidqi, Y.; Bowler, B.; Zimmermann, F.; Deconinck, G.; Papaemmanouil, A.; Khadem, S. Community-based microgrids: Literature review and pathways to decarbonise the local electricity network. Energies 2022, 15, 918. [CrossRef]
3. Cantillo-Luna, S.; Moreno-Chuquen, R.; Chamorro, H.R.; Sood, V.K.; Badsha, S.; Konstantinou, C. Blockchain for Distributed Energy Resources Management and Integration. IEEE Access 2022, 10, 68598–68617. [CrossRef]
4. Sridharan, V.; Tuo, M.; Li, X. Wholesale electricity price forecasting using integrated long-term recurrent convolutional network model. Energies 2022, 15, 7606. [CrossRef]
5. Burger, S.P.; Luke, M. Business models for distributed energy resources: A review and empirical analysis. Energy Policy 2017, 109, 230–248. [CrossRef]
6. Lu, X.; Qiu, J.; Lei, G.; Zhu, J. Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia. Appl. Energy 2022, 308, 118296. [CrossRef]
7. Zhou, S.; Zhou, L.; Mao, M.; Tai, H.M.; Wan, Y. An optimized heterogeneous structure LSTM network for electricity price forecasting. IEEE Access 2019, 7, 108161–108173. [CrossRef]
8. Jiang, L.; Hu, G. A Review on Short-Term Electricity Price Forecasting Techniques for Energy Markets. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018. [CrossRef]
9. Pourdaryaei, A.; Mokhlis, H.; Illias, H.A.; Kaboli, S.H.A.; Ahmad, S.; Ang, S.P. Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market. IEEE Access 2019, 7, 125369–125386. [CrossRef]
10. Zhao, X.; Li, Q.; Xue, W.; Zhao, Y.; Zhao, H.; Guo, S. Research on Ultra-Short-Term Load Forecasting Based on Real-Time Electricity Price andWindow-Based XGBoost Model. Energies 2022, 15, 7367. [CrossRef]
11. Lago, J.; De Ridder, F.; Vrancx, P.; De Schutter, B. Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. Appl. Energy 2018, 211, 890–903. [CrossRef]
12. Tan, Y.Q.; Shen, Y.X.; Yu, X.Y.; Lu, X. Day-ahead electricity price forecasting employing a novel hybrid frame of deep learning methods: A case study in NSW, Australia. Electr. Power Syst. Res. 2023, 220, 109300. [CrossRef]
13. Barrientos, J.; Rodas, E.; Velilla, E.; Lopera, M.; Villada, F. A model for forecasting electricity prices in Colombia. Lect. Econ. 2012, 91–127.
14. de Marcos, R.A.; Bello, A.; Reneses, J. Short-term forecasting of electricity prices with a computationally efficient hybrid approach. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; pp. 1–6.
15. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Columbia, MD, USA, 2018.
16. Skopal, R. Short-term hourly price forward curve prediction using neural network and hybrid ARIMA-NN model. In Proceedings of the 2015 International Conference on Information and Digital Technologies, Zilina, Slovakia, 7–9 July 2015. [CrossRef]
17. Liu, H.; Shi, J. Applying ARMA–GARCH approaches to forecasting short-term electricity prices. Energy Econ. 2013, 37, 152–166. [CrossRef]
18. Rajan, P.; Chandrakala, K.V. StatisticalModel Approach of Electricity Price Forecasting for Indian ElectricityMarket. In Proceedings of the 2021 IEEE Madras Section Conference (MASCON), Chennai, India, 27–28 August 2021. [CrossRef]
19. Bissing, D.; Klein, M.T.; Chinnathambi, R.A.; Selvaraj, D.F.; Ranganathan, P. A Hybrid Regression Model for Day-Ahead Energy Price Forecasting. IEEE Access 2019, 7, 36833–36842. [CrossRef]
20. Abunofal, M.; Poshiya, N.; Qussous, R.; Weidlich, A. Comparative Analysis of Electricity Market Prices Based on Different Forecasting Methods. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021. [CrossRef]
21. Banitalebi, B.; Hoque, M.E.; Appadoo, S.S.; Thavaneswaran, A. Regularized Probabilistic Forecasting of Electricity Wholesale Price and Demand. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020. [CrossRef]
22. Shikhina, A.; Kochengin, A.; Chrysostomou, G.; Shikhin, V. Investigation of autoregressive forecasting models for market electricity price. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference, Palermo, Italy, 16–18 June 2020. [CrossRef]
23. Wang, J.; Zhou, Y.; Li, Z. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. Appl. Energy 2022, 312, 118725. [CrossRef]
24. Chaâbane, N. A novel auto-regressive fractionally integrated moving average–least-squares support vector machine model for electricity spot prices prediction. J. Appl. Stat. 2014, 41, 635–651. [CrossRef]
25. Shrivastava, N.A.; Khosravi, A.; Panigrahi, B.K. Prediction interval estimation of electricity prices using PSO-tuned support vector machines. IEEE Trans. Ind. Inform. 2015, 11, 322–331. [CrossRef]
26. Ali, M.; Khan, Z.A.; Mujeeb, S.; Abbas, S.; Javaid, N. Short-term electricity price and load forecasting using enhanced support vector machine and K-nearest neighbor. In Proceedings of the 2019 Sixth HCT Information Technology Trends (ITT), Ras Al Khaimah, United Arab Emirates, 20–21 November 2019; pp. 79–83.
27. González, C.; Mira-McWilliams, J.; Juárez, I. Important variable assessment and electricity price forecasting based on regression tree models: Classification and regression trees, Bagging and Random Forests. IET Gener. Transm. Distrib. 2015, 9, 1120–1128. [CrossRef]
28. Pórtoles, J.; González, C.; Moguerza, J. Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach. Energies 2018, 11, 1588. [CrossRef]
29. Orenc, S.; Acar, E.; Ozerdem, M.S. The Electricity Price Prediction of Victoria City Based on Various Regression Algorithms. In Proceedings of the 2022 Global Energy Conference (GEC), Batman, Turkey, 26–29 October 2022. [CrossRef]
30. Ashfaq, T.; Javaid, N. Short-Term Electricity Load and Price Forecasting using Enhanced KNN. In Proceedings of the 2019 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 16–18 December 2019. [CrossRef]
31. Johannesen, N.J.; Kolhe, M.; Goodwin, M. Deregulated Electric Energy Price Forecasting in NordPool Market using Regression Techniques. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019. [CrossRef]
32. Khan, S.; Khan, Z.A.; Noshad, Z.; Javaid, S.; Javaid, N. Short Term Load and Price Forecasting using Tuned Parameters for K-Nearest Neighbors. In Proceedings of the 2019 Sixth HCT Information Technology Trends (ITT), Ras Al Khaimah, United Arab Emirates, 20–21 November 2019. [CrossRef]
33. Pavi´cevi´c, M.; Popovi´c, T. Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks. Sensors 2022, 22, 1051. [CrossRef]
34. Wang, D.; Luo, H.; Grunder, O.; Lin, Y.; Guo, H. Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. Appl. Energy 2017, 190, 390–407. [CrossRef]
35. Rafiei, M.; Niknam, T.; Khooban, M.H. Probabilistic forecasting of hourly electricity price by generalization of ELM for usage in improved wavelet neural network. IEEE Trans. Ind. Inform. 2016, 13, 71–79. [CrossRef]
36. Bunn, D.; Andresen, A.; Chen, D.;Westgaard, S. Analysis and forecasting of electricty price risks with quantile factor models. Energy J. 2016, 37, 1–32. [CrossRef]
37. Hagfors, L.I.; Bunn, D.; Kristoffersen, E.; Staver, T.T.; Westgaard, S. Modeling the UK electricity price distributions using quantile regression. Energy 2016, 102, 231–243. [CrossRef]
38. Uniejewski, B.;Weron, R. Regularized quantile regression averaging for probabilistic electricity price forecasting. Energy Econ. 2021, 95, 105121. [CrossRef]
39. Zhao, J.H.; Dong, Z.Y.; Li, X.;Wong, K.P. A framework for electricity price spike analysis with advanced data mining methods. IEEE Trans. Power Syst. 2007, 22, 376–385. [CrossRef]
40. Zhang, J.; Tan, Z.; Li, C. A novel hybrid forecasting method using GRNN combined with wavelet transform and a GARCH model. Energy Sources Part B Econ. Plan. Policy 2015, 10, 418–426. [CrossRef]
41. Akbilgic, O.; Bozdogan, H.; Balaban, M.E. A novel hybrid RBF neural networks model as a forecaster. Stat. Comput. 2014, 24, 365–375. [CrossRef]
42. Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [CrossRef]
43. Nazar, M.S.; Fard, A.E.; Heidari, A.; Shafie-khah, M.; Catalão, J.P. Hybrid model using three-stage algorithm for simultaneous load and price forecasting. Electr. Power Syst. Res. 2018, 165, 214–228. [CrossRef]
44. Grossi, L.; Nan, F. Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources. Technol. Forecast. Soc. Chang. 2019, 141, 305–318. [CrossRef]
45. Marcjasz, G.; Uniejewski, B.;Weron, R. On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks. Int. J. Forecast. 2019, 35, 1520–1532.
46. Alkawaz, A.N.; Abdellatif, A.; Kanesan, J.; Khairuddin, A.S.M.; Gheni, H.M. Day-Ahead Electricity Price Forecasting Based on Hybrid Regression Model. IEEE Access 2022, 10, 108021–108033. [CrossRef]
47. Imani, M.H.; Bompard, E.; Colella, P.; Huang, T. Predictive methods of electricity price: An application to the Italian electricity market. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC), Madrid, Spain, 9–12 June 2020. [CrossRef]
48. Shah, I.; Bibi, H.; Ali, S.; Wang, L.; Yue, Z. Forecasting One-Day-Ahead Electricity Prices for Italian Electricity Market Using Parametric and Nonparametric Approaches. IEEE Access 2020, 8, 123104–123113. [CrossRef]
49. Mubarak, H.; Ahmad, S.; Hossain, A.A.; Horan, B.; Abdellatif, A.; Mekhilef, S.; Seyedmahmoudian, M.; Stojcevski, A.; Mokhlis, H.; Kanesan, J.; et al. Short-term Electricity Price Forecasting Using Interpretable Hybrid Machine Learning Models. In Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), Male, Maldives, 11–12 March 2023. [CrossRef]
50. Pugliese, R.; Regondi, S.; Marini, R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Sci. Manag. 2021, 4, 19–29.
51. Li,W.; Becker, D.M. Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling. Energy 2021, 237, 121543.
52. Khan, Z.A.; Fareed, S.; Anwar, M.; Naeem, A.; Gul, H.; Arif, A.; Javaid, N. Short term electricity price forecasting through convolutional neural network (CNN). In Web, Artificial Intelligence and Network Applications: Proceedings of the Workshops of the 34th International Conference on Advanced Information Networking and Applications (WAINA-2020), Caserta, Italy, 15–17 April 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1181–1188.
53. Zhang, B.; Song, C.; Jiang, X.; Li, Y. Electricity price forecast based on the STL-TCN-NBEATS model. Heliyon 2023, 9, e13029. [CrossRef]
54. Ugurlu, U.; Oksuz, I.; Tas, O. Electricity price forecasting using recurrent neural networks. Energies 2018, 11, 1255. [CrossRef]
55. Li, Y.; Zhu, Z.; Kong, D.; Han, H.; Zhao, Y. EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowl.-Based Syst. 2019, 181, 104785. [CrossRef]
56. Memarzadeh, G.; Keynia, F. Short-term electricity load and price forecasting by a new optimal LSTM-NN based prediction algorithm. Electr. Power Syst. Res. 2021, 192, 106995.
57. Chitalia, G.; Pipattanasomporn, M.; Garg, V.; Rahman, S. Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks. Appl. Energy 2020, 278, 115410.
58. Miletic, M.; Pavic, I.; Pandzic, H.; Capuder, T. Day-ahead Electricity Price Forecasting Using LSTM Networks. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 5–8 July 2022. [CrossRef]
59. Demir, S.; Mincev, K.; Kok, K.; Paterakis, N.G. Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting. Appl. Energy 2021, 304, 117695. [CrossRef]
60. Hanif, M.; Shahzad, M.K.; Mehmood, V.; Saleem, I. EPFG: Electricity Price Forecasting with Enhanced GANS Neural Network. IETE J. Res. 2022, 1–10. [CrossRef]
61. Brusaferri, A.; Matteucci, M.; Portolani, P.; Vitali, A. Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices. Appl. Energy 2019, 250, 1158–1175.
62. van der Heijden, T.; Palensky, P.; van de Giesen, N.; Abraham, E. Day Ahead Market price scenario generation using a Combined Quantile Regression Deep Neural Network and a Non-parametric Bayesian Network. In Proceedings of the 2022 IEEE International Conference on Power Systems Technology (POWERCON), Kuala Lumpur, Malaysia, 12–14 September 2022; pp. 1–5.
63. Zhang, J.; Tan, Z.;Wei, Y. An adaptive hybrid model for short term electricity price forecasting. Appl. Energy 2020, 258, 114087.
64. Abdellatif, A.; Mubarak, H.; Ahmad, S.; Mekhilef, S.; Abdellatef, H.; Mokhlis, H.; Kanesan, J. Electricity Price Forecasting One Day Ahead by Employing Hybrid Deep Learning Model. In Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), Male, Maldives, 11–12 March 2023. [CrossRef]
65. Zhang, F.; Fleyeh, H.; Bales, C. A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting. J. Oper. Res. Soc. 2022, 73, 301–325.
66. Meng, A.; Wang, P.; Zhai, G.; Zeng, C.; Chen, S.; Yang, X.; Yin, H. Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization. Energy 2022, 254, 124212.
67. Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long short-term memory. Energy 2022, 238, 121756.
68. Zhang, R.; Li, G.; Ma, Z. A deep learning based hybrid framework for day-ahead electricity price forecasting. IEEE Access 2020, 8, 143423–143436. [CrossRef]
69. Cantillo-Luna, S.; Moreno-Chuquen, R.; Celeita, D.; Anders, G. Deep and Machine Learning Models to Forecast Photovoltaic Power Generation. Energies 2023, 16, 4097.
70. Kazemi, S.M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota, J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; Brubaker, M. Time2vec: Learning a vector representation of time. arXiv 2019, arXiv:1907.05321.
71. Shen, Y.; Jiang, X.; Wang, Y.; Jin, X.; Cheng, X. Dynamic relation extraction with a learnable temporal encoding method. In Proceedings of the 2020 IEEE International Conference on Knowledge Graph (ICKG), Nanjing, China, 9–11 August 2020; pp. 235–242.
72. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.
73. Su, H.; Peng, X.; Liu, H.; Quan, H.;Wu, K.; Chen, Z. Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network. Mathematics 2022, 10, 2366. [CrossRef]
74. XM Colombia. Portal de Variables del Mercado eléCtrico Colombiano SINERGOX. Available online: https://sinergox.xm.com. co/trpr/Paginas/Historicos/Historicos.aspx (accessed on 15 March 2023).
75. Albahli, S.; Shiraz, M.; Ayub, N. Electricity price forecasting for cloud computing using an enhanced machine learning model. IEEE Access 2020, 8, 200971–200981. [CrossRef]
76. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
77. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 20 April 2023).
78. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017.
79. Seabold, S.; Perktold, J. statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010.
80. Bello-Rodríguez, S.P.; Beltrán-Ahumada, R.B. Caracterización y pronóstico del precio spot de la energía eléctrica en Colombia. Rev. Maest. En Derecho Económico 2010, 6, 293–316.
81. Marín, J.B.; Orozco, E.T.; Velilla, E. Forecasting electricity price in Colombia: A comparison between neural network, ARMA process and hybrid models. Int. J. Energy Econ. Policy 2018, 8, 97.
82. Urbano Buriticá, S.N.; González Pérez, L.F. Proyección de Corto Plazo para el Precio de Bolsa de Energía en el Mercado Colombiano. Universidad de los Andes. 2022. Available online: http://hdl.handle.net/1992/63441 (accesed on 6 April 2023).
83. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
84. Cerliani, M. Keras-Hypetune. 2023. Available online: https://github.com/cerlymarco/keras-hypetune (accessed on 12 April 2023)
dc.rights.spa.fl_str_mv Derechos reservados -MDPI, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados -MDPI, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 24 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.eng.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/14cdacbe-3f8f-4cdf-afb4-9782233d8f0e/download
https://red.uao.edu.co/bitstreams/b15fb3a7-853f-4090-81b8-5975c610d89f/download
https://red.uao.edu.co/bitstreams/284ac3af-f900-4200-bc9d-e7cdc5054056/download
https://red.uao.edu.co/bitstreams/63af79d2-27bb-4a9c-84b8-13fdc60cd05c/download
bitstream.checksum.fl_str_mv 1b755b5c2ad8bcda401e7e7ba771f714
6987b791264a2b5525252450f99b10d1
ede4b5769b654bc8b41c5e4a0da000c4
cc1ae123ed7a720d6d8e760774940769
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259818812145664
spelling Cantillo-Luna, SergioMoreno-Chuquen, RicardoLópez Sotelo, Jesús Alfonsovirtual::5727-12024-10-15T14:50:02Z2024-10-15T14:50:02Z2023Cantillo-Luna, S.; Moreno-Chuquen, R.; Lopez-Sotelo, J.; Celeita, D. (2023). An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture. Energies. 16(19). https://doi.org/10.3390/en1619676719961073https://hdl.handle.net/10614/15861Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/This paper describes the development of a deep neural network architecture based on transformer encoder blocks and Time2Vec layers for the prediction of electricity prices several steps ahead (8 h), from a probabilistic approach, to feed future decision-making tools in the context of the widespread use of intra-day DERs and new market perspectives. The proposed model was tested with hourly wholesale electricity price data from Colombia, and the results were compared with different state-of-the-art forecasting baseline-tuned models such as Holt–Winters, XGBoost, Stacked LSTM, and Attention-LSTM. The findings show that the proposed model outperforms these baselines by effectively incorporating nonlinearity and explicitly modeling the underlying data’s behavior, all of this under four operating scenarios and different performance metrics. This allows it to handle high-, medium-, and low-variability scenarios while maintaining the accuracy and reliability of its predictions. The proposed framework shows potential for significantly improving the accuracy of electricity price forecasts, which can have significant benefits for making informed decisions in the energy sector24 páginasapplication/pdfspaMDPIBasel, SwitzerlandDerechos reservados -MDPI, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network ArchitectureArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a852419116Energies1. Cantillo-Luna, S.; Moreno-Chuquen, R.; Lopez-Sotelo, J.A. Intra-day Electricity Price Forecasting Based on a Time2Vec-LSTM Neural Network Model. In Proceedings of the 2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI), Bogota, Colombia, 26–28 July 2023; pp. 1–6.2. Trivedi, R.; Patra, S.; Sidqi, Y.; Bowler, B.; Zimmermann, F.; Deconinck, G.; Papaemmanouil, A.; Khadem, S. Community-based microgrids: Literature review and pathways to decarbonise the local electricity network. Energies 2022, 15, 918. [CrossRef]3. Cantillo-Luna, S.; Moreno-Chuquen, R.; Chamorro, H.R.; Sood, V.K.; Badsha, S.; Konstantinou, C. Blockchain for Distributed Energy Resources Management and Integration. IEEE Access 2022, 10, 68598–68617. [CrossRef]4. Sridharan, V.; Tuo, M.; Li, X. Wholesale electricity price forecasting using integrated long-term recurrent convolutional network model. Energies 2022, 15, 7606. [CrossRef]5. Burger, S.P.; Luke, M. Business models for distributed energy resources: A review and empirical analysis. Energy Policy 2017, 109, 230–248. [CrossRef]6. Lu, X.; Qiu, J.; Lei, G.; Zhu, J. Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia. Appl. Energy 2022, 308, 118296. [CrossRef]7. Zhou, S.; Zhou, L.; Mao, M.; Tai, H.M.; Wan, Y. An optimized heterogeneous structure LSTM network for electricity price forecasting. IEEE Access 2019, 7, 108161–108173. [CrossRef]8. Jiang, L.; Hu, G. A Review on Short-Term Electricity Price Forecasting Techniques for Energy Markets. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018. [CrossRef]9. Pourdaryaei, A.; Mokhlis, H.; Illias, H.A.; Kaboli, S.H.A.; Ahmad, S.; Ang, S.P. Hybrid ANN and Artificial Cooperative Search Algorithm to Forecast Short-Term Electricity Price in De-Regulated Electricity Market. IEEE Access 2019, 7, 125369–125386. [CrossRef]10. Zhao, X.; Li, Q.; Xue, W.; Zhao, Y.; Zhao, H.; Guo, S. Research on Ultra-Short-Term Load Forecasting Based on Real-Time Electricity Price andWindow-Based XGBoost Model. Energies 2022, 15, 7367. [CrossRef]11. Lago, J.; De Ridder, F.; Vrancx, P.; De Schutter, B. Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. Appl. Energy 2018, 211, 890–903. [CrossRef]12. Tan, Y.Q.; Shen, Y.X.; Yu, X.Y.; Lu, X. Day-ahead electricity price forecasting employing a novel hybrid frame of deep learning methods: A case study in NSW, Australia. Electr. Power Syst. Res. 2023, 220, 109300. [CrossRef]13. Barrientos, J.; Rodas, E.; Velilla, E.; Lopera, M.; Villada, F. A model for forecasting electricity prices in Colombia. Lect. Econ. 2012, 91–127.14. de Marcos, R.A.; Bello, A.; Reneses, J. Short-term forecasting of electricity prices with a computationally efficient hybrid approach. In Proceedings of the 2017 14th International Conference on the European Energy Market (EEM), Dresden, Germany, 6–9 June 2017; pp. 1–6.15. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Columbia, MD, USA, 2018.16. Skopal, R. Short-term hourly price forward curve prediction using neural network and hybrid ARIMA-NN model. In Proceedings of the 2015 International Conference on Information and Digital Technologies, Zilina, Slovakia, 7–9 July 2015. [CrossRef]17. Liu, H.; Shi, J. Applying ARMA–GARCH approaches to forecasting short-term electricity prices. Energy Econ. 2013, 37, 152–166. [CrossRef]18. Rajan, P.; Chandrakala, K.V. StatisticalModel Approach of Electricity Price Forecasting for Indian ElectricityMarket. In Proceedings of the 2021 IEEE Madras Section Conference (MASCON), Chennai, India, 27–28 August 2021. [CrossRef]19. Bissing, D.; Klein, M.T.; Chinnathambi, R.A.; Selvaraj, D.F.; Ranganathan, P. A Hybrid Regression Model for Day-Ahead Energy Price Forecasting. IEEE Access 2019, 7, 36833–36842. [CrossRef]20. Abunofal, M.; Poshiya, N.; Qussous, R.; Weidlich, A. Comparative Analysis of Electricity Market Prices Based on Different Forecasting Methods. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021. [CrossRef]21. Banitalebi, B.; Hoque, M.E.; Appadoo, S.S.; Thavaneswaran, A. Regularized Probabilistic Forecasting of Electricity Wholesale Price and Demand. In Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020. [CrossRef]22. Shikhina, A.; Kochengin, A.; Chrysostomou, G.; Shikhin, V. Investigation of autoregressive forecasting models for market electricity price. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference, Palermo, Italy, 16–18 June 2020. [CrossRef]23. Wang, J.; Zhou, Y.; Li, Z. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. Appl. Energy 2022, 312, 118725. [CrossRef]24. Chaâbane, N. A novel auto-regressive fractionally integrated moving average–least-squares support vector machine model for electricity spot prices prediction. J. Appl. Stat. 2014, 41, 635–651. [CrossRef]25. Shrivastava, N.A.; Khosravi, A.; Panigrahi, B.K. Prediction interval estimation of electricity prices using PSO-tuned support vector machines. IEEE Trans. Ind. Inform. 2015, 11, 322–331. [CrossRef]26. Ali, M.; Khan, Z.A.; Mujeeb, S.; Abbas, S.; Javaid, N. Short-term electricity price and load forecasting using enhanced support vector machine and K-nearest neighbor. In Proceedings of the 2019 Sixth HCT Information Technology Trends (ITT), Ras Al Khaimah, United Arab Emirates, 20–21 November 2019; pp. 79–83.27. González, C.; Mira-McWilliams, J.; Juárez, I. Important variable assessment and electricity price forecasting based on regression tree models: Classification and regression trees, Bagging and Random Forests. IET Gener. Transm. Distrib. 2015, 9, 1120–1128. [CrossRef]28. Pórtoles, J.; González, C.; Moguerza, J. Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach. Energies 2018, 11, 1588. [CrossRef]29. Orenc, S.; Acar, E.; Ozerdem, M.S. The Electricity Price Prediction of Victoria City Based on Various Regression Algorithms. In Proceedings of the 2022 Global Energy Conference (GEC), Batman, Turkey, 26–29 October 2022. [CrossRef]30. Ashfaq, T.; Javaid, N. Short-Term Electricity Load and Price Forecasting using Enhanced KNN. In Proceedings of the 2019 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 16–18 December 2019. [CrossRef]31. Johannesen, N.J.; Kolhe, M.; Goodwin, M. Deregulated Electric Energy Price Forecasting in NordPool Market using Regression Techniques. In Proceedings of the 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 21–23 November 2019. [CrossRef]32. Khan, S.; Khan, Z.A.; Noshad, Z.; Javaid, S.; Javaid, N. Short Term Load and Price Forecasting using Tuned Parameters for K-Nearest Neighbors. In Proceedings of the 2019 Sixth HCT Information Technology Trends (ITT), Ras Al Khaimah, United Arab Emirates, 20–21 November 2019. [CrossRef]33. Pavi´cevi´c, M.; Popovi´c, T. Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks. Sensors 2022, 22, 1051. [CrossRef]34. Wang, D.; Luo, H.; Grunder, O.; Lin, Y.; Guo, H. Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. Appl. Energy 2017, 190, 390–407. [CrossRef]35. Rafiei, M.; Niknam, T.; Khooban, M.H. Probabilistic forecasting of hourly electricity price by generalization of ELM for usage in improved wavelet neural network. IEEE Trans. Ind. Inform. 2016, 13, 71–79. [CrossRef]36. Bunn, D.; Andresen, A.; Chen, D.;Westgaard, S. Analysis and forecasting of electricty price risks with quantile factor models. Energy J. 2016, 37, 1–32. [CrossRef]37. Hagfors, L.I.; Bunn, D.; Kristoffersen, E.; Staver, T.T.; Westgaard, S. Modeling the UK electricity price distributions using quantile regression. Energy 2016, 102, 231–243. [CrossRef]38. Uniejewski, B.;Weron, R. Regularized quantile regression averaging for probabilistic electricity price forecasting. Energy Econ. 2021, 95, 105121. [CrossRef]39. Zhao, J.H.; Dong, Z.Y.; Li, X.;Wong, K.P. A framework for electricity price spike analysis with advanced data mining methods. IEEE Trans. Power Syst. 2007, 22, 376–385. [CrossRef]40. Zhang, J.; Tan, Z.; Li, C. A novel hybrid forecasting method using GRNN combined with wavelet transform and a GARCH model. Energy Sources Part B Econ. Plan. Policy 2015, 10, 418–426. [CrossRef]41. Akbilgic, O.; Bozdogan, H.; Balaban, M.E. A novel hybrid RBF neural networks model as a forecaster. Stat. Comput. 2014, 24, 365–375. [CrossRef]42. Yang, Z.; Ce, L.; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Appl. Energy 2017, 190, 291–305. [CrossRef]43. Nazar, M.S.; Fard, A.E.; Heidari, A.; Shafie-khah, M.; Catalão, J.P. Hybrid model using three-stage algorithm for simultaneous load and price forecasting. Electr. Power Syst. Res. 2018, 165, 214–228. [CrossRef]44. Grossi, L.; Nan, F. Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources. Technol. Forecast. Soc. Chang. 2019, 141, 305–318. [CrossRef]45. Marcjasz, G.; Uniejewski, B.;Weron, R. On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks. Int. J. Forecast. 2019, 35, 1520–1532.46. Alkawaz, A.N.; Abdellatif, A.; Kanesan, J.; Khairuddin, A.S.M.; Gheni, H.M. Day-Ahead Electricity Price Forecasting Based on Hybrid Regression Model. IEEE Access 2022, 10, 108021–108033. [CrossRef]47. Imani, M.H.; Bompard, E.; Colella, P.; Huang, T. Predictive methods of electricity price: An application to the Italian electricity market. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC), Madrid, Spain, 9–12 June 2020. [CrossRef]48. Shah, I.; Bibi, H.; Ali, S.; Wang, L.; Yue, Z. Forecasting One-Day-Ahead Electricity Prices for Italian Electricity Market Using Parametric and Nonparametric Approaches. IEEE Access 2020, 8, 123104–123113. [CrossRef]49. Mubarak, H.; Ahmad, S.; Hossain, A.A.; Horan, B.; Abdellatif, A.; Mekhilef, S.; Seyedmahmoudian, M.; Stojcevski, A.; Mokhlis, H.; Kanesan, J.; et al. Short-term Electricity Price Forecasting Using Interpretable Hybrid Machine Learning Models. In Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), Male, Maldives, 11–12 March 2023. [CrossRef]50. Pugliese, R.; Regondi, S.; Marini, R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Sci. Manag. 2021, 4, 19–29.51. Li,W.; Becker, D.M. Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling. Energy 2021, 237, 121543.52. Khan, Z.A.; Fareed, S.; Anwar, M.; Naeem, A.; Gul, H.; Arif, A.; Javaid, N. Short term electricity price forecasting through convolutional neural network (CNN). In Web, Artificial Intelligence and Network Applications: Proceedings of the Workshops of the 34th International Conference on Advanced Information Networking and Applications (WAINA-2020), Caserta, Italy, 15–17 April 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1181–1188.53. Zhang, B.; Song, C.; Jiang, X.; Li, Y. Electricity price forecast based on the STL-TCN-NBEATS model. Heliyon 2023, 9, e13029. [CrossRef]54. Ugurlu, U.; Oksuz, I.; Tas, O. Electricity price forecasting using recurrent neural networks. Energies 2018, 11, 1255. [CrossRef]55. Li, Y.; Zhu, Z.; Kong, D.; Han, H.; Zhao, Y. EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowl.-Based Syst. 2019, 181, 104785. [CrossRef]56. Memarzadeh, G.; Keynia, F. Short-term electricity load and price forecasting by a new optimal LSTM-NN based prediction algorithm. Electr. Power Syst. Res. 2021, 192, 106995.57. Chitalia, G.; Pipattanasomporn, M.; Garg, V.; Rahman, S. Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks. Appl. Energy 2020, 278, 115410.58. Miletic, M.; Pavic, I.; Pandzic, H.; Capuder, T. Day-ahead Electricity Price Forecasting Using LSTM Networks. In Proceedings of the 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 5–8 July 2022. [CrossRef]59. Demir, S.; Mincev, K.; Kok, K.; Paterakis, N.G. Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting. Appl. Energy 2021, 304, 117695. [CrossRef]60. Hanif, M.; Shahzad, M.K.; Mehmood, V.; Saleem, I. EPFG: Electricity Price Forecasting with Enhanced GANS Neural Network. IETE J. Res. 2022, 1–10. [CrossRef]61. Brusaferri, A.; Matteucci, M.; Portolani, P.; Vitali, A. Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices. Appl. Energy 2019, 250, 1158–1175.62. van der Heijden, T.; Palensky, P.; van de Giesen, N.; Abraham, E. Day Ahead Market price scenario generation using a Combined Quantile Regression Deep Neural Network and a Non-parametric Bayesian Network. In Proceedings of the 2022 IEEE International Conference on Power Systems Technology (POWERCON), Kuala Lumpur, Malaysia, 12–14 September 2022; pp. 1–5.63. Zhang, J.; Tan, Z.;Wei, Y. An adaptive hybrid model for short term electricity price forecasting. Appl. Energy 2020, 258, 114087.64. Abdellatif, A.; Mubarak, H.; Ahmad, S.; Mekhilef, S.; Abdellatef, H.; Mokhlis, H.; Kanesan, J. Electricity Price Forecasting One Day Ahead by Employing Hybrid Deep Learning Model. In Proceedings of the 2023 IEEE IAS Global Conference on Renewable Energy and Hydrogen Technologies (GlobConHT), Male, Maldives, 11–12 March 2023. [CrossRef]65. Zhang, F.; Fleyeh, H.; Bales, C. A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting. J. Oper. Res. Soc. 2022, 73, 301–325.66. Meng, A.; Wang, P.; Zhai, G.; Zeng, C.; Chen, S.; Yang, X.; Yin, H. Electricity price forecasting with high penetration of renewable energy using attention-based LSTM network trained by crisscross optimization. Energy 2022, 254, 124212.67. Peng, L.; Wang, L.; Xia, D.; Gao, Q. Effective energy consumption forecasting using empirical wavelet transform and long short-term memory. Energy 2022, 238, 121756.68. Zhang, R.; Li, G.; Ma, Z. A deep learning based hybrid framework for day-ahead electricity price forecasting. IEEE Access 2020, 8, 143423–143436. [CrossRef]69. Cantillo-Luna, S.; Moreno-Chuquen, R.; Celeita, D.; Anders, G. Deep and Machine Learning Models to Forecast Photovoltaic Power Generation. Energies 2023, 16, 4097.70. Kazemi, S.M.; Goel, R.; Eghbali, S.; Ramanan, J.; Sahota, J.; Thakur, S.; Wu, S.; Smyth, C.; Poupart, P.; Brubaker, M. Time2vec: Learning a vector representation of time. arXiv 2019, arXiv:1907.05321.71. Shen, Y.; Jiang, X.; Wang, Y.; Jin, X.; Cheng, X. Dynamic relation extraction with a learnable temporal encoding method. In Proceedings of the 2020 IEEE International Conference on Knowledge Graph (ICKG), Nanjing, China, 9–11 August 2020; pp. 235–242.72. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 1–11.73. Su, H.; Peng, X.; Liu, H.; Quan, H.;Wu, K.; Chen, Z. Multi-Step-Ahead Electricity Price Forecasting Based on Temporal Graph Convolutional Network. Mathematics 2022, 10, 2366. [CrossRef]74. XM Colombia. Portal de Variables del Mercado eléCtrico Colombiano SINERGOX. Available online: https://sinergox.xm.com. co/trpr/Paginas/Historicos/Historicos.aspx (accessed on 15 March 2023).75. Albahli, S.; Shiraz, M.; Ayub, N. Electricity price forecasting for cloud computing using an enhanced machine learning model. IEEE Access 2020, 8, 200971–200981. [CrossRef]76. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.77. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 20 April 2023).78. Gulli, A.; Pal, S. Deep Learning with Keras; Packt Publishing Ltd.: Birmingham, UK, 2017.79. Seabold, S.; Perktold, J. statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010.80. Bello-Rodríguez, S.P.; Beltrán-Ahumada, R.B. Caracterización y pronóstico del precio spot de la energía eléctrica en Colombia. Rev. Maest. En Derecho Económico 2010, 6, 293–316.81. Marín, J.B.; Orozco, E.T.; Velilla, E. Forecasting electricity price in Colombia: A comparison between neural network, ARMA process and hybrid models. Int. J. Energy Econ. Policy 2018, 8, 97.82. Urbano Buriticá, S.N.; González Pérez, L.F. Proyección de Corto Plazo para el Precio de Bolsa de Energía en el Mercado Colombiano. Universidad de los Andes. 2022. Available online: http://hdl.handle.net/1992/63441 (accesed on 6 April 2023).83. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.84. Cerliani, M. Keras-Hypetune. 2023. Available online: https://github.com/cerlymarco/keras-hypetune (accessed on 12 April 2023)Decision makingDeep learningElectricity price forecasting (EPF)Probabilistic forecastingTime series forecastingComunidad generalPublicationfc227fb1-22ec-47f0-afe7-521c61fddd32virtual::5727-1fc227fb1-22ec-47f0-afe7-521c61fddd32virtual::5727-1https://scholar.google.com.au/citations?user=7PIjh_MAAAAJ&hl=envirtual::5727-10000-0002-9731-8458virtual::5727-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000249106virtual::5727-1ORIGINALAn_Intra-Day_Electricity_Price_Forecasting_Based_on_a_Probabilistic_Transformer_Neural_Network_Architecture.pdfAn_Intra-Day_Electricity_Price_Forecasting_Based_on_a_Probabilistic_Transformer_Neural_Network_Architecture.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf3025208https://red.uao.edu.co/bitstreams/14cdacbe-3f8f-4cdf-afb4-9782233d8f0e/download1b755b5c2ad8bcda401e7e7ba771f714MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/b15fb3a7-853f-4090-81b8-5975c610d89f/download6987b791264a2b5525252450f99b10d1MD52TEXTAn_Intra-Day_Electricity_Price_Forecasting_Based_on_a_Probabilistic_Transformer_Neural_Network_Architecture.pdf.txtAn_Intra-Day_Electricity_Price_Forecasting_Based_on_a_Probabilistic_Transformer_Neural_Network_Architecture.pdf.txtExtracted texttext/plain82033https://red.uao.edu.co/bitstreams/284ac3af-f900-4200-bc9d-e7cdc5054056/downloadede4b5769b654bc8b41c5e4a0da000c4MD53THUMBNAILAn_Intra-Day_Electricity_Price_Forecasting_Based_on_a_Probabilistic_Transformer_Neural_Network_Architecture.pdf.jpgAn_Intra-Day_Electricity_Price_Forecasting_Based_on_a_Probabilistic_Transformer_Neural_Network_Architecture.pdf.jpgGenerated Thumbnailimage/jpeg15495https://red.uao.edu.co/bitstreams/63af79d2-27bb-4a9c-84b8-13fdc60cd05c/downloadcc1ae123ed7a720d6d8e760774940769MD5410614/15861oai:red.uao.edu.co:10614/158612024-10-16 03:00:41.968https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados -MDPI, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==