Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites

This work presents the results of a study on the use of Colombian rice husk (RH) for property modification of unfilled Polypropylene (PP). RH is an agro-industrial by-product generated in the rice mills after the separation process of the grain. Here, RH particles were characterized by thermogravime...

Full description

Autores:
Hidalgo Salazar, Miguel Ángel
Salinas Caicedo, Elizabeth
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11529
Acceso en línea:
http://hdl.handle.net/10614/11529
https://doi.org/10.1016/j.compositesb.2019.107135
Palabra clave:
Biocomposites
Polypropylene
Polypropylene
Colombian rice husk
Injection molding
3D macroscopy
Organic wastes
Agricultural wastes
Residuos orgánicos
Residuos agrícolas
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_d43beeaa055af225b5c22ae5bb6d2523
oai_identifier_str oai:red.uao.edu.co:10614/11529
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites
title Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites
spellingShingle Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites
Biocomposites
Polypropylene
Polypropylene
Colombian rice husk
Injection molding
3D macroscopy
Organic wastes
Agricultural wastes
Residuos orgánicos
Residuos agrícolas
title_short Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites
title_full Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites
title_fullStr Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites
title_full_unstemmed Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites
title_sort Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites
dc.creator.fl_str_mv Hidalgo Salazar, Miguel Ángel
Salinas Caicedo, Elizabeth
dc.contributor.author.none.fl_str_mv Hidalgo Salazar, Miguel Ángel
Salinas Caicedo, Elizabeth
dc.subject.eng.fl_str_mv Biocomposites
Polypropylene
Polypropylene
Colombian rice husk
Injection molding
3D macroscopy
topic Biocomposites
Polypropylene
Polypropylene
Colombian rice husk
Injection molding
3D macroscopy
Organic wastes
Agricultural wastes
Residuos orgánicos
Residuos agrícolas
dc.subject.lemb.eng.fl_str_mv Organic wastes
Agricultural wastes
dc.subject.armarc.spa.fl_str_mv Residuos orgánicos
Residuos agrícolas
description This work presents the results of a study on the use of Colombian rice husk (RH) for property modification of unfilled Polypropylene (PP). RH is an agro-industrial by-product generated in the rice mills after the separation process of the grain. Here, RH particles were characterized by thermogravimetric analysis (TGA) and 3D microscopy. PP-RH biocomposites were prepared using extrusion and injection molding processes with RH loadings of 10, 20, and 30 wt %. Also, the manufacture of PP-RH based products through an industrial scale injection molding process was explored. Results showed that biocomposites tensile and flexural modulus increased up to 63 and 75% respectively as compared with neat PP. However, the elongation at break decreased as the RH loading increased. TGA studies reveal that RH addition increases the thermal stability of the PP matrix up to 63 °C. Also, DMA and 3d microscopy showed improvements in the biocomposites dimensional stability due to RH addition. Finally, it was possible to manufacture and study a product of a PP-RH biocomposite through an industrial scale injection molding process. This study explores the real possibilities of this agro-industrial by-product to be used as reinforcement for polymer matrix composites
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-19T16:45:50Z
dc.date.available.none.fl_str_mv 2019-11-19T16:45:50Z
dc.date.issued.none.fl_str_mv 2019-11-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 13598368
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11529
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.compositesb.2019.107135
identifier_str_mv 13598368
url http://hdl.handle.net/10614/11529
https://doi.org/10.1016/j.compositesb.2019.107135
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationvolume.none.fl_str_mv 176
dc.relation.cites.eng.fl_str_mv Hidalgo-Salazar, M. A., & Salinas, E. (2019). Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Composites Part B: Engineering, 176, 107135
dc.relation.ispartofjournal.eng.fl_str_mv Composites Part B: Engineering
dc.relation.references.none.fl_str_mv [1] V€ais€anen T, Das O, Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 2017;149:582–96. https://doi.org/10.1016/J.JCLEPRO.2017.02.132.
[2] Pickering KL, Efendy MGA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 2016;83:98–112. https://doi.org/10.1016/J.COMPOSITESA.2015.08.038.
[3] Posada JA, Osseweijer P. Socioeconomic and environmental considerations for sustainable supply and fractionation of lignocellulosic biomass in a biorefinery context. Biomass Fractionation Technol Lignocellulosic Feedstock Based Biorefinery 2016:611–31. https://doi.org/10.1016/B978-0-12-802323-5.00026-8.
[4] Hagemann N, Gawel E, Purkus A, Pannicke N, Hauck J. Possible futures towards awood-based bioeconomy: a Scenario Analysis for Germany. Sustain 2016. https://doi.org/10.3390/su8010098.
[5] Hidalgo-Salazar MA, Mina JH, Herrera-Franco PJ. The effect of interfacial adhesión on the creep behaviour of LDPE–Al–Fique composite materials. Compos B Eng 2013;55:345–51. https://doi.org/10.1016/J.COMPOSITESB.2013.06.032.
[6] Hidalgo-Salazar MA, Correa JP. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results Phys 2018;8:461–7. https://doi.org/10.1016/J.RINP.2017.12.025.
[7] Mantia FP La, Morreale M. Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Compos Interfac 2007; 14:685–98. https://doi.org/10.1163/156855407782106500.
[8] Mu~noz-Velez M, Hidalgo-Salazar M, Mina-Hernandez J, Mu~noz-Velez MF, Hidalgo-Salazar MA, Mina-Hernandez JH. Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite. Polymers (Basel) 2018;10:1050. https://doi.org/10.3390/polym10101050.
[9] Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 2003;63:1259–64. https://doi.org/10.1016/S0266-3538(03)00096-4.
[10] Essabir H, Raji M, Laaziz SA, Rodrique D, Bouhfid R, el kacem Qaiss A. Thermomechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Compos B Eng 2018;149:1–11. https://doi.org/10.1016/J.COMPOSITESB.2018.05.020.
[11] Sanchez-Safont EL, Aldureid A, Lagaron JM, Gamez-Perez J, Cabedo L. Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos B Eng 2018;145:215–25. https://doi.org/10.1016/J. COMPOSITESB.2018.03.037.
[12] Tanguy M, Bourmaud A, Beaugrand J, Gaudry T, Baley C. Polypropylene reinforcement with flax or jute fibre; Influence of microstructure and constituents properties on the performance of composite. Compos B Eng 2018;139:64–74. https://doi.org/10.1016/J.COMPOSITESB.2017.11.061.
[13] Dunne R, Desai D, Sadiku R, Jayaramudu J. A review of natural fibres, their sustainability and automotive applications. J Reinf Plast Compos 2016;35: 1041–50. https://doi.org/10.1177/0731684416633898.
[14] Huda MS, Drzal LT, Ray D, Mohanty AK, Mishra M. Natural-fiber composites in the automotive sector. Prop. Perform. Nat. Compos.. Woodhead Publishing; 2008. p. 221–68. https://doi.org/10.1533/9781845694593.2.221.
[15] Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2019;208:785–94. https://doi.org/10.1016/J.JCLEPRO.2018.10.099.
[16] Ramamoorthy SK, Skrifvars M, Persson A. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 2015;55: 107–62. https://doi.org/10.1080/15583724.2014.971124.
[17] Fao. www.fao.org/economic/RMM/es Rice-Network @fao.org; 2017.
[18] Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 2012;37:1552–96. https://doi.org/10.1016/J.PROGPOLYMSCI.2012.04.003.
[19] Chen RS, Ahmad S. Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Mater Chem Phys 2017;198: 57–65. https://doi.org/10.1016/J.MATCHEMPHYS.2017.05.054.
[20] Majeed K, Arjmandi R, Al-Maadeed MA, Hassan A, Ali Z, Khan AU, et al. Structural properties of rice husk and its polymer matrix composites: an overview. Lignocellul Fibre Biomass-Based Compos Mater 2017:473–90. https://doi.org/10.1016/B978-0-08-100959-8.00022-6.
[21] Arjmandi R, Hassan A, Majeed K, Zakaria Z. Rice husk filled polymer composites. Int J Polym Sci 2015;2015:1–32. https://doi.org/10.1155/2015/501471.
[22] Premalal HGB, Ismail H, Baharin A. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 2002;21:833–9. 00018-1.
[23] Burgstaller C. A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Compos B Eng 2014; 67:192–8. https://doi.org/10.1016/J.COMPOSITESB.2014.07.010.
[24] Khalf AI, Ward AA. Use of rice husks as potential filler in styrene butadiene rubber/linear low density polyethylene blends in the presence of maleic anhydride. Mater Des 2010;31:2414–21. https://doi.org/10.1016/J.MATDES.2009.11.056.
[25] Toro P, Quijada R, Murillo O, Yazdani-Pedram M. Study of the morphology and mechanical properties of polypropylene composites with silica or rice-husk. Polym Int 2005;54:730–4. https://doi.org/10.1002/pi.1740.
[26] Kim HS, Yang HS, Kim HJ, Park HJ. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Calorim 2004;76:395–404. https://doi.org/10.1023/B:JTAN.0000028020.02657.9b.
[27] Chen RS, Ab Ghani MH, Salleh MN, Ahmad S, Tarawneh MA. Mechanical, wáter absorption, and morphology of recycled polymer blend rice husk flour biocomposites. J Appl Polym Sci 2015;132. https://doi.org/10.1002/app.41494.n/a-n/a.
[28] Ayswarya EP, Vidya Francis KF, Renju VS, Thachil ET. Rice husk ash – a valuable reinforcement for high density polyethylene. Mater Des 2012;41:1–7. https://doi.org/10.1016/J.MATDES.2012.04.035.
[29] Zhao Q, Zhang B, Quan H, Yam RCM, Yuen RKK, Li RKY. Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Compos Sci Technol 2009;69: 2675–81. https://doi.org/10.1016/J.COMPSCITECH.2009.08.009.
[30] Chen RS, Ahmad S, Gan S, Tarawneh MA. High loading rice husk green composites: dimensional stability, tensile behavior and prediction, and combustion properties. J Thermoplast Compos Mater 2019. https://doi.org/10.1177/0892705718815536.089270571881553.
[31] Pramanick A, Sain M. Nonlinear viscoelastic creep characterization of HDPE-rice husk composites. Polym Polym Compos 2005;13:581–98. https://doi.org/10.1177/096739110501300604.
[32] Favaro SL, Lopes MS, Vieira de Carvalho Neto AG, Rogerio de Santana R, Radovanovic E. Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos Part A Appl Sci Manuf 2010;41:154–60. https://doi.org/10.1016/j.compositesa.2009.09.021.
[33] Latif R, Wakeel S, Zaman Khan N, Noor Siddiquee A, Lal Verma S, Akhtar Khan Z. Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinf Plast Compos 2019;38:15–30. https://doi.org/10.1177/0731684418802022.
[34] AL-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque ME. Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 2015; 206:42–54. https://doi.org/10.1016/j.synthmet.2015.04.014.
[35] Hidalgo-Salazar MA, Correa JP. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results Phys 2018;8:461–7. https://doi.org/10.1016/J.RINP.2017.12.025.
[36] Montalvo Navarrete JI, Hidalgo-Salazar MA, Escobar Nunez E, Rojas Arciniegas AJ. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf 2018;12:449–58. https://doi.org/10.1007/s12008-017- 0411-2.
[37] Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 2012;37:1552–96. https://doi.org/10.1016/j.progpolymsci.2012.04.003.
[38] Hidalgo-Salazar MA, Correa-Aguirre JP, Montalvo-Navarrete JM, Lopez-Rodriguez DFR-GA. Recycled polypropylene-coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies. In: Achilias D, editor. Polym. Recycl.. Intech Open; 2018. https://doi.org/10.5772/intechopen.81635.
[39] Yam RCM, Mak DMT. A cleaner production of rice husk-blended polypropylene eco-composite by gas-assisted injection moulding. J Clean Prod 2014;67:277–84. https://doi.org/10.1016/J.JCLEPRO.2013.12.038.
[40] Nielsen TD, Holmberg K, Stripple J. Need a bag? A review of public policies on plastic carrier bags – where, how and to what effect? Waste Manag 2019;87: 428–40. https://doi.org/10.1016/J.WASMAN.2019.02.025.
[41] Heidbreder LM, Bablok I, Drews S, Menzel C. Tackling the plastic problem: a review on perceptions, behaviors, and interventions. Sci Total Environ 2019;668: 1077–93. https://doi.org/10.1016/J.SCITOTENV.2019.02.437.
[42] Wagner TP. Reducing single-use plastic shopping bags in the USA. Waste Manag 2017;70:3–12. https://doi.org/10.1016/J.WASMAN.2017.09.003.
[43] Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2018. https://doi.org/10.1016/J.JCLEPRO.2018.10.099.
[44] Ahmed AK, Atiqullah M, Pradhan DR, Al-Harthi MA. Crystallization and melting behavior of i-PP: a perspective from Flory’s thermodynamic equilibrium theory and DSC experiment. RSC Adv 2017;7:42491–504. https://doi.org/10.1039/C7RA06845J.
[45] Jeske H, Schirp A, Cornelius F. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in Wood plastic composites (WPC). Thermochim Acta 2012;543:165–71. https://doi.org/10.1016/J.TCA.2012.05.016.
[46] Ahiduzzaman M, Islam AKMS. Thermo-gravimetric and kinetic analysis of different varieties of rice husk. In: Procedia eng., vol. 105. Elsevier; 2015. p. 646–51. https://doi.org/10.1016/j.proeng.2015.05.043.
[47] Soltani N, Bahrami A, Pech-Canul MI, Gonzalez LA. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 2015; 264:899–935. https://doi.org/10.1016/J.CEJ.2014.11.056.
[48] Huang Z, Wang N, Zhang Y, Hu H, Luo Y. Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Compos Part A Appl Sci Manuf 2012;43:114–20. https://doi.org/10.1016/J.COMPOSITESA.2011.09.025.
[49] Khan MN, Roy JK, Akter N, Zaman HU, Islam T, Khan RA. Production and properties of short jute and short E-glass fiber reinforced polypropylene-based composites. Open J Compos Mater 2012;02:40–7. https://doi.org/10.4236/ojcm.2012.22006.
[50] Hidalgo-Salazar MA, Mun~oz MF, Mina JH. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int J Polym Sci 2015. https://doi.org/10.1155/2015/386325.
[51] Rosa SML, Santos EF, Ferreira CA, Nachtigall SMB. Studies on the properties of rice-husk-filled-PP composites: effect of maleated PP. Mater Res 2009;12:333–8. https://doi.org/10.1590/S1516-14392009000300014.
[52] Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 2011;42:856–73. https://doi.org/10.1016/J.COMPOSITESB.2011.01.010.
[53] Cerqueira EF, Baptista CARP, Mulinari DR. Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Eng 2011;10:2046–51. https://doi.org/10.1016/J.PROENG.2011.04.339.
[54] Manshor MR, Anuar H, Nur Aimi MN, Ahmad Fitrie MI, Wan Nazri WB, Sapuan SM, et al. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater Des 2014;59:279–86. https://doi.org/10.1016/J.MATDES.2014.02.062.
[55] Rosa SML, Nachtigall SMB, Ferreira CA. Thermal and dynamic-mechanical characterization of rice-husk filled polypropylene composites. Macromol Res 2009; 17:8–13. https://doi.org/10.1007/BF03218594.
[56] Menard KP. Dynamic mechanical analysis : a practical introduction. CRC Press; 2008.
[57] Saba N, Jawaid M, Alothman OY, Paridah MT. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 2016;106:149–59. https://doi.org/10.1016/J.CONBUILDMAT.2015.12.075.
[58] Lila MK, Shukla K, Komal UK, Singh I. Accelerated thermal ageing behaviour of bagasse fibers reinforced Poly (Lactic Acid) based biocomposites. Compos B Eng 2019;156:121–7. https://doi.org/10.1016/J.COMPOSITESB.2018.08.068.
[59] Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 2007;77: 45–55. https://doi.org/10.1016/J.COMPSTRUCT.2005.06.005.
[60] Santos JD, Fajardo JI, Cuji AR, García JA, Garzon LE, Lopez LM. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers. Front Mech Eng 2015;10:287–93. https://doi.org/10.1007/s11465-015-0346-x.
[61] Azaman MD, Sapuan SM, Sulaiman S, Zainudin ES, Abdan K. An investigation of the processability of natural fibre reinforced polymer composites on shallow and flat thin-walled parts by injection moulding process. Mater Des 2013;50:451–6. https://doi.org/10.1016/J.MATDES.2013.03.036.
[62] Azaman MD, Sapuan SM, Sulaiman S, Zainudin ES, Khalina A. Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Mater Des 2013;52:1018–26. https://doi.org/10.1016/J.MATDES.2013.06.047.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Colombia
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Elsevier
dc.source.eng.fl_str_mv https://reader.elsevier.com/reader/sd/pii/S1359836818336655?token=8053D59BF2D6CF10F3CEF7956779A58A8C6AAC6E3F61D0C8EF99AF326CD31CBE0A7394A8BE4EA418CD2BBE76679DFAF3
https://www.sciencedirect.com/science/article/pii/S1359836818336655
dc.source.spa.fl_str_mv reponame:Repositorio Institucional UAO
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/66489add-0528-4672-bafd-0edfea43fe73/download
https://red.uao.edu.co/bitstreams/efdaf272-bec8-45b2-98c0-dcff9b55ce79/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478991608184832
spelling Hidalgo Salazar, Miguel Ángelvirtual::2132-1Salinas Caicedo, Elizabethefc098371de6da19ae9b20c548ef3094ColombiaUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-19T16:45:50Z2019-11-19T16:45:50Z2019-11-0113598368http://hdl.handle.net/10614/11529https://doi.org/10.1016/j.compositesb.2019.107135This work presents the results of a study on the use of Colombian rice husk (RH) for property modification of unfilled Polypropylene (PP). RH is an agro-industrial by-product generated in the rice mills after the separation process of the grain. Here, RH particles were characterized by thermogravimetric analysis (TGA) and 3D microscopy. PP-RH biocomposites were prepared using extrusion and injection molding processes with RH loadings of 10, 20, and 30 wt %. Also, the manufacture of PP-RH based products through an industrial scale injection molding process was explored. Results showed that biocomposites tensile and flexural modulus increased up to 63 and 75% respectively as compared with neat PP. However, the elongation at break decreased as the RH loading increased. TGA studies reveal that RH addition increases the thermal stability of the PP matrix up to 63 °C. Also, DMA and 3d microscopy showed improvements in the biocomposites dimensional stability due to RH addition. Finally, it was possible to manufacture and study a product of a PP-RH biocomposite through an industrial scale injection molding process. This study explores the real possibilities of this agro-industrial by-product to be used as reinforcement for polymer matrix compositesapplication/pdfengElsevierDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://reader.elsevier.com/reader/sd/pii/S1359836818336655?token=8053D59BF2D6CF10F3CEF7956779A58A8C6AAC6E3F61D0C8EF99AF326CD31CBE0A7394A8BE4EA418CD2BBE76679DFAF3https://www.sciencedirect.com/science/article/pii/S1359836818336655reponame:Repositorio Institucional UAOBiocompositesPolypropylenePolypropyleneColombian rice huskInjection molding3D macroscopyOrganic wastesAgricultural wastesResiduos orgánicosResiduos agrícolasMechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocompositesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85176Hidalgo-Salazar, M. A., & Salinas, E. (2019). Mechanical, thermal, viscoelastic performance and product application of PP-rice husk Colombian biocomposites. Composites Part B: Engineering, 176, 107135Composites Part B: Engineering[1] V€ais€anen T, Das O, Tomppo L. A review on new bio-based constituents for natural fiber-polymer composites. J Clean Prod 2017;149:582–96. https://doi.org/10.1016/J.JCLEPRO.2017.02.132.[2] Pickering KL, Efendy MGA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 2016;83:98–112. https://doi.org/10.1016/J.COMPOSITESA.2015.08.038.[3] Posada JA, Osseweijer P. Socioeconomic and environmental considerations for sustainable supply and fractionation of lignocellulosic biomass in a biorefinery context. Biomass Fractionation Technol Lignocellulosic Feedstock Based Biorefinery 2016:611–31. https://doi.org/10.1016/B978-0-12-802323-5.00026-8.[4] Hagemann N, Gawel E, Purkus A, Pannicke N, Hauck J. Possible futures towards awood-based bioeconomy: a Scenario Analysis for Germany. Sustain 2016. https://doi.org/10.3390/su8010098.[5] Hidalgo-Salazar MA, Mina JH, Herrera-Franco PJ. The effect of interfacial adhesión on the creep behaviour of LDPE–Al–Fique composite materials. Compos B Eng 2013;55:345–51. https://doi.org/10.1016/J.COMPOSITESB.2013.06.032.[6] Hidalgo-Salazar MA, Correa JP. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results Phys 2018;8:461–7. https://doi.org/10.1016/J.RINP.2017.12.025.[7] Mantia FP La, Morreale M. Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Compos Interfac 2007; 14:685–98. https://doi.org/10.1163/156855407782106500.[8] Mu~noz-Velez M, Hidalgo-Salazar M, Mina-Hernandez J, Mu~noz-Velez MF, Hidalgo-Salazar MA, Mina-Hernandez JH. Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite. Polymers (Basel) 2018;10:1050. https://doi.org/10.3390/polym10101050.[9] Wambua P, Ivens J, Verpoest I. Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 2003;63:1259–64. https://doi.org/10.1016/S0266-3538(03)00096-4.[10] Essabir H, Raji M, Laaziz SA, Rodrique D, Bouhfid R, el kacem Qaiss A. Thermomechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Compos B Eng 2018;149:1–11. https://doi.org/10.1016/J.COMPOSITESB.2018.05.020.[11] Sanchez-Safont EL, Aldureid A, Lagaron JM, Gamez-Perez J, Cabedo L. Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos B Eng 2018;145:215–25. https://doi.org/10.1016/J. COMPOSITESB.2018.03.037.[12] Tanguy M, Bourmaud A, Beaugrand J, Gaudry T, Baley C. Polypropylene reinforcement with flax or jute fibre; Influence of microstructure and constituents properties on the performance of composite. Compos B Eng 2018;139:64–74. https://doi.org/10.1016/J.COMPOSITESB.2017.11.061.[13] Dunne R, Desai D, Sadiku R, Jayaramudu J. A review of natural fibres, their sustainability and automotive applications. J Reinf Plast Compos 2016;35: 1041–50. https://doi.org/10.1177/0731684416633898.[14] Huda MS, Drzal LT, Ray D, Mohanty AK, Mishra M. Natural-fiber composites in the automotive sector. Prop. Perform. Nat. Compos.. Woodhead Publishing; 2008. p. 221–68. https://doi.org/10.1533/9781845694593.2.221.[15] Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2019;208:785–94. https://doi.org/10.1016/J.JCLEPRO.2018.10.099.[16] Ramamoorthy SK, Skrifvars M, Persson A. A review of natural fibers used in biocomposites: plant, animal and regenerated cellulose fibers. Polym Rev 2015;55: 107–62. https://doi.org/10.1080/15583724.2014.971124.[17] Fao. www.fao.org/economic/RMM/es Rice-Network @fao.org; 2017.[18] Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 2012;37:1552–96. https://doi.org/10.1016/J.PROGPOLYMSCI.2012.04.003.[19] Chen RS, Ahmad S. Mechanical performance and flame retardancy of rice husk/organoclay-reinforced blend of recycled plastics. Mater Chem Phys 2017;198: 57–65. https://doi.org/10.1016/J.MATCHEMPHYS.2017.05.054.[20] Majeed K, Arjmandi R, Al-Maadeed MA, Hassan A, Ali Z, Khan AU, et al. Structural properties of rice husk and its polymer matrix composites: an overview. Lignocellul Fibre Biomass-Based Compos Mater 2017:473–90. https://doi.org/10.1016/B978-0-08-100959-8.00022-6.[21] Arjmandi R, Hassan A, Majeed K, Zakaria Z. Rice husk filled polymer composites. Int J Polym Sci 2015;2015:1–32. https://doi.org/10.1155/2015/501471.[22] Premalal HGB, Ismail H, Baharin A. Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polym Test 2002;21:833–9. 00018-1.[23] Burgstaller C. A comparison of processing and performance for lignocellulosic reinforced polypropylene for injection moulding applications. Compos B Eng 2014; 67:192–8. https://doi.org/10.1016/J.COMPOSITESB.2014.07.010.[24] Khalf AI, Ward AA. Use of rice husks as potential filler in styrene butadiene rubber/linear low density polyethylene blends in the presence of maleic anhydride. Mater Des 2010;31:2414–21. https://doi.org/10.1016/J.MATDES.2009.11.056.[25] Toro P, Quijada R, Murillo O, Yazdani-Pedram M. Study of the morphology and mechanical properties of polypropylene composites with silica or rice-husk. Polym Int 2005;54:730–4. https://doi.org/10.1002/pi.1740.[26] Kim HS, Yang HS, Kim HJ, Park HJ. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Calorim 2004;76:395–404. https://doi.org/10.1023/B:JTAN.0000028020.02657.9b.[27] Chen RS, Ab Ghani MH, Salleh MN, Ahmad S, Tarawneh MA. Mechanical, wáter absorption, and morphology of recycled polymer blend rice husk flour biocomposites. J Appl Polym Sci 2015;132. https://doi.org/10.1002/app.41494.n/a-n/a.[28] Ayswarya EP, Vidya Francis KF, Renju VS, Thachil ET. Rice husk ash – a valuable reinforcement for high density polyethylene. Mater Des 2012;41:1–7. https://doi.org/10.1016/J.MATDES.2012.04.035.[29] Zhao Q, Zhang B, Quan H, Yam RCM, Yuen RKK, Li RKY. Flame retardancy of rice husk-filled high-density polyethylene ecocomposites. Compos Sci Technol 2009;69: 2675–81. https://doi.org/10.1016/J.COMPSCITECH.2009.08.009.[30] Chen RS, Ahmad S, Gan S, Tarawneh MA. High loading rice husk green composites: dimensional stability, tensile behavior and prediction, and combustion properties. J Thermoplast Compos Mater 2019. https://doi.org/10.1177/0892705718815536.089270571881553.[31] Pramanick A, Sain M. Nonlinear viscoelastic creep characterization of HDPE-rice husk composites. Polym Polym Compos 2005;13:581–98. https://doi.org/10.1177/096739110501300604.[32] Favaro SL, Lopes MS, Vieira de Carvalho Neto AG, Rogerio de Santana R, Radovanovic E. Chemical, morphological, and mechanical analysis of rice husk/post-consumer polyethylene composites. Compos Part A Appl Sci Manuf 2010;41:154–60. https://doi.org/10.1016/j.compositesa.2009.09.021.[33] Latif R, Wakeel S, Zaman Khan N, Noor Siddiquee A, Lal Verma S, Akhtar Khan Z. Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: a review. J Reinf Plast Compos 2019;38:15–30. https://doi.org/10.1177/0731684418802022.[34] AL-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque ME. Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 2015; 206:42–54. https://doi.org/10.1016/j.synthmet.2015.04.014.[35] Hidalgo-Salazar MA, Correa JP. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with epoxy resin and linear low density polyethylene. Results Phys 2018;8:461–7. https://doi.org/10.1016/J.RINP.2017.12.025.[36] Montalvo Navarrete JI, Hidalgo-Salazar MA, Escobar Nunez E, Rojas Arciniegas AJ. Thermal and mechanical behavior of biocomposites using additive manufacturing. Int J Interact Des Manuf 2018;12:449–58. https://doi.org/10.1007/s12008-017- 0411-2.[37] Faruk O, Bledzki AK, Fink H-P, Sain M. Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 2012;37:1552–96. https://doi.org/10.1016/j.progpolymsci.2012.04.003.[38] Hidalgo-Salazar MA, Correa-Aguirre JP, Montalvo-Navarrete JM, Lopez-Rodriguez DFR-GA. Recycled polypropylene-coffee husk and coir coconut biocomposites: morphological, mechanical, thermal and environmental studies. In: Achilias D, editor. Polym. Recycl.. Intech Open; 2018. https://doi.org/10.5772/intechopen.81635.[39] Yam RCM, Mak DMT. A cleaner production of rice husk-blended polypropylene eco-composite by gas-assisted injection moulding. J Clean Prod 2014;67:277–84. https://doi.org/10.1016/J.JCLEPRO.2013.12.038.[40] Nielsen TD, Holmberg K, Stripple J. Need a bag? A review of public policies on plastic carrier bags – where, how and to what effect? Waste Manag 2019;87: 428–40. https://doi.org/10.1016/J.WASMAN.2019.02.025.[41] Heidbreder LM, Bablok I, Drews S, Menzel C. Tackling the plastic problem: a review on perceptions, behaviors, and interventions. Sci Total Environ 2019;668: 1077–93. https://doi.org/10.1016/J.SCITOTENV.2019.02.437.[42] Wagner TP. Reducing single-use plastic shopping bags in the USA. Waste Manag 2017;70:3–12. https://doi.org/10.1016/J.WASMAN.2017.09.003.[43] Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2018. https://doi.org/10.1016/J.JCLEPRO.2018.10.099.[44] Ahmed AK, Atiqullah M, Pradhan DR, Al-Harthi MA. Crystallization and melting behavior of i-PP: a perspective from Flory’s thermodynamic equilibrium theory and DSC experiment. RSC Adv 2017;7:42491–504. https://doi.org/10.1039/C7RA06845J.[45] Jeske H, Schirp A, Cornelius F. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in Wood plastic composites (WPC). Thermochim Acta 2012;543:165–71. https://doi.org/10.1016/J.TCA.2012.05.016.[46] Ahiduzzaman M, Islam AKMS. Thermo-gravimetric and kinetic analysis of different varieties of rice husk. In: Procedia eng., vol. 105. Elsevier; 2015. p. 646–51. https://doi.org/10.1016/j.proeng.2015.05.043.[47] Soltani N, Bahrami A, Pech-Canul MI, Gonzalez LA. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J 2015; 264:899–935. https://doi.org/10.1016/J.CEJ.2014.11.056.[48] Huang Z, Wang N, Zhang Y, Hu H, Luo Y. Effect of mechanical activation pretreatment on the properties of sugarcane bagasse/poly(vinyl chloride) composites. Compos Part A Appl Sci Manuf 2012;43:114–20. https://doi.org/10.1016/J.COMPOSITESA.2011.09.025.[49] Khan MN, Roy JK, Akter N, Zaman HU, Islam T, Khan RA. Production and properties of short jute and short E-glass fiber reinforced polypropylene-based composites. Open J Compos Mater 2012;02:40–7. https://doi.org/10.4236/ojcm.2012.22006.[50] Hidalgo-Salazar MA, Mun~oz MF, Mina JH. Influence of incorporation of natural fibers on the physical, mechanical, and thermal properties of composites LDPE-Al reinforced with fique fibers. Int J Polym Sci 2015. https://doi.org/10.1155/2015/386325.[51] Rosa SML, Santos EF, Ferreira CA, Nachtigall SMB. Studies on the properties of rice-husk-filled-PP composites: effect of maleated PP. Mater Res 2009;12:333–8. https://doi.org/10.1590/S1516-14392009000300014.[52] Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos B Eng 2011;42:856–73. https://doi.org/10.1016/J.COMPOSITESB.2011.01.010.[53] Cerqueira EF, Baptista CARP, Mulinari DR. Mechanical behaviour of polypropylene reinforced sugarcane bagasse fibers composites. Procedia Eng 2011;10:2046–51. https://doi.org/10.1016/J.PROENG.2011.04.339.[54] Manshor MR, Anuar H, Nur Aimi MN, Ahmad Fitrie MI, Wan Nazri WB, Sapuan SM, et al. Mechanical, thermal and morphological properties of durian skin fibre reinforced PLA biocomposites. Mater Des 2014;59:279–86. https://doi.org/10.1016/J.MATDES.2014.02.062.[55] Rosa SML, Nachtigall SMB, Ferreira CA. Thermal and dynamic-mechanical characterization of rice-husk filled polypropylene composites. Macromol Res 2009; 17:8–13. https://doi.org/10.1007/BF03218594.[56] Menard KP. Dynamic mechanical analysis : a practical introduction. CRC Press; 2008.[57] Saba N, Jawaid M, Alothman OY, Paridah MT. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater 2016;106:149–59. https://doi.org/10.1016/J.CONBUILDMAT.2015.12.075.[58] Lila MK, Shukla K, Komal UK, Singh I. Accelerated thermal ageing behaviour of bagasse fibers reinforced Poly (Lactic Acid) based biocomposites. Compos B Eng 2019;156:121–7. https://doi.org/10.1016/J.COMPOSITESB.2018.08.068.[59] Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 2007;77: 45–55. https://doi.org/10.1016/J.COMPSTRUCT.2005.06.005.[60] Santos JD, Fajardo JI, Cuji AR, García JA, Garzon LE, Lopez LM. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers. Front Mech Eng 2015;10:287–93. https://doi.org/10.1007/s11465-015-0346-x.[61] Azaman MD, Sapuan SM, Sulaiman S, Zainudin ES, Abdan K. An investigation of the processability of natural fibre reinforced polymer composites on shallow and flat thin-walled parts by injection moulding process. Mater Des 2013;50:451–6. https://doi.org/10.1016/J.MATDES.2013.03.036.[62] Azaman MD, Sapuan SM, Sulaiman S, Zainudin ES, Khalina A. Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Mater Des 2013;52:1018–26. https://doi.org/10.1016/J.MATDES.2013.06.047.Publication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2132-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2132-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::2132-10000-0002-6907-2091virtual::2132-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::2132-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/66489add-0528-4672-bafd-0edfea43fe73/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/efdaf272-bec8-45b2-98c0-dcff9b55ce79/download20b5ba22b1117f71589c7318baa2c560MD5310614/11529oai:red.uao.edu.co:10614/115292024-03-06 09:45:32.715https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K