Locational marginal price forecasting using svr-based multi-output regression in electricity markets

Electricity markets provide valuable data for regulators, operators, and investors. The use of machine learning methods for electricity market data could provide new insights about the market, and this information could be used for decision-making. This paper proposes a tool based on multi-output re...

Full description

Autores:
Moreno Chuquen, Ricardo
Chamorro, Harold R.
Riquelme Domínguez, José Miguel
González Longatt, Francisco
Cantillo Luna, Sergio Alejandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14654
Acceso en línea:
https://hdl.handle.net/10614/14654
https://red.uao.edu.co/
Palabra clave:
Aprendizaje profundo (Aprendizaje automático)
Deep learning (Machine learning)
Electricity markets
Llocational marginal price (LMP)
Machine learning
Multi-output regression
Rights
openAccess
License
Derechos Reservados Revista Energies MDPI
id REPOUAO2_d1b41ac55f185c4f565fa86f3c020af7
oai_identifier_str oai:red.uao.edu.co:10614/14654
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Locational marginal price forecasting using svr-based multi-output regression in electricity markets
title Locational marginal price forecasting using svr-based multi-output regression in electricity markets
spellingShingle Locational marginal price forecasting using svr-based multi-output regression in electricity markets
Aprendizaje profundo (Aprendizaje automático)
Deep learning (Machine learning)
Electricity markets
Llocational marginal price (LMP)
Machine learning
Multi-output regression
title_short Locational marginal price forecasting using svr-based multi-output regression in electricity markets
title_full Locational marginal price forecasting using svr-based multi-output regression in electricity markets
title_fullStr Locational marginal price forecasting using svr-based multi-output regression in electricity markets
title_full_unstemmed Locational marginal price forecasting using svr-based multi-output regression in electricity markets
title_sort Locational marginal price forecasting using svr-based multi-output regression in electricity markets
dc.creator.fl_str_mv Moreno Chuquen, Ricardo
Chamorro, Harold R.
Riquelme Domínguez, José Miguel
González Longatt, Francisco
Cantillo Luna, Sergio Alejandro
dc.contributor.author.none.fl_str_mv Moreno Chuquen, Ricardo
Chamorro, Harold R.
Riquelme Domínguez, José Miguel
González Longatt, Francisco
Cantillo Luna, Sergio Alejandro
dc.subject.armarc.spa.fl_str_mv Aprendizaje profundo (Aprendizaje automático)
topic Aprendizaje profundo (Aprendizaje automático)
Deep learning (Machine learning)
Electricity markets
Llocational marginal price (LMP)
Machine learning
Multi-output regression
dc.subject.armarc.eng.fl_str_mv Deep learning (Machine learning)
dc.subject.proposal.eng.fl_str_mv Electricity markets
Llocational marginal price (LMP)
Machine learning
Multi-output regression
description Electricity markets provide valuable data for regulators, operators, and investors. The use of machine learning methods for electricity market data could provide new insights about the market, and this information could be used for decision-making. This paper proposes a tool based on multi-output regression method using support vector machines (SVR) for LMP forecasting. The input corresponds to the active power load of each bus, in this case obtained through Monte Carlo simulations, in order to forecast LMPs. The LMPs provide market signals for investors and regulators. The results showed the high performance of the proposed model, since the average prediction error for fitting and testing datasets of the proposed method on the dataset was less than 1%. This provides insights into the application of machine learning method for electricity markets given the context of uncertainty and volatility for either real-time and ahead markets
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-04-10T20:30:40Z
dc.date.available.none.fl_str_mv 2023-04-10T20:30:40Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1996-1073
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14654
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 1996-1073
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/14654
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.cites.spa.fl_str_mv Cantillo Luna, S.,; Moreno Chuquen, R.; Chamorro, H.R.; Riquelme Domínguez, J.M;, González Longatt, F. (2022). Locational marginal price forecasting using svr-based multi-output regression in electricity markets. Energies. 15 (1), 1-14. https://hdl.handle.net/10614/14654
dc.relation.ispartofjournal.eng.fl_str_mv Energies
dc.relation.references.none.fl_str_mv Orfanogianni, T.; Gross, G. A General Formulation for LMP Evaluation. IEEE Trans. Power Syst. 2007, 22, 1163–1173
Zheng, K.; Wang, Y.; Liu, K.; Chen, Q. Locational Marginal Price Forecasting: A Componential and Ensemble Approach. IEEE Trans. Smart Grid 2020, 11, 4555–4564
Nesti, T.; Moriarty, J.; Zocca, A.; Zwart, B. Large fluctuations in locational marginal prices. Philos. Trans. R. Soc. A 2021, 379, 20190438.
Yang, Y.; Tan, Z.; Yang, H.; Ruan, G.; Zhong, H. Short-Term Electricity Price Forecasting based on Graph Convolution Network and Attention Mechanism. arXiv 2021, arXiv:2107.12794.
Moreno, R.; Obando, J.; Gonzalez, G. An integrated OPF dispatching model with wind power and demand response for day-ahead markets. Int. J. Electr. Comput. Eng. 2019, 9, 2794–2802.
Moreno-Chuquen, R.; Cantillo, S. Assessment of a Multiperiod Optimal Power Flow for Power System Operation. Int. Rev. Electr. Eng. 2020, 15, 484–492.
Lago, J.; Ridder, F.D.; Vrancx, P.; Schuttera, B.D. Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. Appl. Energy 2018, 211, 890–903.
Cheng, H.; Ding, X.; Zhou, W.; Ding, R. A hybrid electricity price forecasting model with Bayesian optimization for German energy exchange. Int. J. Electr. Power Energy Syst. 2019, 100, 653–666.
Wang, D.; Yue, C.; ElAmraouid, A. Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy. Chaos Solitons Fractals 2021, 152, 111453
Hong, Y.Y.; Taylar, J.V.; Fajardo, A.C. Locational marginal price forecasting in a day-ahead power market using spatiotemporal deep learning network. Sustain. Energy Grids Netw. 2020, 24, 100406
Bernardi, M.; Lisi, F. Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case. Energies 2020, 13, 6191
Colella, P.; Mazza, A.; Bompard, E.; Chicco, G.; Russo, A.; Carlini, E.M.; Caprabianca, M.; Quaglia, F.; Luzi, L.; Nuzzo, G. Model-Based Identification of Alternative Bidding Zones: Applications of Clustering Algorithms with Topology Constraints. Energies 2021, 14, 2763
Chuquen, R.M.; Chamorro, H.R. Graph Theory Applications to Deregulated Power Systems; Springer International Publishing: Berlin, Germany, 2021
Germany, 2021. [CrossRef] 25. Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine. Energies 2020, 13, 2907. [
Ma, Z.; Zhong, H.; Xie, L.; Xia, Q.; Kang, C. Month ahead average daily electricity price profile forecasting based on a hybrid nonlinear regression and SVM model: An ERCOT case study. J. Mod. Power Syst. Clean Energy 2018, 6, 281–291.
Atef, S.; Eltawil, A.B. A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting in Smart Grids; IEEE: Piscataway, NJ, USA, 2019.
Zhang, Z.; Wu, M. Real-time Locational Marginal Price Forecasting Using Generative Adversarial Network. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, Tempe, AZ, USA, 11–13 November 2020
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
Department of Electrical Engineering, University of Washington. Power Systems Test Case Archive; Department of Electrical Engineering, University of Washington: Washington, DC, USA, 2021. Available online: http://labs.ece.uw.edu/pstca/ (accessed on 15 October 2021)
dc.rights.eng.fl_str_mv Derechos Reservados Revista Energies MDPI
Derechos reservados - MDPI, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados Revista Energies MDPI
Derechos reservados - MDPI, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Basel, Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/509c558b-2a91-49ec-a8de-4ffd4b5b2cfd/download
https://red.uao.edu.co/bitstreams/9a486336-73b9-46b2-97ba-0f9e61413b94/download
https://red.uao.edu.co/bitstreams/c2d17b29-de5d-4c11-9a58-6843ef102692/download
https://red.uao.edu.co/bitstreams/8bcca521-3d2b-4463-85c4-0f758be88a72/download
bitstream.checksum.fl_str_mv 1611b9bc3dbe3ffe244ca3321ba71f69
20b5ba22b1117f71589c7318baa2c560
f4fa4602b46f2b949dd6284b89b2f9d5
fd896f6f7069f1e9f3d0c84b6f7cfbc2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1828230004203323392
spelling Moreno Chuquen, Ricardo1ba55dc18211144016950d3899f50db9Chamorro, Harold R.4b08e14f56fb217874cde66f1d371352Riquelme Domínguez, José Miguelde4850f9f87bb692d72e823dce067e78González Longatt, Franciscoec8bc0be4b0326276b38da3c5b3de173Cantillo Luna, Sergio Alejandro 2023-04-10T20:30:40Z2023-04-10T20:30:40Z20221996-1073https://hdl.handle.net/10614/14654Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/Electricity markets provide valuable data for regulators, operators, and investors. The use of machine learning methods for electricity market data could provide new insights about the market, and this information could be used for decision-making. This paper proposes a tool based on multi-output regression method using support vector machines (SVR) for LMP forecasting. The input corresponds to the active power load of each bus, in this case obtained through Monte Carlo simulations, in order to forecast LMPs. The LMPs provide market signals for investors and regulators. The results showed the high performance of the proposed model, since the average prediction error for fitting and testing datasets of the proposed method on the dataset was less than 1%. This provides insights into the application of machine learning method for electricity markets given the context of uncertainty and volatility for either real-time and ahead markets 14 páginasapplication/pdfengMDPIBasel, SwitzerlandDerechos Reservados Revista Energies MDPIDerechos reservados - MDPI, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Locational marginal price forecasting using svr-based multi-output regression in electricity marketsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Aprendizaje profundo (Aprendizaje automático)Deep learning (Machine learning)Electricity marketsLlocational marginal price (LMP)Machine learningMulti-output regression141115Cantillo Luna, S.,; Moreno Chuquen, R.; Chamorro, H.R.; Riquelme Domínguez, J.M;, González Longatt, F. (2022). Locational marginal price forecasting using svr-based multi-output regression in electricity markets. Energies. 15 (1), 1-14. https://hdl.handle.net/10614/14654EnergiesOrfanogianni, T.; Gross, G. A General Formulation for LMP Evaluation. IEEE Trans. Power Syst. 2007, 22, 1163–1173Zheng, K.; Wang, Y.; Liu, K.; Chen, Q. Locational Marginal Price Forecasting: A Componential and Ensemble Approach. IEEE Trans. Smart Grid 2020, 11, 4555–4564Nesti, T.; Moriarty, J.; Zocca, A.; Zwart, B. Large fluctuations in locational marginal prices. Philos. Trans. R. Soc. A 2021, 379, 20190438.Yang, Y.; Tan, Z.; Yang, H.; Ruan, G.; Zhong, H. Short-Term Electricity Price Forecasting based on Graph Convolution Network and Attention Mechanism. arXiv 2021, arXiv:2107.12794.Moreno, R.; Obando, J.; Gonzalez, G. An integrated OPF dispatching model with wind power and demand response for day-ahead markets. Int. J. Electr. Comput. Eng. 2019, 9, 2794–2802.Moreno-Chuquen, R.; Cantillo, S. Assessment of a Multiperiod Optimal Power Flow for Power System Operation. Int. Rev. Electr. Eng. 2020, 15, 484–492.Lago, J.; Ridder, F.D.; Vrancx, P.; Schuttera, B.D. Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. Appl. Energy 2018, 211, 890–903.Cheng, H.; Ding, X.; Zhou, W.; Ding, R. A hybrid electricity price forecasting model with Bayesian optimization for German energy exchange. Int. J. Electr. Power Energy Syst. 2019, 100, 653–666.Wang, D.; Yue, C.; ElAmraouid, A. Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy. Chaos Solitons Fractals 2021, 152, 111453Hong, Y.Y.; Taylar, J.V.; Fajardo, A.C. Locational marginal price forecasting in a day-ahead power market using spatiotemporal deep learning network. Sustain. Energy Grids Netw. 2020, 24, 100406Bernardi, M.; Lisi, F. Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case. Energies 2020, 13, 6191Colella, P.; Mazza, A.; Bompard, E.; Chicco, G.; Russo, A.; Carlini, E.M.; Caprabianca, M.; Quaglia, F.; Luzi, L.; Nuzzo, G. Model-Based Identification of Alternative Bidding Zones: Applications of Clustering Algorithms with Topology Constraints. Energies 2021, 14, 2763Chuquen, R.M.; Chamorro, H.R. Graph Theory Applications to Deregulated Power Systems; Springer International Publishing: Berlin, Germany, 2021Germany, 2021. [CrossRef] 25. Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine. Energies 2020, 13, 2907. [Ma, Z.; Zhong, H.; Xie, L.; Xia, Q.; Kang, C. Month ahead average daily electricity price profile forecasting based on a hybrid nonlinear regression and SVM model: An ERCOT case study. J. Mod. Power Syst. Clean Energy 2018, 6, 281–291.Atef, S.; Eltawil, A.B. A Comparative Study Using Deep Learning and Support Vector Regression for Electricity Price Forecasting in Smart Grids; IEEE: Piscataway, NJ, USA, 2019.Zhang, Z.; Wu, M. Real-time Locational Marginal Price Forecasting Using Generative Adversarial Network. In Proceedings of the 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids, Tempe, AZ, USA, 11–13 November 2020Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.Department of Electrical Engineering, University of Washington. Power Systems Test Case Archive; Department of Electrical Engineering, University of Washington: Washington, DC, USA, 2021. Available online: http://labs.ece.uw.edu/pstca/ (accessed on 15 October 2021)Comunidad generalPublicationORIGINALLocational marginal price forecasting using svr-based multi-output regression in electricity markets.pdfLocational marginal price forecasting using svr-based multi-output regression in electricity markets.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf6198259https://red.uao.edu.co/bitstreams/509c558b-2a91-49ec-a8de-4ffd4b5b2cfd/download1611b9bc3dbe3ffe244ca3321ba71f69MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/9a486336-73b9-46b2-97ba-0f9e61413b94/download20b5ba22b1117f71589c7318baa2c560MD52TEXTLocational marginal price forecasting using svr-based multi-output regression in electricity markets.pdf.txtLocational marginal price forecasting using svr-based multi-output regression in electricity markets.pdf.txtExtracted texttext/plain36633https://red.uao.edu.co/bitstreams/c2d17b29-de5d-4c11-9a58-6843ef102692/downloadf4fa4602b46f2b949dd6284b89b2f9d5MD53THUMBNAILLocational marginal price forecasting using svr-based multi-output regression in electricity markets.pdf.jpgLocational marginal price forecasting using svr-based multi-output regression in electricity markets.pdf.jpgGenerated Thumbnailimage/jpeg15875https://red.uao.edu.co/bitstreams/8bcca521-3d2b-4463-85c4-0f758be88a72/downloadfd896f6f7069f1e9f3d0c84b6f7cfbc2MD5410614/14654oai:red.uao.edu.co:10614/146542024-04-01 09:48:21.279https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados Revista Energies MDPIopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K