Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System
Fe0.70Al0.30 alloy is a bcc and ferromagnetic phase, being the Al atoms magnetic dilutor. In this work, we study the effect of the Nb on the structural and hyperfine behavior of the Fe0.70Al0.30 alloy when atoms of Nb substitute atoms of Fe or Al. The nanostructured system of (Fe0.70Al0.30)1-xNbx (x...
- Autores:
-
Pérez Alcázar, German Antonio
Colorado Restrepo, Hernán Darío
Zamora Alfonso, Ligia Edith
Rodríguez Jacobo, Ruby Rocío
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13247
- Acceso en línea:
- https://hdl.handle.net/10614/13247
- Palabra clave:
- Aleación mecánica
Aleaciones
Mechanical alloying
Alloys
- Rights
- openAccess
- License
- https://creativecommons.org/licenses/by-nc-nd/4.0/
id |
REPOUAO2_d6ad88d6539c680dec8e3dac1ddcdeed |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13247 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System |
title |
Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System |
spellingShingle |
Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System Aleación mecánica Aleaciones Mechanical alloying Alloys |
title_short |
Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System |
title_full |
Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System |
title_fullStr |
Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System |
title_full_unstemmed |
Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System |
title_sort |
Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 System |
dc.creator.fl_str_mv |
Pérez Alcázar, German Antonio Colorado Restrepo, Hernán Darío Zamora Alfonso, Ligia Edith Rodríguez Jacobo, Ruby Rocío |
dc.contributor.author.spa.fl_str_mv |
Pérez Alcázar, German Antonio |
dc.contributor.author.none.fl_str_mv |
Colorado Restrepo, Hernán Darío Zamora Alfonso, Ligia Edith Rodríguez Jacobo, Ruby Rocío |
dc.contributor.corporatename.eng.fl_str_mv |
Journal of Physics: Conference Series |
dc.subject.armarc.spa.fl_str_mv |
Aleación mecánica Aleaciones |
topic |
Aleación mecánica Aleaciones Mechanical alloying Alloys |
dc.subject.armarc.eng.fl_str_mv |
Mechanical alloying Alloys |
description |
Fe0.70Al0.30 alloy is a bcc and ferromagnetic phase, being the Al atoms magnetic dilutor. In this work, we study the effect of the Nb on the structural and hyperfine behavior of the Fe0.70Al0.30 alloy when atoms of Nb substitute atoms of Fe or Al. The nanostructured system of (Fe0.70Al0.30)1-xNbx (x = 0, 0.05, 0.10, 0.20, at. %) was obtained by alloying Fe, Al and Nb powders in a planetary ball mill during 12 h, 24 h and 36 h, and a ball mass to powder mass relation of 10:1. The magnetic and hyperfine properties of the samples were studied by X-ray diffraction (XRD) and Mössbauer Spectrometry (MS) at room temperature, respectively. The X-ray diffraction patterns for x=0 showed the bcc-α FeAl structure and its lattice parameter is approximately constant with milling times (∼ 2.91 Å). For x=0.05, 0.10 and 0.20 the patterns showed the coexistence of the α-FeAl, Nb(Fe,Al)2 structural phases with an amorphous component. The Mössbauer spectra of x=0 samples were fitted using hyperfine magnetic field distributions (HMFDs), and the obtained mean hyperfine fields (MHF) were 23.4, 24.2, and 24.3 T for 12, 24, and 36 h of milling time, respectively, which correspond to the α-FeAl structure. The spectra of the samples with x=0.05 and 0.10 were fitted using a model with two components, the first one is a HMFD attributed to the bcc-FeAlNb structure and the second with two doublets attributed to the Nb(Fe,Al)2 structure. When atomic percentage of Nb increases up to 20 at. % the ferromagnetic behavior is diluted due to substitution of Fe-atoms by Nb and Al atoms in the bcc-FeAlNb structure. The magnetic behavior becomes paramagnetic at x=0.20, the spectra were fitted with three doublets, one of them related with bcc-FeAlNb structure and the others to the Nb(Fe,Al)2 structural phase. The alloying of Nb to the Fe0.70Al0.30 system destroyed the magnetism due the substitution of Fe by Nb atoms and generates an amorphization into the system |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-09-22T21:00:27Z |
dc.date.available.none.fl_str_mv |
2021-09-22T21:00:27Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13247 |
url |
https://hdl.handle.net/10614/13247 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
7 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
Volumen 1541 |
dc.relation.cites.spa.fl_str_mv |
Rodríguez, R. R., Pérez Alcázar, G. A., Colorado, H., Zamora, L. E.(2020). Variation of structural and hyperfine parameters of (Fe0.70Al0.30)1-xNbx, with x= 0, 0.05, 0.10 and 0.20 System. Journal of Physics: Conference Series. Vol.1541. 1-7. doi:10.1088/1742-6596/1541/1/012014 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of Physics: conference Series |
dc.relation.references.spa.fl_str_mv |
C. Suryanarayana, 2001, Progress in Material Science. 46 1–184 Pappas D., 2011, Journal of Vacuum Science & Technology A 29, 020801 E.J. Lavernia, T.S. Srivatsan, 2010, The rapid solidification processing of materials: science, principles, technology, advances, and applications, J. Mater. Sci. 45 287–325 J.S. Benjamin, T.E. Volin, 1974, The mechanism of mechanical alloying, Metallurgical Transactions, 5, 1929–1934 J.S. Blazquez, J.J. Ipus, S. Lozano-Perez, A. Conde, 2013 Metastable soft magnetic materials produced by mechanical alloying: analysis using an equivalent time approach, JOM 65, 870–882 A.F. Manchón-Gordón, J.J. Ipus, J.S. Blázquez, C.F. Conde, A. Conde, 2018, , Journal of NonCrystalline Solids 494 78–85 G. Sauthoff, 1995, Intermetallics VCH, Weinheim, Germany L. Machon, G. Sauthoff, 1996, Intermetallics, Deformation behaviour of Al-containing Cl4 Laves phase alloys, 4, 469–481 G. Sauthoff, 2000, Intermetallics, Multiphase intermetallic alloys for structural applications, 8, 1101–1109 D.G. Morris, M.A. Munoz-Morris, L.M. Requejo, C. Baudin, 2006, Strengthening at high temperatures by precipitates in Fe-Al-Nb alloys, Intermetallics, 14, 1204–1207 D.G. Morris, L.M. Requejo, M.A. Munoz-Morris, 2006, Age hardening in some Fe–Al–Nb alloys, Scr. Mater. 54, 393–397 F. Stein,C. He, O. Prymak, S. Voß, I. Wossack, 2015, Phase equilibria in the Fe-Al-Nb system: Solidification behaviour, liquidus surface and isothermal sections, Intermetallics 59, 43-58 M. M. Rico, Ligia E. Zamora, G.A. Perez Alcázar, J.M. Gonzales and A. Hernando JR, 2000, Magnetic and structural study of mechanically alloyed Fe0.7-XMnXA0.30, Phys. Stat. sol. (b) 220, 445 J.S. Blázquez, J.J. Ipus, C.F. Conde, A. Conde, 2012, Comparison of equivalent ball milling processes on Fe70Zr30 and Fe70Nb30, Journal of Alloys and Compounds 536S, S9– S12 Y. Ruan, Q.Q. Gu, P. Lü, H.P.Wang, B.Wei 2016, Rapid eutectic growth and applied performances of Fe-Al-Nb alloy solidified under electromagnetic levitation condition. Materials and Design. 112, 239-245 D.G. Morris*, L.M. Requejo, M.A. Muñoz-Morris, 2005, A study of precipitation in DO3 ordered Fe–Al–Nb alloy, Intermetallics 13, 862–871 G.Y. Vélez, G. A. Pérez Alcázar, Ligia E. Zamora, J. A. Tabares, 2014, Structural and Magnetic Study of the Fe2Nb Alloy Obtained by Mechanical Alloying and Sintering, J Supercond Nov Magn, 27, 1279-1283 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
7 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Institute of Physics - IOP |
dc.publisher.place.spa.fl_str_mv |
Armenia |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/d1a46aec-b84b-42d6-9c28-8abd85d4b36c/download https://red.uao.edu.co/bitstreams/72c91293-8eda-4328-9e68-ce3d74d16405/download https://red.uao.edu.co/bitstreams/61d6b788-a838-4f22-9bce-3e9de67fc61b/download https://red.uao.edu.co/bitstreams/0f71d469-a909-49be-8a3c-41181ec2bbfa/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 f77d2e7c303efc22a8f0cc85f4f1b747 5e9496276e98cc68623210453aa123d8 ba65cb42d5d36d666bebe65fff4623c9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259933694132224 |
spelling |
Pérez Alcázar, German Antoniod08eab27f2f02ab376dbdd6b752d2328Colorado Restrepo, Hernán Darío7f8ca9e2cbe6ec1ae0b460d83c236071Zamora Alfonso, Ligia Edithaef5d0507e9fa6ec5ad90766356f0decRodríguez Jacobo, Ruby Rocíovirtual::4407-1Journal of Physics: Conference Series2021-09-22T21:00:27Z2021-09-22T21:00:27Z2020https://hdl.handle.net/10614/13247Fe0.70Al0.30 alloy is a bcc and ferromagnetic phase, being the Al atoms magnetic dilutor. In this work, we study the effect of the Nb on the structural and hyperfine behavior of the Fe0.70Al0.30 alloy when atoms of Nb substitute atoms of Fe or Al. The nanostructured system of (Fe0.70Al0.30)1-xNbx (x = 0, 0.05, 0.10, 0.20, at. %) was obtained by alloying Fe, Al and Nb powders in a planetary ball mill during 12 h, 24 h and 36 h, and a ball mass to powder mass relation of 10:1. The magnetic and hyperfine properties of the samples were studied by X-ray diffraction (XRD) and Mössbauer Spectrometry (MS) at room temperature, respectively. The X-ray diffraction patterns for x=0 showed the bcc-α FeAl structure and its lattice parameter is approximately constant with milling times (∼ 2.91 Å). For x=0.05, 0.10 and 0.20 the patterns showed the coexistence of the α-FeAl, Nb(Fe,Al)2 structural phases with an amorphous component. The Mössbauer spectra of x=0 samples were fitted using hyperfine magnetic field distributions (HMFDs), and the obtained mean hyperfine fields (MHF) were 23.4, 24.2, and 24.3 T for 12, 24, and 36 h of milling time, respectively, which correspond to the α-FeAl structure. The spectra of the samples with x=0.05 and 0.10 were fitted using a model with two components, the first one is a HMFD attributed to the bcc-FeAlNb structure and the second with two doublets attributed to the Nb(Fe,Al)2 structure. When atomic percentage of Nb increases up to 20 at. % the ferromagnetic behavior is diluted due to substitution of Fe-atoms by Nb and Al atoms in the bcc-FeAlNb structure. The magnetic behavior becomes paramagnetic at x=0.20, the spectra were fitted with three doublets, one of them related with bcc-FeAlNb structure and the others to the Nb(Fe,Al)2 structural phase. The alloying of Nb to the Fe0.70Al0.30 system destroyed the magnetism due the substitution of Fe by Nb atoms and generates an amorphization into the system7 páginasapplication/pdfengInstitute of Physics - IOPArmeniahttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Variation of structural and hyperfine parameters of (Fe0.70Al0.30) 1-xNbx , with x=0, 0.05, 0.10 and 0.20 SystemArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aleación mecánicaAleacionesMechanical alloyingAlloys71Volumen 1541Rodríguez, R. R., Pérez Alcázar, G. A., Colorado, H., Zamora, L. E.(2020). Variation of structural and hyperfine parameters of (Fe0.70Al0.30)1-xNbx, with x= 0, 0.05, 0.10 and 0.20 System. Journal of Physics: Conference Series. Vol.1541. 1-7. doi:10.1088/1742-6596/1541/1/012014Journal of Physics: conference SeriesC. Suryanarayana, 2001, Progress in Material Science. 46 1–184Pappas D., 2011, Journal of Vacuum Science & Technology A 29, 020801E.J. Lavernia, T.S. Srivatsan, 2010, The rapid solidification processing of materials: science, principles, technology, advances, and applications, J. Mater. Sci. 45 287–325J.S. Benjamin, T.E. Volin, 1974, The mechanism of mechanical alloying, Metallurgical Transactions, 5, 1929–1934J.S. Blazquez, J.J. Ipus, S. Lozano-Perez, A. Conde, 2013 Metastable soft magnetic materials produced by mechanical alloying: analysis using an equivalent time approach, JOM 65, 870–882A.F. Manchón-Gordón, J.J. Ipus, J.S. Blázquez, C.F. Conde, A. Conde, 2018, , Journal of NonCrystalline Solids 494 78–85G. Sauthoff, 1995, Intermetallics VCH, Weinheim, GermanyL. Machon, G. Sauthoff, 1996, Intermetallics, Deformation behaviour of Al-containing Cl4 Laves phase alloys, 4, 469–481G. Sauthoff, 2000, Intermetallics, Multiphase intermetallic alloys for structural applications, 8, 1101–1109D.G. Morris, M.A. Munoz-Morris, L.M. Requejo, C. Baudin, 2006, Strengthening at high temperatures by precipitates in Fe-Al-Nb alloys, Intermetallics, 14, 1204–1207D.G. Morris, L.M. Requejo, M.A. Munoz-Morris, 2006, Age hardening in some Fe–Al–Nb alloys, Scr. Mater. 54, 393–397F. Stein,C. He, O. Prymak, S. Voß, I. Wossack, 2015, Phase equilibria in the Fe-Al-Nb system: Solidification behaviour, liquidus surface and isothermal sections, Intermetallics 59, 43-58M. M. Rico, Ligia E. Zamora, G.A. Perez Alcázar, J.M. Gonzales and A. Hernando JR, 2000, Magnetic and structural study of mechanically alloyed Fe0.7-XMnXA0.30, Phys. Stat. sol. (b) 220, 445J.S. Blázquez, J.J. Ipus, C.F. Conde, A. Conde, 2012, Comparison of equivalent ball milling processes on Fe70Zr30 and Fe70Nb30, Journal of Alloys and Compounds 536S, S9– S12Y. Ruan, Q.Q. Gu, P. Lü, H.P.Wang, B.Wei 2016, Rapid eutectic growth and applied performances of Fe-Al-Nb alloy solidified under electromagnetic levitation condition. Materials and Design. 112, 239-245D.G. Morris*, L.M. Requejo, M.A. Muñoz-Morris, 2005, A study of precipitation in DO3 ordered Fe–Al–Nb alloy, Intermetallics 13, 862–871G.Y. Vélez, G. A. Pérez Alcázar, Ligia E. Zamora, J. A. Tabares, 2014, Structural and Magnetic Study of the Fe2Nb Alloy Obtained by Mechanical Alloying and Sintering, J Supercond Nov Magn, 27, 1279-1283GeneralPublicationd9acf1a6-b118-4f80-95fd-f8f897ba2e35virtual::4407-1d9acf1a6-b118-4f80-95fd-f8f897ba2e35virtual::4407-1https://scholar.google.com/citations?view_op=list_works&hl=es&user=VFcKgCkAAAAJvirtual::4407-10000-0002-7520-6703virtual::4407-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000253790virtual::4407-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/d1a46aec-b84b-42d6-9c28-8abd85d4b36c/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINAL00386_Variation of structural and hyperfine parameters of (Fe0.70Al0.30)1-xNbx, with x=0, 0.05, 0.10 and 0.20 system.pdf00386_Variation of structural and hyperfine parameters of (Fe0.70Al0.30)1-xNbx, with x=0, 0.05, 0.10 and 0.20 system.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf355953https://red.uao.edu.co/bitstreams/72c91293-8eda-4328-9e68-ce3d74d16405/downloadf77d2e7c303efc22a8f0cc85f4f1b747MD53TEXT00386_Variation of structural and hyperfine parameters of (Fe0.70Al0.30)1-xNbx, with x=0, 0.05, 0.10 and 0.20 system.pdf.txt00386_Variation of structural and hyperfine parameters of (Fe0.70Al0.30)1-xNbx, with x=0, 0.05, 0.10 and 0.20 system.pdf.txtExtracted texttext/plain17892https://red.uao.edu.co/bitstreams/61d6b788-a838-4f22-9bce-3e9de67fc61b/download5e9496276e98cc68623210453aa123d8MD54THUMBNAIL00386_Variation of structural and hyperfine parameters of (Fe0.70Al0.30)1-xNbx, with x=0, 0.05, 0.10 and 0.20 system.pdf.jpg00386_Variation of structural and hyperfine parameters of (Fe0.70Al0.30)1-xNbx, with x=0, 0.05, 0.10 and 0.20 system.pdf.jpgGenerated Thumbnailimage/jpeg11883https://red.uao.edu.co/bitstreams/0f71d469-a909-49be-8a3c-41181ec2bbfa/downloadba65cb42d5d36d666bebe65fff4623c9MD5510614/13247oai:red.uao.edu.co:10614/132472024-03-14 08:48:11.359https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |