A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps

Research on mobile advertising has evolved considerably over the last few years. However, several under-researched topics remain, including mobile advertising spreading by leveraging users’ personal social networks. The present research addresses this gap by proposing a model for studying advertisin...

Full description

Autores:
García-Dávalos, Alexander
García-Duque, Jorge
Tipo de recurso:
Article of journal
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15530
Acceso en línea:
https://hdl.handle.net/10614/15530
https://doi.org/10.1080/10496491.2023.2189204
https://red.uao.edu.co/
Palabra clave:
Mobile advertising
Advertising spreading
Branded apps
Personalsocial networks
Viraladvertising
User privacy perception
Rights
openAccess
License
Derechos reservados - Taylor y Francis Group, 2023
id REPOUAO2_d801dd7c4121b5297dab96eb463094ca
oai_identifier_str oai:red.uao.edu.co:10614/15530
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps
title A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps
spellingShingle A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps
Mobile advertising
Advertising spreading
Branded apps
Personalsocial networks
Viraladvertising
User privacy perception
title_short A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps
title_full A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps
title_fullStr A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps
title_full_unstemmed A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps
title_sort A simplified mobile advertising model to study advertising spreading through personal social networks and branded apps
dc.creator.fl_str_mv García-Dávalos, Alexander
García-Duque, Jorge
dc.contributor.author.none.fl_str_mv García-Dávalos, Alexander
García-Duque, Jorge
dc.contributor.corporatename.eng.fl_str_mv Taylor & Francis Group
dc.subject.proposal.eng.fl_str_mv Mobile advertising
Advertising spreading
Branded apps
Personalsocial networks
Viraladvertising
User privacy perception
topic Mobile advertising
Advertising spreading
Branded apps
Personalsocial networks
Viraladvertising
User privacy perception
description Research on mobile advertising has evolved considerably over the last few years. However, several under-researched topics remain, including mobile advertising spreading by leveraging users’ personal social networks. The present research addresses this gap by proposing a model for studying advertising spreading through personal networks using a viral approach and branded apps. The proposed model simulation suggests that the influence of spreader users’ percentage in ad spreading was significant, but increasing it beyond 20% did not impact the spreading growth. Additionally, including user privacy perception in the model positively affected spreading by increasing advertising propagation risk
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-04-12T20:07:40Z
dc.date.available.none.fl_str_mv 2024-04-12T20:07:40Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv García-Dávalos, A.; García-Duque, J. (2023). A Simplified Mobile Advertising Model to Study Advertising Spreading through Personal Social Networks and Branded Apps. Journal of Promotion Management. 29(8). p.p. 1104-1137. https://doi.org/10.1080/10496491.2023.2189204
dc.identifier.issn.spa.fl_str_mv 1049-6491
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15530
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1080/10496491.2023.2189204
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv García-Dávalos, A.; García-Duque, J. (2023). A Simplified Mobile Advertising Model to Study Advertising Spreading through Personal Social Networks and Branded Apps. Journal of Promotion Management. 29(8). p.p. 1104-1137. https://doi.org/10.1080/10496491.2023.2189204
1049-6491
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15530
https://doi.org/10.1080/10496491.2023.2189204
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 1137
dc.relation.citationissue.none.fl_str_mv 8
dc.relation.citationstartpage.none.fl_str_mv 1104
dc.relation.citationvolume.none.fl_str_mv 29
dc.relation.ispartofjournal.eng.fl_str_mv Journal of Promotion Management
dc.relation.references.none.fl_str_mv Adam, D. C., Wu, P., Wong, J. Y., Lau, E. H. Y., Tsang, T. K., Cauchemez, S., Leung, G. M., & Cowling, B. J. (2020). Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nature Medicine, 26(11), 1714–1719. https://doi.org/10.1038/ s41591-020-1092-0
Akpojivi, U., & Bevan-Dye, A. (2015). Mobile advertisements and information privacy perception amongst South African Generation Y students. Telematics and Informatics, 32(1), 1–10. https://doi.org/10.1016/j.tele.2014.08.001
Alsuwaidan, L., & Ykhlef, M. (2016). Toward information diffusion model for viral marketing in business. International Journal of Advanced Computer Science and Applications, 7(2), 637–646. https://doi.org/10.14569/IJACSA.2016.070280
AMA. (2021, October 11). Statement of ethics. https://myama.my.site.com/s/article/AMAStatement- of-Ethics Arnaboldi, V., Conti, M., Passarella, A., & Dunbar, R. I. M. (2017). Online social networks and information diffusion: The role of ego networks. Online Social Networks and Media, 1, 44–55. https://doi.org/10.1016/j.osnem.2017.04.001
Atdag, S., & Bingol, H. O. (2021). Computational models for commercial advertisements in social networks. Physica A: Statistical Mechanics and Its Applications, 572, 125916. https://doi.org/10.1016/j.physa.2021.125916
Baek, T. H., & Morimoto, M. (2012). Stay away from me. Journal of Advertising, 41(1), 59– 76. https://doi.org/10.2753/JOA0091-3367410105
Bakhshandeh, R., Samadi, M., Azimifar, Z., Schaeffer, J. (2011). Degrees of separation in social networks. Proceedings of the International Symposium on Combinatorial Search, 2(1), 18–23. https://doi.org/10.1609/socs.v2i1.18200
Banerjee, S., Jenamani, M., & Pratihar, D. K. (2020). A survey on influence maximization in a social network. Knowledge and Information Systems, 62(9), 3417–3455. https://doi. org/10.1007/s10115-020-01461-4
Barutcu, S., Yaldir, A., & Hasiloglu, S. B. (2017). From mass to personalized mobile marketing strategies: The new dimensions through expert systems. European Scientific Journal, 13(10), 400–409. https://doi.org/10.19044/esj.2017.v13n10p%p
Bellman, S., Potter, R. F., Treleaven-Hassard, S., Robinson, J. A., & Varan, D. (2011). The effectiveness of branded mobile phone apps. Journal of Interactive Marketing, 25(4), 191– 200. https://doi.org/10.1016/j.intmar.2011.06.001
Bhattacharya, S., Gaurav, K., & Ghosh, S. (2019). Viral marketing on social networks: An epidemiological perspective. Physica A: Statistical Mechanics and Its Applications, 525, 478–490. https://doi.org/10.1016/j.physa.2019.03.008
Boerman, S. C., & Smit, E. G. (2023). Advertising and privacy: An overview of past research and a research agenda. International Journal of Advertising, 42(1), 60–68. https://doi.org/10.1080/02650487.2022.2122251
Briskman, J. (2019, April 29). Top sneaker apps in the U.S. from 2015 to 2018. Sensor Tower Blog. https://sensortower.com/blog/top-sneaker-apps-us-2015-2018
Carroll, C., Bhattacharjee, S., Chen, Y., Dubey, P., Fan, J., Gajardo, A., Zhou, X., M€uller, H.-G., & Wang, J. L. (2020). Time dynamics of COVID-19. Scientific Reports, 10(1), 1– 14. https://doi.org/10.1038/s41598-020-77709-4
CDC. (2021, December 20). Principles of epidemiology j Lesson 3—Section 2. https://www. cdc.gov/csels/dsepd/ss1978/lesson3/section2.html
Chen, Z. (2019). An agent-based model for information diffusion over online social networks. Papers in Applied Geography, 5(1–2), 77–97. https://doi.org/10.1080/23754931.2019.1619193
Chu, S.-C., & Kim, J. (2018). The current state of knowledge on electronic word-of-mouth in advertising research. International Journal of Advertising, 37(1), 1–13. https://doi.org/ 10.1080/02650487.2017.1407061
de Souza, R. C., Figueiredo, D. R., de, A., Rocha, A. A., & Ziviani, A. (2020). Efficient network seeding under variable node cost and limited budget for social networks. Information Sciences, 514, 369–384. https://doi.org/10.1016/j.ins.2019.11.029
Degirmenci, K. (2020). Mobile users’ information privacy concerns and the role of app permission requests. International Journal of Information Management, 50, 261–272. https:// doi.org/10.1016/j.ijinfomgt.2019.05.010
Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. Journal of Business Research, 135, 758–773. https://doi.org/10.1016/j.jbusres. 2021.07.015
Eckler, P., & Bolls, P. (2011). Spreading the virus: Emotional tone of viral advertising and its effect on forwarding intentions and attitudes. Journal of Interactive Advertising, 11(2), 1–11. https://doi.org/10.1080/15252019.2011.10722180
Endo, A., Abbott, S., Kucharski, A. J., & Funk, S. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China (5:67). Wellcome Open Research, 5, 67. https://doi.org/10.12688/wellcomeopenres.15842.3
Furini, M., Mirri, S., Montangero, M., & Prandi, C. (2020). Privacy perception when using smartphone applications. Mobile Networks and Applications, 25(3), 1055–1061. https:// doi.org/10.1007/s11036-020-01529-z
Garcia-Davalos, A., & Garcia-Duque, J. (2020). User profile modelling based on mobile phone sensing and call logs. In A. Rocha, C. Ferr as, C. E. Montenegro Marin, & V. H. Medina Garc ıa (Eds.), Information technology and systems (pp. 243–254). Springer International Publishing. https://doi.org/10.1007/978-3-030-40690-5_24
Ghosh, S., Bhattacharya, S., Gaurav, K., & Singh, Y. N. (2018). Going viral: The epidemiological strategy of referral marketing. (arXiv:180803780). arXiv. https://doi.org/10.48550/ arXiv.1808.03780
G€ursakal, N., Batmaz, B., & Aktuna, G. (2020). Drawing transmission graphs for COVID- 19 in the perspective of network science. Epidemiology and Infection, 148, E269. https:// doi.org/10.1017/S0950268820002654
Hayes, J. L., King, K. W., & Ramirez, A. (2016). Brands, friends, & viral advertising: A social exchange perspective on the ad referral processes. Journal of Interactive Marketing, 36, 31–45. https://doi.org/10.1016/j.intmar.2016.04.001
Himelboim, I., & Golan, G. J. (2019). A social networks approach to viral advertising: The role of primary, contextual, and low influencers. Social MediaþSociety, 5(3), 2056305119847516. https://doi.org/10.1177/2056305119847516
Jebarajakirthy, C., Maseeh, H. I., Morshed, Z., Shankar, A., Arli, D., & Pentecost, R. (2021). Mobile advertising: A systematic literature review and future research agenda. International Journal of Consumer Studies, 45(6), 1258–1291. https://doi.org/10.1111/ijcs. 12728
Jing, Y., Peiyu, L., Xiaobing, T., & Wenfeng, L. (2018). Improved SIR advertising spreading model and its effectiveness in social network. Procedia Computer Science, 129, 215–218. https://doi.org/10.1016/j.procs.2018.03.044
Jingyan, L., & Liwen, H. (2018). Mobile advertising optimization strategy based on SICAS model in China. International Journal of Business and Management, 13(11), 169–175. https://doi.org/10.5539/ijbm.v13n11p169
Kelly, L., Kerr, G., Drennan, J., & Fazal-E-Hasan, S. M. (2021). Feel, think, avoid: Testing a new model of advertising avoidance. Journal of Marketing Communications, 27(4), 343– 364. https://doi.org/10.1080/13527266.2019.1666902
Kempe, D., Kleinberg, J., & Tardos, E. (2015). Maximizing the spread of influence through a social network. Theory of Computing, 11(1), 105–147. https://doi.org/10.4086/toc.2015. v011a004
Kim, M., & Fernandez, R. M. (2017). Strength matters: Tie strength as a causal driver of networks’ information benefits. Social Science Research, 65, 268–281. https://doi.org/10. 1016/j.ssresearch.2016.11.003
Kweon, H., Zhang, D., & Zhou, L. (2012). User privacy in mobile advertising. In AMCIS 2012 Proceedings. https://aisel.aisnet.org/amcis2012/proceedings/HCIStudies/1
Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 5-es. https://doi.org/10.1145/1232722.1232727
Leskovec, J., & Horvitz, E. (2008). Planetary-scale views on a large instant-messaging network. In Proceedings of the 17th International Conference on World Wide Web, pp. 915– 924. https://doi.org/10.1145/1367497.1367620
Li, Y., Fan, J., Wang, Y., & Tan, K.-L. (2018). Influence maximization on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering, 30(10), 1852–1872. https://doi.org/10.1109/TKDE.2018.2807843
Liu, F., Kanso, A., Zhang, Y., & Olaru, D. (2019). Culture, perceived value, and advertising acceptance: A cross-cultural study on mobile advertising. Journal of Promotion Management, 25(7), 1028–1058. https://doi.org/10.1080/10496491.2019.1612495
Li, M., Wang, X., Gao, K., & Zhang, S. (2017). A survey on information diffusion in online social networks: Models and methods. Information, 8(4), 118. https://doi.org/10.3390/ info8040118
Maseeh, H. I., Jebarajakirthy, C., Pentecost, R., Ashaduzzaman, M., Arli, D., & Weaven, S. (2021). A meta-analytic review of mobile advertising research. Journal of Business Research, 136, 33–51. https://doi.org/10.1016/j.jbusres.2021.06.022
Mittal, S., & Kumar, V. (2020). A framework for ethical mobile marketing. International Journal of Technoethics, 11, 28–42. https://doi.org/10.4018/IJT.2020010103
Moldovan, S., Steinhart, Y., & Lehmann, D. R. (2019). Propagators, creativity, and informativeness: What helps ads go viral. Journal of Interactive Marketing, 47(1), 102–114. https://doi.org/10.1016/j.intmar.2019.02.004
Morimoto, M. (2021). Privacy concerns about personalized advertising across multiple social media platforms in Japan: The relationship with information control and persuasion knowledge. International Journal of Advertising, 40(3), 431–451. https://doi.org/10. 1080/02650487.2020.1796322
Nielsen. (2015, September 28). Recommendations from friends remain most credible form of advertising among consumers; Branded websites are the second highest rated form. https:// www.nielsen.com/eu/en/press-releases/2015/recommendations-from-friends-remain-mostcredible- form-of-advertising
Palka, W., Pousttchi, K., & Wiedemann, D. G. (2009). Mobile word-of-mouth – A grounded theory of mobile viral marketing. Journal of Information Technology, 24(2), 172–185. https://doi.org/10.1057/jit.2008.37
Razaque, A., Rizvi, S., Khan, M. J., Almiani, M., & Rahayfeh, A. A. (2022). State-of-art review of information diffusion models and their impact on social network vulnerabilities. Journal of King Saud University - Computer and Information Sciences, 34(1), 1275– 1294. https://doi.org/10.1016/j.jksuci.2019.08.008
Rodrigues, H. S., & Fonseca, M. J. (2016). Can information be spread as a virus? Viral marketing as epidemiological model. Mathematical Methods in the Applied Sciences, 39(16), 4780–4786. https://doi.org/10.1002/mma.3783
Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., & Montesi, D. (2015). Spreading processes in multilayer networks. IEEE Transactions on Network Science and Engineering, 2(2), 65–83. https://doi.org/10.1109/TNSE.2015.2425961
Sarin, C., & Pal, B. (2014). Word of mouth marketing: Consumers participation. The International Journal of Business & Management, 2(1), 74–79. http://www.internationaljournalcorner. com/index.php/theijbm/article/view/128400
Segev, S., & Fernandes, J. (2022). The anatomy of viral advertising: A content analysis of viral advertising from the elaboration likelihood model perspective. Journal of Promotion Management, 29(1), 1–30. https://doi.org/10.1080/10496491.2022.2108189
Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative consumer reviews on the Web. Journal of Interactive Marketing, 21(4), 76–94. https://doi. org/10.1002/dir.20090
Shaikh, B. (2014). Understanding word of mouth communication: A theoretical review of literature. The International Journal of Business & Management, 2(4), 58–64. http:// www.internationaljournalcorner.com/index.php/theijbm/article/view/127642
Sigurdsson, V., Menon, R. G. V., Hallgr ımsson, A. G., Larsen, N. M., & Fagerstrøm, A. (2018). Factors affecting attitudes and behavioral intentions toward in-app mobile advertisements. Journal of Promotion Management, 24(5), 694–714. https://doi.org/10.1080/ 10496491.2018.1405523
Silva, E., Pereira, F. H., & Schimit, P. H. T. (2020). Information spreading in a population modeled by continuous asynchronous probabilistic cellular automata. Computer Communications, 154, 288–297. https://doi.org/10.1016/j.comcom.2020.02.074
Statista. (2021). Mobile ad blocking penetration U.S. 2020. https://www.statista.com/statistics/ 554304/interest-mobile-ad-blocking/
Statista. (2022). Mobile ad spend worldwide 2024. https://www.statista.com/statistics/303817/ mobile-internet-advertising-revenue-worldwide/
Stocchi, L., Michaelidou, N., & Micevski, M. (2019). Drivers and outcomes of branded mobile app usage intention. Journal of Product & Brand Management, 28(1), 28–49. https://doi.org/10.1108/JPBM-02-2017-1436
Stonedahl, F., & Wilensky, U. (2008). NetLogo models library: Virus on a network. http:// ccl.northwestern.edu/netlogo/models/VirusonaNetwork
Tang, A. K. Y. (2019). A systematic literature review and analysis on mobile apps in mcommerce: Implications for future research. Electronic Commerce Research and Applications, 37, 100885. https://doi.org/10.1016/j.elerap.2019.100885
Tucker, C. E. (2014). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research, 51(5), 546–562. https://doi.org/10.1509/jmr.10.0355
Ullah, I., Boreli, R., Kanhere, S. S., Chawla, S., Ahanger, T. A., & Tariq, U. (2020). Protecting private attributes in app based mobile user profiling. IEEE Access, 8, 143818– 143836. https://doi.org/10.1109/ACCESS.2020.3014424
Ullah, I., Boreli, R., & Kanhere, S. S. (2021). Privacy in targeted advertising: A survey. arXiv preprint. http://arxiv.org/abs/2009.06861
Ullah, I., Kanhere, S. S., & Boreli, R. (2020). Privacy-preserving targeted mobile advertising: A blockchain-based framework for mobile ads. ArXiv:2008.10479 [Cs]. http://arxiv.org/ abs/2008.10479
Um, N.-H. (2019). Predictors of mobile advertising avoidance: What makes people avoid mobile advertising? International Journal of Contents, 15(4), 44–49. https://doi.org/10. 5392/IJoC.2019.15.4.044
van Noort, G., & van Reijmersdal, E. A. (2019). Branded apps: Explaining effects of brands’ mobile phone applications on brand responses. Journal of Interactive Marketing, 45, 16– 26. https://doi.org/10.1016/j.intmar.2018.05.003
Wang, T., Duong, T. D., & Chen, C. C. (2016). Intention to disclose personal information via mobile applications: A privacy calculus perspective. International Journal of Information Management, 36(4), 531–542. https://doi.org/10.1016/j.ijinfomgt.2016.03.003
Wang, Y., Genc, E., & Peng, G. (2020). Aiming the mobile targets in a cross-cultural context: Effects of trust, privacy concerns, and attitude. International Journal of Human– Computer Interaction, 36(3), 227–238. https://doi.org/10.1080/10447318.2019.1625571
Wang, R., Kim, S. J., & Malthouse, E. (2016). Branded apps and mobile platforms as new tools for advertising. In R. E. Brown, V. K. Jones, M. Wang (Eds.), The new advertising: Branding, content and consumer relationships in the data-driven social media era (Vol. 2, pp. 123–156). Praeger. https://doi.org/10.13140/RG.2.1.3744.3042
Wilensky, U. (1999). NetLogo home page. https://ccl.northwestern.edu/netlogo/
Zareie, A., Sheikhahmadi, A., & Jalili, M. (2019). Identification of influential users in social networks based on users’ interest. Information Sciences, 493, 217–231. https://doi.org/10. 1016/j.ins.2019.04.033
dc.rights.eng.fl_str_mv Derechos reservados - Taylor y Francis Group, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Taylor y Francis Group, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 34 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Taylor & Francis Group
dc.publisher.place.spa.fl_str_mv Reino Unido
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/d6ec21b8-86de-4766-9e33-cfb900f81640/download
https://red.uao.edu.co/bitstreams/575bbf75-06b7-477f-931a-912eb89b4526/download
https://red.uao.edu.co/bitstreams/4882f03a-928f-467f-96b1-a67a9b41552c/download
https://red.uao.edu.co/bitstreams/4c091b13-1e08-48d3-900c-e60d68419cb0/download
bitstream.checksum.fl_str_mv 6987b791264a2b5525252450f99b10d1
3ac8b5405608dca499bdf48b479ca650
f51196e2a8fc630fe188a5a77561ffec
eec614a18c60543ddbe55f9b95048372
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259939129950208
spelling García-Dávalos, AlexanderGarcía-Duque, JorgeTaylor & Francis Group2024-04-12T20:07:40Z2024-04-12T20:07:40Z2023García-Dávalos, A.; García-Duque, J. (2023). A Simplified Mobile Advertising Model to Study Advertising Spreading through Personal Social Networks and Branded Apps. Journal of Promotion Management. 29(8). p.p. 1104-1137. https://doi.org/10.1080/10496491.2023.21892041049-6491https://hdl.handle.net/10614/15530https://doi.org/10.1080/10496491.2023.2189204Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Research on mobile advertising has evolved considerably over the last few years. However, several under-researched topics remain, including mobile advertising spreading by leveraging users’ personal social networks. The present research addresses this gap by proposing a model for studying advertising spreading through personal networks using a viral approach and branded apps. The proposed model simulation suggests that the influence of spreader users’ percentage in ad spreading was significant, but increasing it beyond 20% did not impact the spreading growth. Additionally, including user privacy perception in the model positively affected spreading by increasing advertising propagation risk34 páginasapplication/pdfengTaylor & Francis GroupReino UnidoDerechos reservados - Taylor y Francis Group, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2A simplified mobile advertising model to study advertising spreading through personal social networks and branded appsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8511378110429Journal of Promotion ManagementAdam, D. C., Wu, P., Wong, J. Y., Lau, E. H. Y., Tsang, T. K., Cauchemez, S., Leung, G. M., & Cowling, B. J. (2020). Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong. Nature Medicine, 26(11), 1714–1719. https://doi.org/10.1038/ s41591-020-1092-0Akpojivi, U., & Bevan-Dye, A. (2015). Mobile advertisements and information privacy perception amongst South African Generation Y students. Telematics and Informatics, 32(1), 1–10. https://doi.org/10.1016/j.tele.2014.08.001Alsuwaidan, L., & Ykhlef, M. (2016). Toward information diffusion model for viral marketing in business. International Journal of Advanced Computer Science and Applications, 7(2), 637–646. https://doi.org/10.14569/IJACSA.2016.070280AMA. (2021, October 11). Statement of ethics. https://myama.my.site.com/s/article/AMAStatement- of-Ethics Arnaboldi, V., Conti, M., Passarella, A., & Dunbar, R. I. M. (2017). Online social networks and information diffusion: The role of ego networks. Online Social Networks and Media, 1, 44–55. https://doi.org/10.1016/j.osnem.2017.04.001Atdag, S., & Bingol, H. O. (2021). Computational models for commercial advertisements in social networks. Physica A: Statistical Mechanics and Its Applications, 572, 125916. https://doi.org/10.1016/j.physa.2021.125916Baek, T. H., & Morimoto, M. (2012). Stay away from me. Journal of Advertising, 41(1), 59– 76. https://doi.org/10.2753/JOA0091-3367410105Bakhshandeh, R., Samadi, M., Azimifar, Z., Schaeffer, J. (2011). Degrees of separation in social networks. Proceedings of the International Symposium on Combinatorial Search, 2(1), 18–23. https://doi.org/10.1609/socs.v2i1.18200Banerjee, S., Jenamani, M., & Pratihar, D. K. (2020). A survey on influence maximization in a social network. Knowledge and Information Systems, 62(9), 3417–3455. https://doi. org/10.1007/s10115-020-01461-4Barutcu, S., Yaldir, A., & Hasiloglu, S. B. (2017). From mass to personalized mobile marketing strategies: The new dimensions through expert systems. European Scientific Journal, 13(10), 400–409. https://doi.org/10.19044/esj.2017.v13n10p%pBellman, S., Potter, R. F., Treleaven-Hassard, S., Robinson, J. A., & Varan, D. (2011). The effectiveness of branded mobile phone apps. Journal of Interactive Marketing, 25(4), 191– 200. https://doi.org/10.1016/j.intmar.2011.06.001Bhattacharya, S., Gaurav, K., & Ghosh, S. (2019). Viral marketing on social networks: An epidemiological perspective. Physica A: Statistical Mechanics and Its Applications, 525, 478–490. https://doi.org/10.1016/j.physa.2019.03.008Boerman, S. C., & Smit, E. G. (2023). Advertising and privacy: An overview of past research and a research agenda. International Journal of Advertising, 42(1), 60–68. https://doi.org/10.1080/02650487.2022.2122251Briskman, J. (2019, April 29). Top sneaker apps in the U.S. from 2015 to 2018. Sensor Tower Blog. https://sensortower.com/blog/top-sneaker-apps-us-2015-2018Carroll, C., Bhattacharjee, S., Chen, Y., Dubey, P., Fan, J., Gajardo, A., Zhou, X., M€uller, H.-G., & Wang, J. L. (2020). Time dynamics of COVID-19. Scientific Reports, 10(1), 1– 14. https://doi.org/10.1038/s41598-020-77709-4CDC. (2021, December 20). Principles of epidemiology j Lesson 3—Section 2. https://www. cdc.gov/csels/dsepd/ss1978/lesson3/section2.htmlChen, Z. (2019). An agent-based model for information diffusion over online social networks. Papers in Applied Geography, 5(1–2), 77–97. https://doi.org/10.1080/23754931.2019.1619193Chu, S.-C., & Kim, J. (2018). The current state of knowledge on electronic word-of-mouth in advertising research. International Journal of Advertising, 37(1), 1–13. https://doi.org/ 10.1080/02650487.2017.1407061de Souza, R. C., Figueiredo, D. R., de, A., Rocha, A. A., & Ziviani, A. (2020). Efficient network seeding under variable node cost and limited budget for social networks. Information Sciences, 514, 369–384. https://doi.org/10.1016/j.ins.2019.11.029Degirmenci, K. (2020). Mobile users’ information privacy concerns and the role of app permission requests. International Journal of Information Management, 50, 261–272. https:// doi.org/10.1016/j.ijinfomgt.2019.05.010Donthu, N., Kumar, S., Pandey, N., Pandey, N., & Mishra, A. (2021). Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. Journal of Business Research, 135, 758–773. https://doi.org/10.1016/j.jbusres. 2021.07.015Eckler, P., & Bolls, P. (2011). Spreading the virus: Emotional tone of viral advertising and its effect on forwarding intentions and attitudes. Journal of Interactive Advertising, 11(2), 1–11. https://doi.org/10.1080/15252019.2011.10722180Endo, A., Abbott, S., Kucharski, A. J., & Funk, S. (2020). Estimating the overdispersion in COVID-19 transmission using outbreak sizes outside China (5:67). Wellcome Open Research, 5, 67. https://doi.org/10.12688/wellcomeopenres.15842.3Furini, M., Mirri, S., Montangero, M., & Prandi, C. (2020). Privacy perception when using smartphone applications. Mobile Networks and Applications, 25(3), 1055–1061. https:// doi.org/10.1007/s11036-020-01529-zGarcia-Davalos, A., & Garcia-Duque, J. (2020). User profile modelling based on mobile phone sensing and call logs. In A. Rocha, C. Ferr as, C. E. Montenegro Marin, & V. H. Medina Garc ıa (Eds.), Information technology and systems (pp. 243–254). Springer International Publishing. https://doi.org/10.1007/978-3-030-40690-5_24Ghosh, S., Bhattacharya, S., Gaurav, K., & Singh, Y. N. (2018). Going viral: The epidemiological strategy of referral marketing. (arXiv:180803780). arXiv. https://doi.org/10.48550/ arXiv.1808.03780G€ursakal, N., Batmaz, B., & Aktuna, G. (2020). Drawing transmission graphs for COVID- 19 in the perspective of network science. Epidemiology and Infection, 148, E269. https:// doi.org/10.1017/S0950268820002654Hayes, J. L., King, K. W., & Ramirez, A. (2016). Brands, friends, & viral advertising: A social exchange perspective on the ad referral processes. Journal of Interactive Marketing, 36, 31–45. https://doi.org/10.1016/j.intmar.2016.04.001Himelboim, I., & Golan, G. J. (2019). A social networks approach to viral advertising: The role of primary, contextual, and low influencers. Social MediaþSociety, 5(3), 2056305119847516. https://doi.org/10.1177/2056305119847516Jebarajakirthy, C., Maseeh, H. I., Morshed, Z., Shankar, A., Arli, D., & Pentecost, R. (2021). Mobile advertising: A systematic literature review and future research agenda. International Journal of Consumer Studies, 45(6), 1258–1291. https://doi.org/10.1111/ijcs. 12728Jing, Y., Peiyu, L., Xiaobing, T., & Wenfeng, L. (2018). Improved SIR advertising spreading model and its effectiveness in social network. Procedia Computer Science, 129, 215–218. https://doi.org/10.1016/j.procs.2018.03.044Jingyan, L., & Liwen, H. (2018). Mobile advertising optimization strategy based on SICAS model in China. International Journal of Business and Management, 13(11), 169–175. https://doi.org/10.5539/ijbm.v13n11p169Kelly, L., Kerr, G., Drennan, J., & Fazal-E-Hasan, S. M. (2021). Feel, think, avoid: Testing a new model of advertising avoidance. Journal of Marketing Communications, 27(4), 343– 364. https://doi.org/10.1080/13527266.2019.1666902Kempe, D., Kleinberg, J., & Tardos, E. (2015). Maximizing the spread of influence through a social network. Theory of Computing, 11(1), 105–147. https://doi.org/10.4086/toc.2015. v011a004Kim, M., & Fernandez, R. M. (2017). Strength matters: Tie strength as a causal driver of networks’ information benefits. Social Science Research, 65, 268–281. https://doi.org/10. 1016/j.ssresearch.2016.11.003Kweon, H., Zhang, D., & Zhou, L. (2012). User privacy in mobile advertising. In AMCIS 2012 Proceedings. https://aisel.aisnet.org/amcis2012/proceedings/HCIStudies/1Leskovec, J., Adamic, L. A., & Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 5-es. https://doi.org/10.1145/1232722.1232727Leskovec, J., & Horvitz, E. (2008). Planetary-scale views on a large instant-messaging network. In Proceedings of the 17th International Conference on World Wide Web, pp. 915– 924. https://doi.org/10.1145/1367497.1367620Li, Y., Fan, J., Wang, Y., & Tan, K.-L. (2018). Influence maximization on social graphs: A survey. IEEE Transactions on Knowledge and Data Engineering, 30(10), 1852–1872. https://doi.org/10.1109/TKDE.2018.2807843Liu, F., Kanso, A., Zhang, Y., & Olaru, D. (2019). Culture, perceived value, and advertising acceptance: A cross-cultural study on mobile advertising. Journal of Promotion Management, 25(7), 1028–1058. https://doi.org/10.1080/10496491.2019.1612495Li, M., Wang, X., Gao, K., & Zhang, S. (2017). A survey on information diffusion in online social networks: Models and methods. Information, 8(4), 118. https://doi.org/10.3390/ info8040118Maseeh, H. I., Jebarajakirthy, C., Pentecost, R., Ashaduzzaman, M., Arli, D., & Weaven, S. (2021). A meta-analytic review of mobile advertising research. Journal of Business Research, 136, 33–51. https://doi.org/10.1016/j.jbusres.2021.06.022Mittal, S., & Kumar, V. (2020). A framework for ethical mobile marketing. International Journal of Technoethics, 11, 28–42. https://doi.org/10.4018/IJT.2020010103Moldovan, S., Steinhart, Y., & Lehmann, D. R. (2019). Propagators, creativity, and informativeness: What helps ads go viral. Journal of Interactive Marketing, 47(1), 102–114. https://doi.org/10.1016/j.intmar.2019.02.004Morimoto, M. (2021). Privacy concerns about personalized advertising across multiple social media platforms in Japan: The relationship with information control and persuasion knowledge. International Journal of Advertising, 40(3), 431–451. https://doi.org/10. 1080/02650487.2020.1796322Nielsen. (2015, September 28). Recommendations from friends remain most credible form of advertising among consumers; Branded websites are the second highest rated form. https:// www.nielsen.com/eu/en/press-releases/2015/recommendations-from-friends-remain-mostcredible- form-of-advertisingPalka, W., Pousttchi, K., & Wiedemann, D. G. (2009). Mobile word-of-mouth – A grounded theory of mobile viral marketing. Journal of Information Technology, 24(2), 172–185. https://doi.org/10.1057/jit.2008.37Razaque, A., Rizvi, S., Khan, M. J., Almiani, M., & Rahayfeh, A. A. (2022). State-of-art review of information diffusion models and their impact on social network vulnerabilities. Journal of King Saud University - Computer and Information Sciences, 34(1), 1275– 1294. https://doi.org/10.1016/j.jksuci.2019.08.008Rodrigues, H. S., & Fonseca, M. J. (2016). Can information be spread as a virus? Viral marketing as epidemiological model. Mathematical Methods in the Applied Sciences, 39(16), 4780–4786. https://doi.org/10.1002/mma.3783Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., & Montesi, D. (2015). Spreading processes in multilayer networks. IEEE Transactions on Network Science and Engineering, 2(2), 65–83. https://doi.org/10.1109/TNSE.2015.2425961Sarin, C., & Pal, B. (2014). Word of mouth marketing: Consumers participation. The International Journal of Business & Management, 2(1), 74–79. http://www.internationaljournalcorner. com/index.php/theijbm/article/view/128400Segev, S., & Fernandes, J. (2022). The anatomy of viral advertising: A content analysis of viral advertising from the elaboration likelihood model perspective. Journal of Promotion Management, 29(1), 1–30. https://doi.org/10.1080/10496491.2022.2108189Sen, S., & Lerman, D. (2007). Why are you telling me this? An examination into negative consumer reviews on the Web. Journal of Interactive Marketing, 21(4), 76–94. https://doi. org/10.1002/dir.20090Shaikh, B. (2014). Understanding word of mouth communication: A theoretical review of literature. The International Journal of Business & Management, 2(4), 58–64. http:// www.internationaljournalcorner.com/index.php/theijbm/article/view/127642Sigurdsson, V., Menon, R. G. V., Hallgr ımsson, A. G., Larsen, N. M., & Fagerstrøm, A. (2018). Factors affecting attitudes and behavioral intentions toward in-app mobile advertisements. Journal of Promotion Management, 24(5), 694–714. https://doi.org/10.1080/ 10496491.2018.1405523Silva, E., Pereira, F. H., & Schimit, P. H. T. (2020). Information spreading in a population modeled by continuous asynchronous probabilistic cellular automata. Computer Communications, 154, 288–297. https://doi.org/10.1016/j.comcom.2020.02.074Statista. (2021). Mobile ad blocking penetration U.S. 2020. https://www.statista.com/statistics/ 554304/interest-mobile-ad-blocking/Statista. (2022). Mobile ad spend worldwide 2024. https://www.statista.com/statistics/303817/ mobile-internet-advertising-revenue-worldwide/Stocchi, L., Michaelidou, N., & Micevski, M. (2019). Drivers and outcomes of branded mobile app usage intention. Journal of Product & Brand Management, 28(1), 28–49. https://doi.org/10.1108/JPBM-02-2017-1436Stonedahl, F., & Wilensky, U. (2008). NetLogo models library: Virus on a network. http:// ccl.northwestern.edu/netlogo/models/VirusonaNetworkTang, A. K. Y. (2019). A systematic literature review and analysis on mobile apps in mcommerce: Implications for future research. Electronic Commerce Research and Applications, 37, 100885. https://doi.org/10.1016/j.elerap.2019.100885Tucker, C. E. (2014). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research, 51(5), 546–562. https://doi.org/10.1509/jmr.10.0355Ullah, I., Boreli, R., Kanhere, S. S., Chawla, S., Ahanger, T. A., & Tariq, U. (2020). Protecting private attributes in app based mobile user profiling. IEEE Access, 8, 143818– 143836. https://doi.org/10.1109/ACCESS.2020.3014424Ullah, I., Boreli, R., & Kanhere, S. S. (2021). Privacy in targeted advertising: A survey. arXiv preprint. http://arxiv.org/abs/2009.06861Ullah, I., Kanhere, S. S., & Boreli, R. (2020). Privacy-preserving targeted mobile advertising: A blockchain-based framework for mobile ads. ArXiv:2008.10479 [Cs]. http://arxiv.org/ abs/2008.10479Um, N.-H. (2019). Predictors of mobile advertising avoidance: What makes people avoid mobile advertising? International Journal of Contents, 15(4), 44–49. https://doi.org/10. 5392/IJoC.2019.15.4.044van Noort, G., & van Reijmersdal, E. A. (2019). Branded apps: Explaining effects of brands’ mobile phone applications on brand responses. Journal of Interactive Marketing, 45, 16– 26. https://doi.org/10.1016/j.intmar.2018.05.003Wang, T., Duong, T. D., & Chen, C. C. (2016). Intention to disclose personal information via mobile applications: A privacy calculus perspective. International Journal of Information Management, 36(4), 531–542. https://doi.org/10.1016/j.ijinfomgt.2016.03.003Wang, Y., Genc, E., & Peng, G. (2020). Aiming the mobile targets in a cross-cultural context: Effects of trust, privacy concerns, and attitude. International Journal of Human– Computer Interaction, 36(3), 227–238. https://doi.org/10.1080/10447318.2019.1625571Wang, R., Kim, S. J., & Malthouse, E. (2016). Branded apps and mobile platforms as new tools for advertising. In R. E. Brown, V. K. Jones, M. Wang (Eds.), The new advertising: Branding, content and consumer relationships in the data-driven social media era (Vol. 2, pp. 123–156). Praeger. https://doi.org/10.13140/RG.2.1.3744.3042Wilensky, U. (1999). NetLogo home page. https://ccl.northwestern.edu/netlogo/Zareie, A., Sheikhahmadi, A., & Jalili, M. (2019). Identification of influential users in social networks based on users’ interest. Information Sciences, 493, 217–231. https://doi.org/10. 1016/j.ins.2019.04.033Mobile advertisingAdvertising spreadingBranded appsPersonalsocial networksViraladvertisingUser privacy perceptionComunidad generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/d6ec21b8-86de-4766-9e33-cfb900f81640/download6987b791264a2b5525252450f99b10d1MD51ORIGINALA_Simplified_Mobile_Advertising_Model_to_Study_Advertising_Spreading_through_Personal_Social_Networks_and_Branded_Apps.pdfA_Simplified_Mobile_Advertising_Model_to_Study_Advertising_Spreading_through_Personal_Social_Networks_and_Branded_Apps.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf3534973https://red.uao.edu.co/bitstreams/575bbf75-06b7-477f-931a-912eb89b4526/download3ac8b5405608dca499bdf48b479ca650MD52TEXTA_Simplified_Mobile_Advertising_Model_to_Study_Advertising_Spreading_through_Personal_Social_Networks_and_Branded_Apps.pdf.txtA_Simplified_Mobile_Advertising_Model_to_Study_Advertising_Spreading_through_Personal_Social_Networks_and_Branded_Apps.pdf.txtExtracted texttext/plain93771https://red.uao.edu.co/bitstreams/4882f03a-928f-467f-96b1-a67a9b41552c/downloadf51196e2a8fc630fe188a5a77561ffecMD53THUMBNAILA_Simplified_Mobile_Advertising_Model_to_Study_Advertising_Spreading_through_Personal_Social_Networks_and_Branded_Apps.pdf.jpgA_Simplified_Mobile_Advertising_Model_to_Study_Advertising_Spreading_through_Personal_Social_Networks_and_Branded_Apps.pdf.jpgGenerated Thumbnailimage/jpeg13061https://red.uao.edu.co/bitstreams/4c091b13-1e08-48d3-900c-e60d68419cb0/downloadeec614a18c60543ddbe55f9b95048372MD5410614/15530oai:red.uao.edu.co:10614/155302024-04-13 03:01:06.66https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Taylor y Francis Group, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==