Thermal and mechanical behavior of biocomposites using additive manufacturing

Research on additive manufacturing (AM) has gained significant attention in recent years. In this study, two different matrices of polypropylene and polylactic acid materials filled with three different percentages of wood flour were employed; namely 10, 20, and 30%. Biocomposite filaments (develope...

Full description

Autores:
Rojas Arciniegas, Álvaro José
Hidalgo Salazar, Miguel Ángel
Montalvo Navarrete, Jorge Ivan
Escobar Nuñez, Emerson
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11178
Acceso en línea:
http://hdl.handle.net/10614/11178
https://doi.org/10.1007/s12008-017-0411-2
Palabra clave:
Materiales - Propiedades mecánicas
Material - Mechanical properties
Additive manufacturing
Biocomposites
Wood flour
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_d8f746d61fed85a9b0ff2b7f6c1eb0f7
oai_identifier_str oai:red.uao.edu.co:10614/11178
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Thermal and mechanical behavior of biocomposites using additive manufacturing
title Thermal and mechanical behavior of biocomposites using additive manufacturing
spellingShingle Thermal and mechanical behavior of biocomposites using additive manufacturing
Materiales - Propiedades mecánicas
Material - Mechanical properties
Additive manufacturing
Biocomposites
Wood flour
title_short Thermal and mechanical behavior of biocomposites using additive manufacturing
title_full Thermal and mechanical behavior of biocomposites using additive manufacturing
title_fullStr Thermal and mechanical behavior of biocomposites using additive manufacturing
title_full_unstemmed Thermal and mechanical behavior of biocomposites using additive manufacturing
title_sort Thermal and mechanical behavior of biocomposites using additive manufacturing
dc.creator.fl_str_mv Rojas Arciniegas, Álvaro José
Hidalgo Salazar, Miguel Ángel
Montalvo Navarrete, Jorge Ivan
Escobar Nuñez, Emerson
dc.contributor.author.none.fl_str_mv Rojas Arciniegas, Álvaro José
Hidalgo Salazar, Miguel Ángel
Montalvo Navarrete, Jorge Ivan
Escobar Nuñez, Emerson
dc.subject.armarc.spa.fl_str_mv Materiales - Propiedades mecánicas
topic Materiales - Propiedades mecánicas
Material - Mechanical properties
Additive manufacturing
Biocomposites
Wood flour
dc.subject.armarc.eng.fl_str_mv Material - Mechanical properties
dc.subject.proposal.eng.fl_str_mv Additive manufacturing
Biocomposites
Wood flour
description Research on additive manufacturing (AM) has gained significant attention in recent years. In this study, two different matrices of polypropylene and polylactic acid materials filled with three different percentages of wood flour were employed; namely 10, 20, and 30%. Biocomposite filaments (developed by twin screw extrusion) were further used in AM by fused deposition modeling (FDM) to obtain testing samples for the characterization of the tensile and flexural properties through mechanical testing. Tensile and flexural mechanical properties of the composite material obtained by AM-FDM were compared against those obtained by injection molding. Experimental results showed that samples obtained with a percentage of 20% of wood flour showed lower mechanical properties, while those obtained at 30% testing samples turned very brittle. Mechanical properties like flexural stiffness were higher in the testing samples obtained by injection molding compared to those by AMFDM. To understand the thermal behavior of the composites, specimens were subjected to TGA experimentation. Experimental results show an analysis of the optimum temperatures for processing the composites through AM, and provide evidence that these composites could potentially be applied in the design of auto parts due to their biodegradability and mechanical strength
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2019-10-08T18:24:54Z
dc.date.available.none.fl_str_mv 2019-10-08T18:24:54Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1955-2505 (en línea)
1955-2513 (impresa)
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11178
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/s12008-017-0411-2
identifier_str_mv 1955-2505 (en línea)
1955-2513 (impresa)
url http://hdl.handle.net/10614/11178
https://doi.org/10.1007/s12008-017-0411-2
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 458
dc.relation.citationissue.none.fl_str_mv Número 2
dc.relation.citationstartpage.none.fl_str_mv 449
dc.relation.citationvolume.none.fl_str_mv Volumen 12
dc.relation.cites.eng.fl_str_mv Montalvo Navarrete, J. I., Hidalgo-Salazar, M. A., Escobar Nunez, E., & Rojas Arciniegas, A. J. (2018). Thermal and mechanical behavior of biocomposites using additive manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), (2), 449-458
dc.relation.ispartofjournal.eng.fl_str_mv International Journal on Interactive Design and Manufacturing (IJIDeM)
dc.relation.references.none.fl_str_mv 1. Adhikary, K.B., Pang, S., Staiger, M.P.: Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. B Eng. 39(5), 807–815 (2008)
2. Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991)
3. Ashori, A.: Wood–plastic composites as promising greencomposites for automotive industries. Bioresour. Technol. 99(11), 4661–4667 (2008)
4. Berumen, S., Bechmann, F., Lindner, S., Kruth, J.P., Craeghs, T.: Quality control of laser-and powder bed-based additive manufacturing (AM) technologies. Phys. Procedia 5, 617–622 (2010)
5. Carroll, D.R., Stone, R.B., Sirignano, A.M., Saindon, R.M., Gose, S.C., Friedman, M.A.: Structural properties of recycled plastic/sawdust lumber decking planks. Resour. Conserv. Recycl. 31(3), 241–251 (2001)
6. Coutinho, F., Costa, T.H., Carvalho, D.L.: Polypropylene–Wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65(6), 1227–1235 (1997)
7. D’Almeida, A.L.F.S., Barreto, D.W., Calado, V., D’Almeida, J.R.M.: Thermal analysis of less common lignocellulose fibers. J. Therm. Anal. Calorim. 91(2), 405–408 (2008)
8. Dittenber, D.B., GangaRao, H.V.: Critical review of recent publications on use of natural composites in infrastructure. Compos. A Appl. Sci. Manuf. 43(8), 1419–1429 (2012)
9. Facca, A.G., Kortschot, M.T., Yan, N.: Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos. A Appl. Sci. Manuf. 37(10), 1660–1671 (2006)
10. Gronli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41(17), 4201–4208 (2002)
11. Hidalgo-Salazar, M.A., Muñoz, M.F., Mina, J.H.: Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 8 (2015). doi:10.1155/2015/386325
12. Hidalgo-Salazar,M.A., Mina, J.H., Herrera-Franco, P.J.: The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. B Eng. 55, 345–351 (2013)
13. Hidalgo-Salazar, M.A., Muñoz, M.F., Quintana, K.: Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Revista Latinoamericana de Metalurgia y Materiales 2(1), 187–194 (2011)
14. Jeske, H., Schirp, A., Cornelius, F.: Development of a thermogravimetric analysis (TGA) method for quantitative analysis of Wood flour and polypropylene in wood plastic composites (WPC). Thermochim. Acta 543(10), 165–171 (2012)
15. Kaboorani, A.: Effects of formulation design on thermal properties of wood/thermoplastic composites. J. Compos. Mater. 44, 2205–2215 (2010)
16. La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A Appl. Sci. Manuf. 42(6), 579–588 (2011)
17. Leao, A., Rowell, R., Tavares, N.: Applications of natural fibers in automotive industry in Brazil-thermoforming process. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds.) Science and Technology of Polymers and Advanced Materials, pp. 755–761. Springer, Boston (1998)
18. Marsh, G.: Natural alternative. Reinf. Plast. 43(3), 42–46 (1999)
19. MatterHackers: Light Cherry Wood LAYWOO-D3 Filament. (2014). http://www.matterhackers.com/store/3d-printer-filament/
175~mm-wood-filament-light-cherry-0.25-kg
20. Montalvo, J.I., Hidalgo, M.A.: 3D printing with natural reinforced filaments. In: Solid Freeform Fabrication (SFF) Symposium, pp. 922–934. University of Texas at Austin (2015)
21. Monteiro, S.N., Calado,V.,Rodriguez, R.J.S., Margem, F.M.: Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Tech 1(2), 117–126 (2012). doi:10.1016/S2238-7854(12)70021-2
22. Netravali, A.N., Chabba, S.: Composites get greener.Mater. Today 6(4), 22–29 (2003)
23. Noorani, R.: Rapid Prototyping—Principles and Applications. Wiley, New York (2006)
24. Olakanmi, E.O., Strydom, M.J.: Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs). Mater. Chem. Phys. 171(1), 290–302 (2016)
25. Órfão, J.J.M., Figueiredo, J.L.: A simplifiedmethod for determination of lignocellulosic materials purolysis kinetics from isothermal thermogravimetric experiments. Thermochim. Acta 380(1), 67–78 (2001)
26. Savalani,M.: Control of selective laser sintering and selective laser melting processes. Doctoral dissertation, Ph.D. thesis, Selective laser sintering of hydroxyapatite-polyamide composites, Loughborough University (2006)
27. Shebani, A.N., van Reenen,A.J., Meincken,M.: The effect ofwood extractives on the thermal stability of different wood species. Thermochim. Acta 471(1), 43–50 (2008)
28. Thomas, S., Photan, L.A.: Natural Fibre Reinforced Polymer Composites: From Macro to Nanoscale. Old City Publishing, Philadelphia (2009)
29. Wong, K.V., Hernandez, A.: A review of additive manufacturing. International Scholarly Research Network, ISRN Mechanical Engineering, pp. 1–10 (2012). doi:10.5402/2012/208760
30. Yang, M.Y., Ryu, S.G.: Development of a composite suitable for rapid prototype machining. J. Mater. Process. Technol. 113(3), 280–284 (2001)
31. Yao, F., Wu, Q., Le, Y., Guo, W., Xu, Y.: Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93(1), 90–98 (2008)
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.publisher.eng.fl_str_mv Springer
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/3169d7af-bbd1-48f7-8c31-c725c1d536aa/download
https://red.uao.edu.co/bitstreams/56960b63-46a0-4f46-ab02-70715e99b6c6/download
https://red.uao.edu.co/bitstreams/4887929c-8665-4ce1-9037-4f285fb5fb71/download
https://red.uao.edu.co/bitstreams/c1cf6bec-df1d-4604-a6fa-eb20dcac73a3/download
https://red.uao.edu.co/bitstreams/60a5a6c5-51d6-4d9a-a442-2855559d2420/download
https://red.uao.edu.co/bitstreams/bdc3ccb0-fd86-44a1-8278-c706389d7dd4/download
https://red.uao.edu.co/bitstreams/387c4de3-29f5-49ff-919b-25bb21b44287/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
d3534c565fab8826ab0152ba766c40fe
df07393f08a7712772a15ba8a315cb68
313a8f514678c2e7a3404522a744b949
e67cf2bd1da4a91422f8e453c382d81c
a4e3bcc9336e1f62e719b241ab54b847
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260177824645120
spelling Rojas Arciniegas, Álvaro Josévirtual::4455-1Hidalgo Salazar, Miguel Ángelvirtual::2125-1Montalvo Navarrete, Jorge Ivanbb8349f3331989d7a3a629ceb33525a8Escobar Nuñez, Emersonvirtual::1582-12019-10-08T18:24:54Z2019-10-08T18:24:54Z20181955-2505 (en línea)1955-2513 (impresa)http://hdl.handle.net/10614/11178https://doi.org/10.1007/s12008-017-0411-2Research on additive manufacturing (AM) has gained significant attention in recent years. In this study, two different matrices of polypropylene and polylactic acid materials filled with three different percentages of wood flour were employed; namely 10, 20, and 30%. Biocomposite filaments (developed by twin screw extrusion) were further used in AM by fused deposition modeling (FDM) to obtain testing samples for the characterization of the tensile and flexural properties through mechanical testing. Tensile and flexural mechanical properties of the composite material obtained by AM-FDM were compared against those obtained by injection molding. Experimental results showed that samples obtained with a percentage of 20% of wood flour showed lower mechanical properties, while those obtained at 30% testing samples turned very brittle. Mechanical properties like flexural stiffness were higher in the testing samples obtained by injection molding compared to those by AMFDM. To understand the thermal behavior of the composites, specimens were subjected to TGA experimentation. Experimental results show an analysis of the optimum temperatures for processing the composites through AM, and provide evidence that these composites could potentially be applied in the design of auto parts due to their biodegradability and mechanical strengthapplication/pdf10 páginasengSpringerDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Thermal and mechanical behavior of biocomposites using additive manufacturingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Materiales - Propiedades mecánicasMaterial - Mechanical propertiesAdditive manufacturingBiocompositesWood flour458Número 2449Volumen 12Montalvo Navarrete, J. I., Hidalgo-Salazar, M. A., Escobar Nunez, E., & Rojas Arciniegas, A. J. (2018). Thermal and mechanical behavior of biocomposites using additive manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), (2), 449-458International Journal on Interactive Design and Manufacturing (IJIDeM)1. Adhikary, K.B., Pang, S., Staiger, M.P.: Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. B Eng. 39(5), 807–815 (2008)2. Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991)3. Ashori, A.: Wood–plastic composites as promising greencomposites for automotive industries. Bioresour. Technol. 99(11), 4661–4667 (2008)4. Berumen, S., Bechmann, F., Lindner, S., Kruth, J.P., Craeghs, T.: Quality control of laser-and powder bed-based additive manufacturing (AM) technologies. Phys. Procedia 5, 617–622 (2010)5. Carroll, D.R., Stone, R.B., Sirignano, A.M., Saindon, R.M., Gose, S.C., Friedman, M.A.: Structural properties of recycled plastic/sawdust lumber decking planks. Resour. Conserv. Recycl. 31(3), 241–251 (2001)6. Coutinho, F., Costa, T.H., Carvalho, D.L.: Polypropylene–Wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65(6), 1227–1235 (1997)7. D’Almeida, A.L.F.S., Barreto, D.W., Calado, V., D’Almeida, J.R.M.: Thermal analysis of less common lignocellulose fibers. J. Therm. Anal. Calorim. 91(2), 405–408 (2008)8. Dittenber, D.B., GangaRao, H.V.: Critical review of recent publications on use of natural composites in infrastructure. Compos. A Appl. Sci. Manuf. 43(8), 1419–1429 (2012)9. Facca, A.G., Kortschot, M.T., Yan, N.: Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos. A Appl. Sci. Manuf. 37(10), 1660–1671 (2006)10. Gronli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41(17), 4201–4208 (2002)11. Hidalgo-Salazar, M.A., Muñoz, M.F., Mina, J.H.: Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 8 (2015). doi:10.1155/2015/38632512. Hidalgo-Salazar,M.A., Mina, J.H., Herrera-Franco, P.J.: The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. B Eng. 55, 345–351 (2013)13. Hidalgo-Salazar, M.A., Muñoz, M.F., Quintana, K.: Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Revista Latinoamericana de Metalurgia y Materiales 2(1), 187–194 (2011)14. Jeske, H., Schirp, A., Cornelius, F.: Development of a thermogravimetric analysis (TGA) method for quantitative analysis of Wood flour and polypropylene in wood plastic composites (WPC). Thermochim. Acta 543(10), 165–171 (2012)15. Kaboorani, A.: Effects of formulation design on thermal properties of wood/thermoplastic composites. J. Compos. Mater. 44, 2205–2215 (2010)16. La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A Appl. Sci. Manuf. 42(6), 579–588 (2011)17. Leao, A., Rowell, R., Tavares, N.: Applications of natural fibers in automotive industry in Brazil-thermoforming process. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds.) Science and Technology of Polymers and Advanced Materials, pp. 755–761. Springer, Boston (1998)18. Marsh, G.: Natural alternative. Reinf. Plast. 43(3), 42–46 (1999)19. MatterHackers: Light Cherry Wood LAYWOO-D3 Filament. (2014). http://www.matterhackers.com/store/3d-printer-filament/175~mm-wood-filament-light-cherry-0.25-kg20. Montalvo, J.I., Hidalgo, M.A.: 3D printing with natural reinforced filaments. In: Solid Freeform Fabrication (SFF) Symposium, pp. 922–934. University of Texas at Austin (2015)21. Monteiro, S.N., Calado,V.,Rodriguez, R.J.S., Margem, F.M.: Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Tech 1(2), 117–126 (2012). doi:10.1016/S2238-7854(12)70021-222. Netravali, A.N., Chabba, S.: Composites get greener.Mater. Today 6(4), 22–29 (2003)23. Noorani, R.: Rapid Prototyping—Principles and Applications. Wiley, New York (2006)24. Olakanmi, E.O., Strydom, M.J.: Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs). Mater. Chem. Phys. 171(1), 290–302 (2016)25. Órfão, J.J.M., Figueiredo, J.L.: A simplifiedmethod for determination of lignocellulosic materials purolysis kinetics from isothermal thermogravimetric experiments. Thermochim. Acta 380(1), 67–78 (2001)26. Savalani,M.: Control of selective laser sintering and selective laser melting processes. Doctoral dissertation, Ph.D. thesis, Selective laser sintering of hydroxyapatite-polyamide composites, Loughborough University (2006)27. Shebani, A.N., van Reenen,A.J., Meincken,M.: The effect ofwood extractives on the thermal stability of different wood species. Thermochim. Acta 471(1), 43–50 (2008)28. Thomas, S., Photan, L.A.: Natural Fibre Reinforced Polymer Composites: From Macro to Nanoscale. Old City Publishing, Philadelphia (2009)29. Wong, K.V., Hernandez, A.: A review of additive manufacturing. International Scholarly Research Network, ISRN Mechanical Engineering, pp. 1–10 (2012). doi:10.5402/2012/20876030. Yang, M.Y., Ryu, S.G.: Development of a composite suitable for rapid prototype machining. J. Mater. Process. Technol. 113(3), 280–284 (2001)31. Yao, F., Wu, Q., Le, Y., Guo, W., Xu, Y.: Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93(1), 90–98 (2008)Publication5d4f6e65-758a-44ee-be02-f12af232a478virtual::4455-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2125-17e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::1582-17e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::1582-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2125-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4455-1https://scholar.google.com/citations?user=Jk__bOIAAAAJ&hl=envirtual::4455-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::2125-1https://scholar.google.com/citations?user=vQ6ZVoIAAAAJ&hl=esvirtual::1582-10000-0001-9242-799Xvirtual::4455-10000-0002-6907-2091virtual::2125-10000-0002-9582-551Xvirtual::1582-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000657956virtual::4455-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::2125-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000151203virtual::1582-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/3169d7af-bbd1-48f7-8c31-c725c1d536aa/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/56960b63-46a0-4f46-ab02-70715e99b6c6/download20b5ba22b1117f71589c7318baa2c560MD53TEXTThermal and mechanical behavior of biocomposites using additive manufacturing.pdf.txtThermal and mechanical behavior of biocomposites using additive manufacturing.pdf.txtExtracted texttext/plain32028https://red.uao.edu.co/bitstreams/4887929c-8665-4ce1-9037-4f285fb5fb71/downloadd3534c565fab8826ab0152ba766c40feMD55Thermal_and_behavior_of_biocomposites.pdf.txtThermal_and_behavior_of_biocomposites.pdf.txtExtracted texttext/plain33844https://red.uao.edu.co/bitstreams/c1cf6bec-df1d-4604-a6fa-eb20dcac73a3/downloaddf07393f08a7712772a15ba8a315cb68MD58THUMBNAILThermal and mechanical behavior of biocomposites using additive manufacturing.pdf.jpgThermal and mechanical behavior of biocomposites using additive manufacturing.pdf.jpgGenerated Thumbnailimage/jpeg14173https://red.uao.edu.co/bitstreams/60a5a6c5-51d6-4d9a-a442-2855559d2420/download313a8f514678c2e7a3404522a744b949MD56Thermal_and_behavior_of_biocomposites.pdf.jpgThermal_and_behavior_of_biocomposites.pdf.jpgGenerated Thumbnailimage/jpeg5368https://red.uao.edu.co/bitstreams/bdc3ccb0-fd86-44a1-8278-c706389d7dd4/downloade67cf2bd1da4a91422f8e453c382d81cMD59ORIGINALThermal_and_behavior_of_biocomposites.pdfThermal_and_behavior_of_biocomposites.pdfTexto completo del artículoapplication/pdf2057823https://red.uao.edu.co/bitstreams/387c4de3-29f5-49ff-919b-25bb21b44287/downloada4e3bcc9336e1f62e719b241ab54b847MD5710614/11178oai:red.uao.edu.co:10614/111782024-03-14 10:19:15.327https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K