Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue
This work aims to propose a Ussing chamber system based on electrical impedance spectroscopy (EIS) for measuring impedance in epithelial tissues. The proposed method is composed of two functional parts: Ussing chambers (UC) where the tissue under test is located, and the other is a homemade electric...
- Autores:
-
Fonthal Rico, Faruk
Castaño, Santiago
Calvo Echeverry, Paulo César
Campo, Oscar
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_f744
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13867
- Acceso en línea:
- https://hdl.handle.net/10614/13867
https://red.uao.edu.co/
- Palabra clave:
- Impedancia (Electricidad)
Bioimpedance
Electrical impedance spectroscopy
Ussing chamber
Epithelium frog
- Rights
- openAccess
- License
- Derechos reservados - Elsevier, 2020
id |
REPOUAO2_d090f462067b98c68e4be8998a70db07 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13867 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue |
title |
Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue |
spellingShingle |
Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue Impedancia (Electricidad) Bioimpedance Electrical impedance spectroscopy Ussing chamber Epithelium frog |
title_short |
Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue |
title_full |
Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue |
title_fullStr |
Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue |
title_full_unstemmed |
Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue |
title_sort |
Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue |
dc.creator.fl_str_mv |
Fonthal Rico, Faruk Castaño, Santiago Calvo Echeverry, Paulo César Campo, Oscar |
dc.contributor.author.none.fl_str_mv |
Fonthal Rico, Faruk Castaño, Santiago Calvo Echeverry, Paulo César Campo, Oscar |
dc.subject.armarc.spa.fl_str_mv |
Impedancia (Electricidad) |
topic |
Impedancia (Electricidad) Bioimpedance Electrical impedance spectroscopy Ussing chamber Epithelium frog |
dc.subject.proposal.eng.fl_str_mv |
Bioimpedance Electrical impedance spectroscopy Ussing chamber Epithelium frog |
description |
This work aims to propose a Ussing chamber system based on electrical impedance spectroscopy (EIS) for measuring impedance in epithelial tissues. The proposed method is composed of two functional parts: Ussing chambers (UC) where the tissue under test is located, and the other is a homemade electrical impedance spectroscopy system. The impedance spectroscopy system architecture uses a sine wave generated by a direct digital synthesizer (DDS) with a frequency range from 1 Hz to 102 kHz, a current source in Howland configuration, and an instrumentation stage that allows applying the four electrodes configuration. The designed system was tested with Eleutherodactylus johnstonei adult frog Epithelial tissue, as well as Cole-Cole models, Real and imaginary, and measured impedances were used to find the transfer function parameters employing a genetic algorithm |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-08 |
dc.date.accessioned.none.fl_str_mv |
2022-05-13T16:39:01Z |
dc.date.available.none.fl_str_mv |
2022-05-13T16:39:01Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_f744 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_f744 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
22141804 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13867 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.pissn.none.fl_str_mv |
22141804 |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
22141804 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13867 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
9 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
29 |
dc.relation.cites.eng.fl_str_mv |
Calvo Echeverry, P. C., Campo Salazar, O. I., Guerra Chávez, C., Castaño, S., Fonthal Rico, F. (2020). Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue. Sensing and Bio-Sensing Research. Revista Elsevier. Vol. 29, pp. 1-9. https://www.sciencedirect.com/science/article/pii/S2214180420300192?via%3Dihub |
dc.relation.ispartofjournal.eng.fl_str_mv |
Sensing and Bio-Sensing Research |
dc.relation.references.none.fl_str_mv |
[1] M. Grossi, B. Riccò. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J. Sensors Sens. Syst., 6 (2) (2017), pp. 303-325 [2] D.A. Dean, T. Ramanathan, D. Machado, R. Sundararajan. Electrical impedance spectroscopy study of biological tissues. J. Electrost., 66 (3–4) (Mar. 2008), pp. 165-177 [3] C.A. González-Correa. Clinical applications of electrical impedance spectroscopy. Bioimpedance in Biomedical Applications and Research, Springer International Publishing (2018), pp. 187-218 [4] C. Petchakup, H. Li, H.W. Hou. Advances in single cell impedance cytometry for biomedical applications. Micromachines, 8 (3) (2017) [5] F. Clemente, P. Arpaia, C. Manna. Characterization of human skin impedance after electrical treatment for transdermal drug delivery. Meas. J. Int. Meas. Confed., 46 (9) (2013), pp. 3494-3501 [6] R. Pradhan, S. Rajput, M. Mandal, A. Mitra, S. Das. Frequency dependent impedimetric cytotoxic evaluation of anticancer drug on breast cancer cell Biosens. Bioelectron., 55 (May 2014), pp. 44-50 [7] L. Llames, V. Baldomero, M.L. Iglesias, L.P. Rodota. Valores del ángulo de fase por bioimpedancia eléctrica; Estado nutricional y valor pronóstico. Nutr. Hosp., 28 (2) (2013), pp. 286-295 [8] M.E. Valentinuzzi, J.P. Morucci, C.J. Felice. Bioelectrical impedance techniques in medicine part II: monitoring of physiological events by impedance. Crit. Rev. Biomed. Eng., 24 (4–6) (1997), pp. 353-466 [9] G. Qiao, W. Wang, W. Duan, F. Zheng, A.J. Sinclair, C.R. Chatwin. Bioimpedance analysis for the characterization of breast cancer cells in suspensión. IEEE Trans. Biomed. Eng., 59 (8) (2012), pp. 2321-2329 [10] M.E. Moncada, M.D.P. Saldarriaga, A.F. Bravo, C.R. Pinedo. Medición de impedancia eléctrica en tejido biológico – revisión TecnoLógicas (25) (2010), p. 51 [11] W. Fariñas-Coronado, Z. Paz, G. J Orta, E. Rodrìguez-Denis Estudio del factor de disipación dieléctrica como herramienta diagnóstica. Rev. Biomed., 13 (4) (2002), pp. 249-255 [12] J.J. Cabrera-Lopez, J. Velasco-Medina, E.R. Denis, J.F.B. Calderon, O.J.G. Guevara Bioimpedance measurement using mixed-signal embedded system LASCAS 2016 - 7th IEEE Lat. Am. Symp. Circuits Syst. R9 IEEE CASS Flagsh. Conf (2016), pp. 335-338 [13] S. Abad, et al. The phase angle of the electrical impedance is a predictor of long-term survival in dialysis patients Nefrologia, 31 (6) (2011), pp. 670-676, 10.3265/Nefrologia.pre2011. Sep.10999 [14] R. Mushnick, P.A. Fein, N. Mittman, N. Goel, J. Chattopadhyay, M.M. Avram Relationship of bioelectrical impedance parameters to nutrition and survival in peritoneal dialysis patients Kidney Int. Suppl., 87 (2003), pp. S53-S56, 10.1046/j.1523-1755.64.s87.22.x [15] D. Padmaraj, R. Pande, J.H. Miller, J. Wosik, W. Zagozdzon-Wosik Mitochondrial membrane studies using impedance spectroscopy with parallel pH monitoring PLoS One, 9 (7) (2014) [16] R. Kraya, A. Komin, P. Searson On Chip bioelectric impedance spectroscopy reveals the effect of P-glycoprotein efflux pumps on the Paracellular impedance of tight junctions at the blood-brain barrier [17] S.M. Krug, M. Fromm, D. Günzel Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance Biophys. J., 97 (8) (2009), pp. 2202-2211 [18] R.J. Halter, A. Hartov, J.A. Heaney, K.D. Paulsen, A.R. Schned Electrical impedance spectroscopy of the human prostate. IEEE Trans. Biomed. Eng., 54 (7) (Jul. 2007), pp. 1321-1327 [19] P.W. Nicholson Specific impedance of cerebral white matter Exp. Neurol., 13 (4) (1965), pp. 386-401 [20] S.S. Chaudhary, R.K. Mishra, A. Swarup, J.M. Thomas Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies Indian J. Biochem. Biophys., 21 (1) (Feb. 1984), pp. 76-79 [21] A.H. Gitter, J.D. Schulzke, D. Sorgenfrei, M. Fromm Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues .J. Biochem. Biophys. Methods, 35 (2) (1997), pp. 81-88 [22] J.S. Park, J.H. Choi, J.J. Woo, S.H. Moon An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J. Colloid Interface Sci., 300 (2) (2006), pp. 655-662 [23] C. Clausen, S.A. Lewis, J.M. Diamond Impedance analysis of a tight epithelium using a distributed resistance model. Biophys J., 26 (2) (1979), pp. 291-317, 10.1016/S0006-3495(79)85250-9 [24] H. Li, D.N. Sheppard, M.J. Hug Transepithelial electrical measurements with the Ussing chamber. J. Cyst. Fibros., 3 (Suppl. 2) (Aug. 2004), pp. 123-126 [25] J. Ferreira, F. Seoane, A. Ansede, R. Bragos AD5933-based spectrometer for electrical bioimpedance applications. J. Phys. Conf. Ser., 224 (1) (2010) [26] M.S. Awayda, W. Van Driessche, S.I. Helman Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes. Biophys. J., 76 (1) (1999), pp. 219-232 [27] C. Clausen, S.A. Lewis, J.M. Diamond Impedance analysis of a tight epithelium using a distributed resistance model. Biophys. J., 26 (2) (1979), pp. 291-317 [28] Y. Yang, J. Wang, G. Yu, F. Niu, P. He Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy Physiol. Meas., 27 (12) (Dec. 2006) [29] D.K. Kamat, D. Bagul, P.M. Patil Blood glucose measurement using bioimpedance technique Adv. Electron., 2014 (2014), pp. 1-5 [30] J. Liu, X. Qiao, M. Wang, W. Zhang, G. Li, L. Lin The differential Howland current source with high signal to noise ratio for bioimpedance measurement system Rev. Sci. Instrum., 85 (5) (2014) [31] Paulo Cesar Calvo, Faruk Fonthal, Crystian Guerra Certificado De Registro De Soporte Lógico - Software, 13-68–370 Monisterio del Interior Direccion Nacional de derecho de autor, Cali - Colombia (2018), pp. 1-2 [32] A. Guimera, G. Gabriel, M. Plata-Cordero, L. Montero, M.J. Maldonado, R. Villa. A non-invasive method for an in vivo assessment of corneal epithelium permeability through tetrapolar impedance measurements. Biosens. Bioelectron., 31 (1) (2012), pp. 55-61 [33] A. Guimera, A. Ivorra, G. Gabriel, R. Villa. Non-invasive assessment of corneal endothelial permeability by means of electrical impedance measurements. Med. Eng. Phys., 32 (10) (2010), pp. 1107-1115 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Elsevier, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsevier, 2020 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2214180420300192?via%3Dihub |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/6e9a7ff0-61f0-4849-a2ed-122c5346347a/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260048849797120 |
spelling |
Fonthal Rico, Farukvirtual::1751-1Castaño, Santiago3acbf89f685dc24a3459b7109ce14023Calvo Echeverry, Paulo Césarvirtual::984-1Campo, Oscare0fbd8a4646d5a5046d0f716e71aa3ea2022-05-13T16:39:01Z2022-05-13T16:39:01Z2020-0822141804https://hdl.handle.net/10614/13867Universidad Autónoma de Occidente22141804Repositorio Educativo Digitalhttps://red.uao.edu.co/This work aims to propose a Ussing chamber system based on electrical impedance spectroscopy (EIS) for measuring impedance in epithelial tissues. The proposed method is composed of two functional parts: Ussing chambers (UC) where the tissue under test is located, and the other is a homemade electrical impedance spectroscopy system. The impedance spectroscopy system architecture uses a sine wave generated by a direct digital synthesizer (DDS) with a frequency range from 1 Hz to 102 kHz, a current source in Howland configuration, and an instrumentation stage that allows applying the four electrodes configuration. The designed system was tested with Eleutherodactylus johnstonei adult frog Epithelial tissue, as well as Cole-Cole models, Real and imaginary, and measured impedances were used to find the transfer function parameters employing a genetic algorithm10 páginasapplication/pdfengElsevierDerechos reservados - Elsevier, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S2214180420300192?via%3DihubDesign of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissueArtículo de revistahttp://purl.org/coar/resource_type/c_f744http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Impedancia (Electricidad)BioimpedanceElectrical impedance spectroscopyUssing chamberEpithelium frog9129Calvo Echeverry, P. C., Campo Salazar, O. I., Guerra Chávez, C., Castaño, S., Fonthal Rico, F. (2020). Design of using chamber system based on electrical impedance spectroscopy (EIS) to measure epithelial tissue. Sensing and Bio-Sensing Research. Revista Elsevier. Vol. 29, pp. 1-9. https://www.sciencedirect.com/science/article/pii/S2214180420300192?via%3DihubSensing and Bio-Sensing Research[1] M. Grossi, B. Riccò. Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: a review. J. Sensors Sens. Syst., 6 (2) (2017), pp. 303-325[2] D.A. Dean, T. Ramanathan, D. Machado, R. Sundararajan. Electrical impedance spectroscopy study of biological tissues. J. Electrost., 66 (3–4) (Mar. 2008), pp. 165-177[3] C.A. González-Correa. Clinical applications of electrical impedance spectroscopy. Bioimpedance in Biomedical Applications and Research, Springer International Publishing (2018), pp. 187-218[4] C. Petchakup, H. Li, H.W. Hou. Advances in single cell impedance cytometry for biomedical applications. Micromachines, 8 (3) (2017)[5] F. Clemente, P. Arpaia, C. Manna. Characterization of human skin impedance after electrical treatment for transdermal drug delivery. Meas. J. Int. Meas. Confed., 46 (9) (2013), pp. 3494-3501[6] R. Pradhan, S. Rajput, M. Mandal, A. Mitra, S. Das. Frequency dependent impedimetric cytotoxic evaluation of anticancer drug on breast cancer cell Biosens. Bioelectron., 55 (May 2014), pp. 44-50[7] L. Llames, V. Baldomero, M.L. Iglesias, L.P. Rodota. Valores del ángulo de fase por bioimpedancia eléctrica; Estado nutricional y valor pronóstico. Nutr. Hosp., 28 (2) (2013), pp. 286-295[8] M.E. Valentinuzzi, J.P. Morucci, C.J. Felice. Bioelectrical impedance techniques in medicine part II: monitoring of physiological events by impedance. Crit. Rev. Biomed. Eng., 24 (4–6) (1997), pp. 353-466[9] G. Qiao, W. Wang, W. Duan, F. Zheng, A.J. Sinclair, C.R. Chatwin. Bioimpedance analysis for the characterization of breast cancer cells in suspensión. IEEE Trans. Biomed. Eng., 59 (8) (2012), pp. 2321-2329[10] M.E. Moncada, M.D.P. Saldarriaga, A.F. Bravo, C.R. Pinedo. Medición de impedancia eléctrica en tejido biológico – revisión TecnoLógicas (25) (2010), p. 51[11] W. Fariñas-Coronado, Z. Paz, G. J Orta, E. Rodrìguez-Denis Estudio del factor de disipación dieléctrica como herramienta diagnóstica. Rev. Biomed., 13 (4) (2002), pp. 249-255[12] J.J. Cabrera-Lopez, J. Velasco-Medina, E.R. Denis, J.F.B. Calderon, O.J.G. Guevara Bioimpedance measurement using mixed-signal embedded system LASCAS 2016 - 7th IEEE Lat. Am. Symp. Circuits Syst. R9 IEEE CASS Flagsh. Conf (2016), pp. 335-338[13] S. Abad, et al. The phase angle of the electrical impedance is a predictor of long-term survival in dialysis patients Nefrologia, 31 (6) (2011), pp. 670-676, 10.3265/Nefrologia.pre2011. Sep.10999[14] R. Mushnick, P.A. Fein, N. Mittman, N. Goel, J. Chattopadhyay, M.M. Avram Relationship of bioelectrical impedance parameters to nutrition and survival in peritoneal dialysis patients Kidney Int. Suppl., 87 (2003), pp. S53-S56, 10.1046/j.1523-1755.64.s87.22.x[15] D. Padmaraj, R. Pande, J.H. Miller, J. Wosik, W. Zagozdzon-Wosik Mitochondrial membrane studies using impedance spectroscopy with parallel pH monitoring PLoS One, 9 (7) (2014)[16] R. Kraya, A. Komin, P. Searson On Chip bioelectric impedance spectroscopy reveals the effect of P-glycoprotein efflux pumps on the Paracellular impedance of tight junctions at the blood-brain barrier[17] S.M. Krug, M. Fromm, D. Günzel Two-path impedance spectroscopy for measuring paracellular and transcellular epithelial resistance Biophys. J., 97 (8) (2009), pp. 2202-2211[18] R.J. Halter, A. Hartov, J.A. Heaney, K.D. Paulsen, A.R. Schned Electrical impedance spectroscopy of the human prostate. IEEE Trans. Biomed. Eng., 54 (7) (Jul. 2007), pp. 1321-1327[19] P.W. Nicholson Specific impedance of cerebral white matter Exp. Neurol., 13 (4) (1965), pp. 386-401[20] S.S. Chaudhary, R.K. Mishra, A. Swarup, J.M. Thomas Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies Indian J. Biochem. Biophys., 21 (1) (Feb. 1984), pp. 76-79[21] A.H. Gitter, J.D. Schulzke, D. Sorgenfrei, M. Fromm Ussing chamber for high-frequency transmural impedance analysis of epithelial tissues .J. Biochem. Biophys. Methods, 35 (2) (1997), pp. 81-88[22] J.S. Park, J.H. Choi, J.J. Woo, S.H. Moon An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J. Colloid Interface Sci., 300 (2) (2006), pp. 655-662[23] C. Clausen, S.A. Lewis, J.M. Diamond Impedance analysis of a tight epithelium using a distributed resistance model. Biophys J., 26 (2) (1979), pp. 291-317, 10.1016/S0006-3495(79)85250-9[24] H. Li, D.N. Sheppard, M.J. Hug Transepithelial electrical measurements with the Ussing chamber. J. Cyst. Fibros., 3 (Suppl. 2) (Aug. 2004), pp. 123-126[25] J. Ferreira, F. Seoane, A. Ansede, R. Bragos AD5933-based spectrometer for electrical bioimpedance applications. J. Phys. Conf. Ser., 224 (1) (2010)[26] M.S. Awayda, W. Van Driessche, S.I. Helman Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes. Biophys. J., 76 (1) (1999), pp. 219-232[27] C. Clausen, S.A. Lewis, J.M. Diamond Impedance analysis of a tight epithelium using a distributed resistance model. Biophys. J., 26 (2) (1979), pp. 291-317[28] Y. Yang, J. Wang, G. Yu, F. Niu, P. He Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy Physiol. Meas., 27 (12) (Dec. 2006)[29] D.K. Kamat, D. Bagul, P.M. Patil Blood glucose measurement using bioimpedance technique Adv. Electron., 2014 (2014), pp. 1-5[30] J. Liu, X. Qiao, M. Wang, W. Zhang, G. Li, L. Lin The differential Howland current source with high signal to noise ratio for bioimpedance measurement system Rev. Sci. Instrum., 85 (5) (2014)[31] Paulo Cesar Calvo, Faruk Fonthal, Crystian Guerra Certificado De Registro De Soporte Lógico - Software, 13-68–370 Monisterio del Interior Direccion Nacional de derecho de autor, Cali - Colombia (2018), pp. 1-2[32] A. Guimera, G. Gabriel, M. Plata-Cordero, L. Montero, M.J. Maldonado, R. Villa. A non-invasive method for an in vivo assessment of corneal epithelium permeability through tetrapolar impedance measurements. Biosens. Bioelectron., 31 (1) (2012), pp. 55-61[33] A. Guimera, A. Ivorra, G. Gabriel, R. Villa. Non-invasive assessment of corneal endothelial permeability by means of electrical impedance measurements. Med. Eng. Phys., 32 (10) (2010), pp. 1107-1115Comunidad en generalPublication2bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1751-1767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::984-1767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::984-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1751-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::1751-10000-0002-9331-0491virtual::1751-10000-0001-5353-6368virtual::984-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::1751-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000785075virtual::984-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/6e9a7ff0-61f0-4849-a2ed-122c5346347a/download20b5ba22b1117f71589c7318baa2c560MD5210614/13867oai:red.uao.edu.co:10614/138672024-03-12 14:43:52.021https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2020metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |