Thermal and mechanical behavior of biocomposites using additive manufacturing
Research on additive manufacturing (AM) has gained significant attention in recent years. In this study, two different matrices of polypropylene and polylactic acid materials filled with three different percentages of wood flour were employed; namely 10, 20, and 30%. Biocomposite filaments (develope...
- Autores:
-
Rojas Arciniegas, Álvaro José
Hidalgo Salazar, Miguel Ángel
Montalvo Navarrete, Jorge Ivan
Escobar Nuñez, Emerson
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11178
- Palabra clave:
- Materiales - Propiedades mecánicas
Material - Mechanical properties
Additive manufacturing
Biocomposites
Wood flour
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_d8f746d61fed85a9b0ff2b7f6c1eb0f7 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11178 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Thermal and mechanical behavior of biocomposites using additive manufacturing |
title |
Thermal and mechanical behavior of biocomposites using additive manufacturing |
spellingShingle |
Thermal and mechanical behavior of biocomposites using additive manufacturing Materiales - Propiedades mecánicas Material - Mechanical properties Additive manufacturing Biocomposites Wood flour |
title_short |
Thermal and mechanical behavior of biocomposites using additive manufacturing |
title_full |
Thermal and mechanical behavior of biocomposites using additive manufacturing |
title_fullStr |
Thermal and mechanical behavior of biocomposites using additive manufacturing |
title_full_unstemmed |
Thermal and mechanical behavior of biocomposites using additive manufacturing |
title_sort |
Thermal and mechanical behavior of biocomposites using additive manufacturing |
dc.creator.fl_str_mv |
Rojas Arciniegas, Álvaro José Hidalgo Salazar, Miguel Ángel Montalvo Navarrete, Jorge Ivan Escobar Nuñez, Emerson |
dc.contributor.author.none.fl_str_mv |
Rojas Arciniegas, Álvaro José Hidalgo Salazar, Miguel Ángel Montalvo Navarrete, Jorge Ivan Escobar Nuñez, Emerson |
dc.subject.armarc.spa.fl_str_mv |
Materiales - Propiedades mecánicas |
topic |
Materiales - Propiedades mecánicas Material - Mechanical properties Additive manufacturing Biocomposites Wood flour |
dc.subject.armarc.eng.fl_str_mv |
Material - Mechanical properties |
dc.subject.proposal.eng.fl_str_mv |
Additive manufacturing Biocomposites Wood flour |
description |
Research on additive manufacturing (AM) has gained significant attention in recent years. In this study, two different matrices of polypropylene and polylactic acid materials filled with three different percentages of wood flour were employed; namely 10, 20, and 30%. Biocomposite filaments (developed by twin screw extrusion) were further used in AM by fused deposition modeling (FDM) to obtain testing samples for the characterization of the tensile and flexural properties through mechanical testing. Tensile and flexural mechanical properties of the composite material obtained by AM-FDM were compared against those obtained by injection molding. Experimental results showed that samples obtained with a percentage of 20% of wood flour showed lower mechanical properties, while those obtained at 30% testing samples turned very brittle. Mechanical properties like flexural stiffness were higher in the testing samples obtained by injection molding compared to those by AMFDM. To understand the thermal behavior of the composites, specimens were subjected to TGA experimentation. Experimental results show an analysis of the optimum temperatures for processing the composites through AM, and provide evidence that these composites could potentially be applied in the design of auto parts due to their biodegradability and mechanical strength |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2019-10-08T18:24:54Z |
dc.date.available.none.fl_str_mv |
2019-10-08T18:24:54Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1955-2505 (en línea) 1955-2513 (impresa) |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/11178 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/s12008-017-0411-2 |
identifier_str_mv |
1955-2505 (en línea) 1955-2513 (impresa) |
url |
http://hdl.handle.net/10614/11178 https://doi.org/10.1007/s12008-017-0411-2 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
458 |
dc.relation.citationissue.none.fl_str_mv |
Número 2 |
dc.relation.citationstartpage.none.fl_str_mv |
449 |
dc.relation.citationvolume.none.fl_str_mv |
Volumen 12 |
dc.relation.cites.eng.fl_str_mv |
Montalvo Navarrete, J. I., Hidalgo-Salazar, M. A., Escobar Nunez, E., & Rojas Arciniegas, A. J. (2018). Thermal and mechanical behavior of biocomposites using additive manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), (2), 449-458 |
dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal on Interactive Design and Manufacturing (IJIDeM) |
dc.relation.references.none.fl_str_mv |
1. Adhikary, K.B., Pang, S., Staiger, M.P.: Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. B Eng. 39(5), 807–815 (2008) 2. Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991) 3. Ashori, A.: Wood–plastic composites as promising greencomposites for automotive industries. Bioresour. Technol. 99(11), 4661–4667 (2008) 4. Berumen, S., Bechmann, F., Lindner, S., Kruth, J.P., Craeghs, T.: Quality control of laser-and powder bed-based additive manufacturing (AM) technologies. Phys. Procedia 5, 617–622 (2010) 5. Carroll, D.R., Stone, R.B., Sirignano, A.M., Saindon, R.M., Gose, S.C., Friedman, M.A.: Structural properties of recycled plastic/sawdust lumber decking planks. Resour. Conserv. Recycl. 31(3), 241–251 (2001) 6. Coutinho, F., Costa, T.H., Carvalho, D.L.: Polypropylene–Wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65(6), 1227–1235 (1997) 7. D’Almeida, A.L.F.S., Barreto, D.W., Calado, V., D’Almeida, J.R.M.: Thermal analysis of less common lignocellulose fibers. J. Therm. Anal. Calorim. 91(2), 405–408 (2008) 8. Dittenber, D.B., GangaRao, H.V.: Critical review of recent publications on use of natural composites in infrastructure. Compos. A Appl. Sci. Manuf. 43(8), 1419–1429 (2012) 9. Facca, A.G., Kortschot, M.T., Yan, N.: Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos. A Appl. Sci. Manuf. 37(10), 1660–1671 (2006) 10. Gronli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41(17), 4201–4208 (2002) 11. Hidalgo-Salazar, M.A., Muñoz, M.F., Mina, J.H.: Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 8 (2015). doi:10.1155/2015/386325 12. Hidalgo-Salazar,M.A., Mina, J.H., Herrera-Franco, P.J.: The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. B Eng. 55, 345–351 (2013) 13. Hidalgo-Salazar, M.A., Muñoz, M.F., Quintana, K.: Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Revista Latinoamericana de Metalurgia y Materiales 2(1), 187–194 (2011) 14. Jeske, H., Schirp, A., Cornelius, F.: Development of a thermogravimetric analysis (TGA) method for quantitative analysis of Wood flour and polypropylene in wood plastic composites (WPC). Thermochim. Acta 543(10), 165–171 (2012) 15. Kaboorani, A.: Effects of formulation design on thermal properties of wood/thermoplastic composites. J. Compos. Mater. 44, 2205–2215 (2010) 16. La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A Appl. Sci. Manuf. 42(6), 579–588 (2011) 17. Leao, A., Rowell, R., Tavares, N.: Applications of natural fibers in automotive industry in Brazil-thermoforming process. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds.) Science and Technology of Polymers and Advanced Materials, pp. 755–761. Springer, Boston (1998) 18. Marsh, G.: Natural alternative. Reinf. Plast. 43(3), 42–46 (1999) 19. MatterHackers: Light Cherry Wood LAYWOO-D3 Filament. (2014). http://www.matterhackers.com/store/3d-printer-filament/ 175~mm-wood-filament-light-cherry-0.25-kg 20. Montalvo, J.I., Hidalgo, M.A.: 3D printing with natural reinforced filaments. In: Solid Freeform Fabrication (SFF) Symposium, pp. 922–934. University of Texas at Austin (2015) 21. Monteiro, S.N., Calado,V.,Rodriguez, R.J.S., Margem, F.M.: Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Tech 1(2), 117–126 (2012). doi:10.1016/S2238-7854(12)70021-2 22. Netravali, A.N., Chabba, S.: Composites get greener.Mater. Today 6(4), 22–29 (2003) 23. Noorani, R.: Rapid Prototyping—Principles and Applications. Wiley, New York (2006) 24. Olakanmi, E.O., Strydom, M.J.: Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs). Mater. Chem. Phys. 171(1), 290–302 (2016) 25. Órfão, J.J.M., Figueiredo, J.L.: A simplifiedmethod for determination of lignocellulosic materials purolysis kinetics from isothermal thermogravimetric experiments. Thermochim. Acta 380(1), 67–78 (2001) 26. Savalani,M.: Control of selective laser sintering and selective laser melting processes. Doctoral dissertation, Ph.D. thesis, Selective laser sintering of hydroxyapatite-polyamide composites, Loughborough University (2006) 27. Shebani, A.N., van Reenen,A.J., Meincken,M.: The effect ofwood extractives on the thermal stability of different wood species. Thermochim. Acta 471(1), 43–50 (2008) 28. Thomas, S., Photan, L.A.: Natural Fibre Reinforced Polymer Composites: From Macro to Nanoscale. Old City Publishing, Philadelphia (2009) 29. Wong, K.V., Hernandez, A.: A review of additive manufacturing. International Scholarly Research Network, ISRN Mechanical Engineering, pp. 1–10 (2012). doi:10.5402/2012/208760 30. Yang, M.Y., Ryu, S.G.: Development of a composite suitable for rapid prototype machining. J. Mater. Process. Technol. 113(3), 280–284 (2001) 31. Yao, F., Wu, Q., Le, Y., Guo, W., Xu, Y.: Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93(1), 90–98 (2008) |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.publisher.eng.fl_str_mv |
Springer |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/3169d7af-bbd1-48f7-8c31-c725c1d536aa/download https://red.uao.edu.co/bitstreams/56960b63-46a0-4f46-ab02-70715e99b6c6/download https://red.uao.edu.co/bitstreams/4887929c-8665-4ce1-9037-4f285fb5fb71/download https://red.uao.edu.co/bitstreams/c1cf6bec-df1d-4604-a6fa-eb20dcac73a3/download https://red.uao.edu.co/bitstreams/60a5a6c5-51d6-4d9a-a442-2855559d2420/download https://red.uao.edu.co/bitstreams/bdc3ccb0-fd86-44a1-8278-c706389d7dd4/download https://red.uao.edu.co/bitstreams/387c4de3-29f5-49ff-919b-25bb21b44287/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 d3534c565fab8826ab0152ba766c40fe df07393f08a7712772a15ba8a315cb68 313a8f514678c2e7a3404522a744b949 e67cf2bd1da4a91422f8e453c382d81c a4e3bcc9336e1f62e719b241ab54b847 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260177824645120 |
spelling |
Rojas Arciniegas, Álvaro Josévirtual::4455-1Hidalgo Salazar, Miguel Ángelvirtual::2125-1Montalvo Navarrete, Jorge Ivanbb8349f3331989d7a3a629ceb33525a8Escobar Nuñez, Emersonvirtual::1582-12019-10-08T18:24:54Z2019-10-08T18:24:54Z20181955-2505 (en línea)1955-2513 (impresa)http://hdl.handle.net/10614/11178https://doi.org/10.1007/s12008-017-0411-2Research on additive manufacturing (AM) has gained significant attention in recent years. In this study, two different matrices of polypropylene and polylactic acid materials filled with three different percentages of wood flour were employed; namely 10, 20, and 30%. Biocomposite filaments (developed by twin screw extrusion) were further used in AM by fused deposition modeling (FDM) to obtain testing samples for the characterization of the tensile and flexural properties through mechanical testing. Tensile and flexural mechanical properties of the composite material obtained by AM-FDM were compared against those obtained by injection molding. Experimental results showed that samples obtained with a percentage of 20% of wood flour showed lower mechanical properties, while those obtained at 30% testing samples turned very brittle. Mechanical properties like flexural stiffness were higher in the testing samples obtained by injection molding compared to those by AMFDM. To understand the thermal behavior of the composites, specimens were subjected to TGA experimentation. Experimental results show an analysis of the optimum temperatures for processing the composites through AM, and provide evidence that these composites could potentially be applied in the design of auto parts due to their biodegradability and mechanical strengthapplication/pdf10 páginasengSpringerDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Thermal and mechanical behavior of biocomposites using additive manufacturingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Materiales - Propiedades mecánicasMaterial - Mechanical propertiesAdditive manufacturingBiocompositesWood flour458Número 2449Volumen 12Montalvo Navarrete, J. I., Hidalgo-Salazar, M. A., Escobar Nunez, E., & Rojas Arciniegas, A. J. (2018). Thermal and mechanical behavior of biocomposites using additive manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), (2), 449-458International Journal on Interactive Design and Manufacturing (IJIDeM)1. Adhikary, K.B., Pang, S., Staiger, M.P.: Dimensional stability and mechanical behaviour of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos. B Eng. 39(5), 807–815 (2008)2. Ashley, S.: Rapid prototyping systems. Mech. Eng. 113(4), 34 (1991)3. Ashori, A.: Wood–plastic composites as promising greencomposites for automotive industries. Bioresour. Technol. 99(11), 4661–4667 (2008)4. Berumen, S., Bechmann, F., Lindner, S., Kruth, J.P., Craeghs, T.: Quality control of laser-and powder bed-based additive manufacturing (AM) technologies. Phys. Procedia 5, 617–622 (2010)5. Carroll, D.R., Stone, R.B., Sirignano, A.M., Saindon, R.M., Gose, S.C., Friedman, M.A.: Structural properties of recycled plastic/sawdust lumber decking planks. Resour. Conserv. Recycl. 31(3), 241–251 (2001)6. Coutinho, F., Costa, T.H., Carvalho, D.L.: Polypropylene–Wood fiber composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65(6), 1227–1235 (1997)7. D’Almeida, A.L.F.S., Barreto, D.W., Calado, V., D’Almeida, J.R.M.: Thermal analysis of less common lignocellulose fibers. J. Therm. Anal. Calorim. 91(2), 405–408 (2008)8. Dittenber, D.B., GangaRao, H.V.: Critical review of recent publications on use of natural composites in infrastructure. Compos. A Appl. Sci. Manuf. 43(8), 1419–1429 (2012)9. Facca, A.G., Kortschot, M.T., Yan, N.: Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos. A Appl. Sci. Manuf. 37(10), 1660–1671 (2006)10. Gronli, M.G., Várhegyi, G., Di Blasi, C.: Thermogravimetric analysis and devolatilization kinetics of wood. Ind. Eng. Chem. Res. 41(17), 4201–4208 (2002)11. Hidalgo-Salazar, M.A., Muñoz, M.F., Mina, J.H.: Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int. J. Polym. Sci. 2015, 8 (2015). doi:10.1155/2015/38632512. Hidalgo-Salazar,M.A., Mina, J.H., Herrera-Franco, P.J.: The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials. Compos. B Eng. 55, 345–351 (2013)13. Hidalgo-Salazar, M.A., Muñoz, M.F., Quintana, K.: Mechanical behavior of polyethylene aluminum composite reinforced with continuous agro fique fibers. Revista Latinoamericana de Metalurgia y Materiales 2(1), 187–194 (2011)14. Jeske, H., Schirp, A., Cornelius, F.: Development of a thermogravimetric analysis (TGA) method for quantitative analysis of Wood flour and polypropylene in wood plastic composites (WPC). Thermochim. Acta 543(10), 165–171 (2012)15. Kaboorani, A.: Effects of formulation design on thermal properties of wood/thermoplastic composites. J. Compos. Mater. 44, 2205–2215 (2010)16. La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A Appl. Sci. Manuf. 42(6), 579–588 (2011)17. Leao, A., Rowell, R., Tavares, N.: Applications of natural fibers in automotive industry in Brazil-thermoforming process. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds.) Science and Technology of Polymers and Advanced Materials, pp. 755–761. Springer, Boston (1998)18. Marsh, G.: Natural alternative. Reinf. Plast. 43(3), 42–46 (1999)19. MatterHackers: Light Cherry Wood LAYWOO-D3 Filament. (2014). http://www.matterhackers.com/store/3d-printer-filament/175~mm-wood-filament-light-cherry-0.25-kg20. Montalvo, J.I., Hidalgo, M.A.: 3D printing with natural reinforced filaments. In: Solid Freeform Fabrication (SFF) Symposium, pp. 922–934. University of Texas at Austin (2015)21. Monteiro, S.N., Calado,V.,Rodriguez, R.J.S., Margem, F.M.: Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Tech 1(2), 117–126 (2012). doi:10.1016/S2238-7854(12)70021-222. Netravali, A.N., Chabba, S.: Composites get greener.Mater. Today 6(4), 22–29 (2003)23. Noorani, R.: Rapid Prototyping—Principles and Applications. Wiley, New York (2006)24. Olakanmi, E.O., Strydom, M.J.: Critical materials and processing challenges affecting the interface and functional performance of wood polymer composites (WPCs). Mater. Chem. Phys. 171(1), 290–302 (2016)25. Órfão, J.J.M., Figueiredo, J.L.: A simplifiedmethod for determination of lignocellulosic materials purolysis kinetics from isothermal thermogravimetric experiments. Thermochim. Acta 380(1), 67–78 (2001)26. Savalani,M.: Control of selective laser sintering and selective laser melting processes. Doctoral dissertation, Ph.D. thesis, Selective laser sintering of hydroxyapatite-polyamide composites, Loughborough University (2006)27. Shebani, A.N., van Reenen,A.J., Meincken,M.: The effect ofwood extractives on the thermal stability of different wood species. Thermochim. Acta 471(1), 43–50 (2008)28. Thomas, S., Photan, L.A.: Natural Fibre Reinforced Polymer Composites: From Macro to Nanoscale. Old City Publishing, Philadelphia (2009)29. Wong, K.V., Hernandez, A.: A review of additive manufacturing. International Scholarly Research Network, ISRN Mechanical Engineering, pp. 1–10 (2012). doi:10.5402/2012/20876030. Yang, M.Y., Ryu, S.G.: Development of a composite suitable for rapid prototype machining. J. Mater. Process. Technol. 113(3), 280–284 (2001)31. Yao, F., Wu, Q., Le, Y., Guo, W., Xu, Y.: Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93(1), 90–98 (2008)Publication5d4f6e65-758a-44ee-be02-f12af232a478virtual::4455-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2125-17e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::1582-17e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::1582-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2125-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4455-1https://scholar.google.com/citations?user=Jk__bOIAAAAJ&hl=envirtual::4455-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::2125-1https://scholar.google.com/citations?user=vQ6ZVoIAAAAJ&hl=esvirtual::1582-10000-0001-9242-799Xvirtual::4455-10000-0002-6907-2091virtual::2125-10000-0002-9582-551Xvirtual::1582-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000657956virtual::4455-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::2125-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000151203virtual::1582-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/3169d7af-bbd1-48f7-8c31-c725c1d536aa/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/56960b63-46a0-4f46-ab02-70715e99b6c6/download20b5ba22b1117f71589c7318baa2c560MD53TEXTThermal and mechanical behavior of biocomposites using additive manufacturing.pdf.txtThermal and mechanical behavior of biocomposites using additive manufacturing.pdf.txtExtracted texttext/plain32028https://red.uao.edu.co/bitstreams/4887929c-8665-4ce1-9037-4f285fb5fb71/downloadd3534c565fab8826ab0152ba766c40feMD55Thermal_and_behavior_of_biocomposites.pdf.txtThermal_and_behavior_of_biocomposites.pdf.txtExtracted texttext/plain33844https://red.uao.edu.co/bitstreams/c1cf6bec-df1d-4604-a6fa-eb20dcac73a3/downloaddf07393f08a7712772a15ba8a315cb68MD58THUMBNAILThermal and mechanical behavior of biocomposites using additive manufacturing.pdf.jpgThermal and mechanical behavior of biocomposites using additive manufacturing.pdf.jpgGenerated Thumbnailimage/jpeg14173https://red.uao.edu.co/bitstreams/60a5a6c5-51d6-4d9a-a442-2855559d2420/download313a8f514678c2e7a3404522a744b949MD56Thermal_and_behavior_of_biocomposites.pdf.jpgThermal_and_behavior_of_biocomposites.pdf.jpgGenerated Thumbnailimage/jpeg5368https://red.uao.edu.co/bitstreams/bdc3ccb0-fd86-44a1-8278-c706389d7dd4/downloade67cf2bd1da4a91422f8e453c382d81cMD59ORIGINALThermal_and_behavior_of_biocomposites.pdfThermal_and_behavior_of_biocomposites.pdfTexto completo del artículoapplication/pdf2057823https://red.uao.edu.co/bitstreams/387c4de3-29f5-49ff-919b-25bb21b44287/downloada4e3bcc9336e1f62e719b241ab54b847MD5710614/11178oai:red.uao.edu.co:10614/111782024-03-14 10:19:15.327https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |