Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues

Accuracy measurement of the impedance over a spread spectrum is the foundation of impedance spectroscopy (IS) technique, which has been recently proposed as a simple noninvasive technique for impedance spectrum measurement of a biological material (BM). This measurement is used to develop the equiva...

Full description

Autores:
Velasco-Medina, Jaime
Cabrera Lopez, John Jairo
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11491
Acceso en línea:
http://hdl.handle.net/10614/11491
Palabra clave:
Espectroscopía de alta resolución
High resolution spectroscopy
Characterization
Fractional calculus
Impedance spectroscopy (IS)
Parameter estimation
System implementation
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_ce32ba06f8621f07dfe54c08d2fd802f
oai_identifier_str oai:red.uao.edu.co:10614/11491
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
title Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
spellingShingle Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
Espectroscopía de alta resolución
High resolution spectroscopy
Characterization
Fractional calculus
Impedance spectroscopy (IS)
Parameter estimation
System implementation
title_short Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
title_full Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
title_fullStr Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
title_full_unstemmed Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
title_sort Structured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissues
dc.creator.fl_str_mv Velasco-Medina, Jaime
Cabrera Lopez, John Jairo
dc.contributor.author.none.fl_str_mv Velasco-Medina, Jaime
Cabrera Lopez, John Jairo
dc.subject.armarc.spa.fl_str_mv Espectroscopía de alta resolución
topic Espectroscopía de alta resolución
High resolution spectroscopy
Characterization
Fractional calculus
Impedance spectroscopy (IS)
Parameter estimation
System implementation
dc.subject.armarc.eng.fl_str_mv High resolution spectroscopy
dc.subject.proposal.eng.fl_str_mv Characterization
Fractional calculus
Impedance spectroscopy (IS)
Parameter estimation
System implementation
description Accuracy measurement of the impedance over a spread spectrum is the foundation of impedance spectroscopy (IS) technique, which has been recently proposed as a simple noninvasive technique for impedance spectrum measurement of a biological material (BM). This measurement is used to develop the equivalent electrical model (EEM) and to perform electrical characterization of the BM. In this paper, we propose a suitable approach for high-reliability electrical characterization of vegetable tissues by using a high-accuracy impedance spectrum measurement based on a structured algorithm, a flexible IS microsystem, and fractional-order (FO) models. The designed microsystem uses minimal discrete circuits and a programmable mixed-signal circuit, and it is validated by using EEMs of integer-order (IO), that is, the IS measures were compared with the simulation results. Also, impedance spectrum measures of vegetable tissues are carried out using the microsystem. In this case, five EEMs described by IO and FO differential equations are used to perform the parametric optimization using the Nelder-Mead ``simplex'' algorithm. Taking into account the obtained simulation results and experimental measures, it is possible to mention that the structured approach is suitable for applications that require to measure the bioimpedance over a spread spectrum, such as electrical IS (EIS) and electrical impedance tomography (EIT)
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-14T16:47:02Z
dc.date.available.none.fl_str_mv 2019-11-14T16:47:02Z
dc.date.issued.none.fl_str_mv 2019-04-11
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1557-9662 (en línea)
0018-9456 (impresa)
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11491
dc.identifier.doi.none.fl_str_mv doi: 10.1109/TIM.2019.2904131
identifier_str_mv 1557-9662 (en línea)
0018-9456 (impresa)
doi: 10.1109/TIM.2019.2904131
url http://hdl.handle.net/10614/11491
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationvolume.none.fl_str_mv 69
dc.relation.cites.eng.fl_str_mv J. Cabrera-López and J. Velasco-Medina, "Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues," in IEEE Transactions on Instrumentation and Measurement, 69 ( 2), 469-478. doi: 10.1109/TIM.2019.2904131.
dc.relation.ispartofjournal.eng.fl_str_mv IEEE Transactions on Instrumentation and Measurement
dc.relation.references.none.fl_str_mv [1] S. Grimnes and O. G. Martinsen, Bioimpedance Bioelectricity Basics, vol. 1, 3rd ed. New York, NY, USA: Oslo Elsevier, 2015.
[2] D. E. Khaled, N. N. Castellano, J. A. Gazquez, R. M. G. Salvador, and F. Manzano-Agugliaro, “Cleaner quality control system using bioimpedance methods: A review for fruits and vegetables,” J. Clean. Prod., vol. 140, pp. 1749–1762, Jan. 2017.
[3] T. K. Bera, S. Bera, A. Chowdhury, D. Ghoshal, and B. Chakraborty, “Electrical impedance spectroscopy (EIS) based fruit characterization: A technical review,” in Proc. Comput., Commun. Elect. Technol., Mar. 2017, pp. 279–288.
[4] D. Khaled, N. Novas, J. A. Gazquez, R. M. Garcia, and F. Manzano-Agugliaro, “Fruit and vegetable quality assessment via dielectric sensing,” Sensors, vol. 15, no. 7, pp. 15363–15397, Jun. 2015.
[5] B. Panikuttira and C. P. O’Donnell, “Chapter 40-process analytical technology for the fruit juice industry,” Fruit Juices, pp. 835–847, Nov. 2018.
[6] H. Ko, T. Lee, J.-H. Kim, J.-A. Park, and J.-P. Kim, “Ultralow-power bioimpedance IC with intermediate frequency shifting chopper,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 3, pp. 259–263, Mar. 2015.
[7] J. Juansah, I. W. Budiastra, K. Dahlan, and K. B. Seminar, “Electrical behavior of garut citrus fruits during ripening changes in resistance and capacitance models of internal fruits,” Int. J. Eng. Technol., vol. 12, no. 4, pp. 1–8, Aug. 2012.
[8] N. D. Semkin, K. E. Voronov, A. M. Telegin, and A. S. Vidmanov, “Bioimpedance research instrumentation system for the BION-M1 spacecraft,” Meas. Techn., vol. 57, no. 10, pp. 1209–1212, Jan. 2015.
[9] F. Clemente, M. Romano, P. Bifulco, and M. Cesarelli, “EIS measurements for characterization of muscular tissue by means of equivalent electrical parameters,” Measurement, vol. 58, pp. 476–482, Dec. 2014.
[10] T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements,” Med. Biol. Eng. Comput., vol. 52, no. 9, pp. 749–758, Sep. 2014.
[11] A. AboBakr, L. A. Said, A. H. Madian, A. S. Elwakil, and A. G. Radwan, “Experimental comparison of integer/fractional-order electrical models of plant,” AEU-Int. J. Electron. Commun., vol. 80, pp. 1–9, Jun. 2017.
[12] M.-H. Jun et al., “Glucose-independent segmental phase angles from multi-frequency bioimpedance analysis to discriminate diabetes mellitus,” Sci. Rep., vol. 8, no. 1, Dec. 2018, Art. no. 648.
[13] F. Clemente, P. Arpaia, and C. Manna, “Characterization of human skin impedance after electrical treatment for transdermal drug delivery,” Measurement, vol. 46, no. 9, pp. 3494–3501, Nov. 2013.
[14] N. Li, H. Xu, W. Wang, Z. Zhou, G. Qiao, and D. D.-U. Li, “A highspeed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method,” Meas. Sci. Technol., vol. 24, no. 6, May 2013, Art. no. 065701.
[15] M. Min, T. Parve, A. Ronk, P. Annus, and T. Paavle, “Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement,” IEEE Trans. Instrum. Meas., vol. 56, no. 4, pp. 1365–1372, Aug. 2007.
[16] S. Grassini, S. Corbellini, E. Angelini, F. Ferraris, and M. Parvis, “Lowcost impedance spectroscopy system based on a logarithmic amplifier,” IEEE Trans. Instrum. Meas., vol. 64, no. 5, pp. 1110–1117, May 2015.
[17] S. Grassini, S. Corbellini, M. Parvis, E. Angelini, and F. Zucchi, “A simple Arduino-based EIS system for in situ corrosion monitoring of metallic works of art,” Measurement, vol. 114, pp. 508–514, Jan. 2018.
[18] K. Chabowski, T. Piasecki, A. Dzierka, and K. Nitsch, “Simple wide frequency range impedance meter based on AD5933 integrated circuit,” Metrol. Meas. Syst., vol. 21, no. 1, pp. 13–24, Mar. 2015.
[19] A. S. Paterno, R. A. Stiz, and P. Bertemes-Filho, “Phase/magnitude retrieval algorithms in electrical bioimpedance spectroscopy,” in Proc. IFMBE, Sep. 2009, pp. 5–8.
[20] J. J. Cabrera-López, J. Velasco-Medina, E. R. Denis, J. F. B. Caldero˝n, and O. J. G. Guevara, “Bioimpedance measurement using mixed-signal embedded system,” in Proc. IEEE 7th Latin Amer. Symp. Circuits Syst. (LASCAS), Mar. 2016, pp. 335–338.
[21] P. Arpaia, U. Cesaro, and N. Moccaldi, “A bioimpedance meter to measure drug in transdermal delivery,” IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2324–2331, Oct. 2018.
[22] A. Guha and A. Patra, “Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries,” IEEE Trans. Instrum. Meas., vol. 67, no. 8, pp. 1836–1849, Aug. 2018.
[23] R. Brajkoviˇc, T. Žagar, and D. Križaj, “Frequency synchronization analysis in digital lock-in methods for bio-impedance determination,” Meas. Sci. Rev., vol. 14, no. 6, pp. 343–349, Dec. 2014.
[24] G. Lentka, “Using a particular sampling method for impedance measurement,” Metrol. Meas. Syst., vol. 21, no. 3, pp. 497–508, Aug. 2014.
[25] P. J. Langlois, N. Neshatvar, and A. Demosthenous, “A sinusoidal current driver with an extended frequency range and multifrequency operation for bioimpedance applications,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 3, pp. 401–411, Jun. 2014.
[26] D. Bouchaala, O. Kanoun, and N. Derbel, “High accurate and wideband current excitation for bioimpedance health monitoring systems,” Measurement, vol. 79, pp. 339–348, Feb. 2016.
[27] U. Birgersson, “Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurements,” Ph.D. dissertation, Dept. Clin. Sci., Intervent. Technol., Karolinska Inst., Stockholm, Sweden, 2012.
[28] G. Cerro, M. Ferdinandi, L. Ferrigno, M. Laracca, and M. Molinara, “Metrological characterization of a novel microsensor platform for activated carbon filters monitoring,” IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2504–2515, Oct. 2018.
[29] Y. Mohamadou, F. Momo, L. Theophile, C. N. K. Landry, T. Fabrice, and S. Emmanuel, “Accuracy enhancement in low frequency gain and phase detector (AD8302) based bioimpedance spectroscopy system,” Measurement, vol. 123, pp. 304–308, Jul. 2018.
[30] J. Maldonado et al., “Evaluation of electric impedance spectroscopy (EIS) to determine breast cancer type in voluntary patients,” in Proc. IFMBE, vol. 33, 2011, pp. 49–52.
[31] G. Qiao, W. Wang, W. Duan, F. Zheng, A. J. Sinclair, and C. R. Chatwin, “Bioimpedance analysis for the characterization of breast cancer cells in suspension,” IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2321–2329, Aug. 2012.
[32] V. Nerguizian, A. Alazzam, I. Stiharu, and M. Burnier, “Characterization of several cancer cell lines at microwave frequencies,” Measurement, vol. 109, pp. 354–358, Oct. 2017.
[33] A. Atangana and A. Secer, “A note on fractional order derivatives and table of fractional derivatives of some special functions,” Abstr. Appl. Anal., vol. 2013, no. 1, Mar. 2013, Art. no. 279681.
[34] I. Podlubny, Fractional Differential Equations. San Diego, CA, USA: Academic, 1999, pp. 1–366.
[35] J. R. González-Araiza, M. C. Ortiz-Sánchez, F. M. Vargas-Luna, and J. M. Cabrera-Sixto, “Application of electrical bio-impedance for the evaluation of strawberry ripeness,” Int. J. Food Properties, vol. 20, no. 5, pp. 1044–1050, 2017.
[36] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, Jan. 1998.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.e.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Institute of Electrical and Electronics Engineees, IEEE
dc.source.spa.fl_str_mv reponame:Repositorio Institucional UAO
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/86bf2cfa-059c-459e-b3c5-a4aac5294dec/download
https://red.uao.edu.co/bitstreams/225e839a-81aa-40a5-919c-16f93ededae9/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260004974231552
spelling Velasco-Medina, Jaimed4e006adb8e75a93ca733db30c27810bCabrera Lopez, John Jairovirtual::745-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-14T16:47:02Z2019-11-14T16:47:02Z2019-04-111557-9662 (en línea)0018-9456 (impresa)http://hdl.handle.net/10614/11491doi: 10.1109/TIM.2019.2904131Accuracy measurement of the impedance over a spread spectrum is the foundation of impedance spectroscopy (IS) technique, which has been recently proposed as a simple noninvasive technique for impedance spectrum measurement of a biological material (BM). This measurement is used to develop the equivalent electrical model (EEM) and to perform electrical characterization of the BM. In this paper, we propose a suitable approach for high-reliability electrical characterization of vegetable tissues by using a high-accuracy impedance spectrum measurement based on a structured algorithm, a flexible IS microsystem, and fractional-order (FO) models. The designed microsystem uses minimal discrete circuits and a programmable mixed-signal circuit, and it is validated by using EEMs of integer-order (IO), that is, the IS measures were compared with the simulation results. Also, impedance spectrum measures of vegetable tissues are carried out using the microsystem. In this case, five EEMs described by IO and FO differential equations are used to perform the parametric optimization using the Nelder-Mead ``simplex'' algorithm. Taking into account the obtained simulation results and experimental measures, it is possible to mention that the structured approach is suitable for applications that require to measure the bioimpedance over a spread spectrum, such as electrical IS (EIS) and electrical impedance tomography (EIT)application/pdf10 páginasengInstitute of Electrical and Electronics Engineees, IEEEDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAOStructured approach and impedance spectroscopy microsystem for fractional-order electrical characterization of vegetable tissuesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Espectroscopía de alta resoluciónHigh resolution spectroscopyCharacterizationFractional calculusImpedance spectroscopy (IS)Parameter estimationSystem implementation269J. Cabrera-López and J. Velasco-Medina, "Structured Approach and Impedance Spectroscopy Microsystem for Fractional-Order Electrical Characterization of Vegetable Tissues," in IEEE Transactions on Instrumentation and Measurement, 69 ( 2), 469-478. doi: 10.1109/TIM.2019.2904131.IEEE Transactions on Instrumentation and Measurement[1] S. Grimnes and O. G. Martinsen, Bioimpedance Bioelectricity Basics, vol. 1, 3rd ed. New York, NY, USA: Oslo Elsevier, 2015.[2] D. E. Khaled, N. N. Castellano, J. A. Gazquez, R. M. G. Salvador, and F. Manzano-Agugliaro, “Cleaner quality control system using bioimpedance methods: A review for fruits and vegetables,” J. Clean. Prod., vol. 140, pp. 1749–1762, Jan. 2017.[3] T. K. Bera, S. Bera, A. Chowdhury, D. Ghoshal, and B. Chakraborty, “Electrical impedance spectroscopy (EIS) based fruit characterization: A technical review,” in Proc. Comput., Commun. Elect. Technol., Mar. 2017, pp. 279–288.[4] D. Khaled, N. Novas, J. A. Gazquez, R. M. Garcia, and F. Manzano-Agugliaro, “Fruit and vegetable quality assessment via dielectric sensing,” Sensors, vol. 15, no. 7, pp. 15363–15397, Jun. 2015.[5] B. Panikuttira and C. P. O’Donnell, “Chapter 40-process analytical technology for the fruit juice industry,” Fruit Juices, pp. 835–847, Nov. 2018.[6] H. Ko, T. Lee, J.-H. Kim, J.-A. Park, and J.-P. Kim, “Ultralow-power bioimpedance IC with intermediate frequency shifting chopper,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 3, pp. 259–263, Mar. 2015.[7] J. Juansah, I. W. Budiastra, K. Dahlan, and K. B. Seminar, “Electrical behavior of garut citrus fruits during ripening changes in resistance and capacitance models of internal fruits,” Int. J. Eng. Technol., vol. 12, no. 4, pp. 1–8, Aug. 2012.[8] N. D. Semkin, K. E. Voronov, A. M. Telegin, and A. S. Vidmanov, “Bioimpedance research instrumentation system for the BION-M1 spacecraft,” Meas. Techn., vol. 57, no. 10, pp. 1209–1212, Jan. 2015.[9] F. Clemente, M. Romano, P. Bifulco, and M. Cesarelli, “EIS measurements for characterization of muscular tissue by means of equivalent electrical parameters,” Measurement, vol. 58, pp. 476–482, Dec. 2014.[10] T. J. Freeborn, B. Maundy, and A. S. Elwakil, “Extracting the parameters of the double-dispersion cole bioimpedance model from magnitude response measurements,” Med. Biol. Eng. Comput., vol. 52, no. 9, pp. 749–758, Sep. 2014.[11] A. AboBakr, L. A. Said, A. H. Madian, A. S. Elwakil, and A. G. Radwan, “Experimental comparison of integer/fractional-order electrical models of plant,” AEU-Int. J. Electron. Commun., vol. 80, pp. 1–9, Jun. 2017.[12] M.-H. Jun et al., “Glucose-independent segmental phase angles from multi-frequency bioimpedance analysis to discriminate diabetes mellitus,” Sci. Rep., vol. 8, no. 1, Dec. 2018, Art. no. 648.[13] F. Clemente, P. Arpaia, and C. Manna, “Characterization of human skin impedance after electrical treatment for transdermal drug delivery,” Measurement, vol. 46, no. 9, pp. 3494–3501, Nov. 2013.[14] N. Li, H. Xu, W. Wang, Z. Zhou, G. Qiao, and D. D.-U. Li, “A highspeed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method,” Meas. Sci. Technol., vol. 24, no. 6, May 2013, Art. no. 065701.[15] M. Min, T. Parve, A. Ronk, P. Annus, and T. Paavle, “Synchronous sampling and demodulation in an instrument for multifrequency bioimpedance measurement,” IEEE Trans. Instrum. Meas., vol. 56, no. 4, pp. 1365–1372, Aug. 2007.[16] S. Grassini, S. Corbellini, E. Angelini, F. Ferraris, and M. Parvis, “Lowcost impedance spectroscopy system based on a logarithmic amplifier,” IEEE Trans. Instrum. Meas., vol. 64, no. 5, pp. 1110–1117, May 2015.[17] S. Grassini, S. Corbellini, M. Parvis, E. Angelini, and F. Zucchi, “A simple Arduino-based EIS system for in situ corrosion monitoring of metallic works of art,” Measurement, vol. 114, pp. 508–514, Jan. 2018.[18] K. Chabowski, T. Piasecki, A. Dzierka, and K. Nitsch, “Simple wide frequency range impedance meter based on AD5933 integrated circuit,” Metrol. Meas. Syst., vol. 21, no. 1, pp. 13–24, Mar. 2015.[19] A. S. Paterno, R. A. Stiz, and P. Bertemes-Filho, “Phase/magnitude retrieval algorithms in electrical bioimpedance spectroscopy,” in Proc. IFMBE, Sep. 2009, pp. 5–8.[20] J. J. Cabrera-López, J. Velasco-Medina, E. R. Denis, J. F. B. Caldero˝n, and O. J. G. Guevara, “Bioimpedance measurement using mixed-signal embedded system,” in Proc. IEEE 7th Latin Amer. Symp. Circuits Syst. (LASCAS), Mar. 2016, pp. 335–338.[21] P. Arpaia, U. Cesaro, and N. Moccaldi, “A bioimpedance meter to measure drug in transdermal delivery,” IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2324–2331, Oct. 2018.[22] A. Guha and A. Patra, “Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries,” IEEE Trans. Instrum. Meas., vol. 67, no. 8, pp. 1836–1849, Aug. 2018.[23] R. Brajkoviˇc, T. Žagar, and D. Križaj, “Frequency synchronization analysis in digital lock-in methods for bio-impedance determination,” Meas. Sci. Rev., vol. 14, no. 6, pp. 343–349, Dec. 2014.[24] G. Lentka, “Using a particular sampling method for impedance measurement,” Metrol. Meas. Syst., vol. 21, no. 3, pp. 497–508, Aug. 2014.[25] P. J. Langlois, N. Neshatvar, and A. Demosthenous, “A sinusoidal current driver with an extended frequency range and multifrequency operation for bioimpedance applications,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 3, pp. 401–411, Jun. 2014.[26] D. Bouchaala, O. Kanoun, and N. Derbel, “High accurate and wideband current excitation for bioimpedance health monitoring systems,” Measurement, vol. 79, pp. 339–348, Feb. 2016.[27] U. Birgersson, “Electrical impedance of human skin and tissue alterations: Mathematical modeling and measurements,” Ph.D. dissertation, Dept. Clin. Sci., Intervent. Technol., Karolinska Inst., Stockholm, Sweden, 2012.[28] G. Cerro, M. Ferdinandi, L. Ferrigno, M. Laracca, and M. Molinara, “Metrological characterization of a novel microsensor platform for activated carbon filters monitoring,” IEEE Trans. Instrum. Meas., vol. 67, no. 10, pp. 2504–2515, Oct. 2018.[29] Y. Mohamadou, F. Momo, L. Theophile, C. N. K. Landry, T. Fabrice, and S. Emmanuel, “Accuracy enhancement in low frequency gain and phase detector (AD8302) based bioimpedance spectroscopy system,” Measurement, vol. 123, pp. 304–308, Jul. 2018.[30] J. Maldonado et al., “Evaluation of electric impedance spectroscopy (EIS) to determine breast cancer type in voluntary patients,” in Proc. IFMBE, vol. 33, 2011, pp. 49–52.[31] G. Qiao, W. Wang, W. Duan, F. Zheng, A. J. Sinclair, and C. R. Chatwin, “Bioimpedance analysis for the characterization of breast cancer cells in suspension,” IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2321–2329, Aug. 2012.[32] V. Nerguizian, A. Alazzam, I. Stiharu, and M. Burnier, “Characterization of several cancer cell lines at microwave frequencies,” Measurement, vol. 109, pp. 354–358, Oct. 2017.[33] A. Atangana and A. Secer, “A note on fractional order derivatives and table of fractional derivatives of some special functions,” Abstr. Appl. Anal., vol. 2013, no. 1, Mar. 2013, Art. no. 279681.[34] I. Podlubny, Fractional Differential Equations. San Diego, CA, USA: Academic, 1999, pp. 1–366.[35] J. R. González-Araiza, M. C. Ortiz-Sánchez, F. M. Vargas-Luna, and J. M. Cabrera-Sixto, “Application of electrical bio-impedance for the evaluation of strawberry ripeness,” Int. J. Food Properties, vol. 20, no. 5, pp. 1044–1050, 2017.[36] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim., vol. 9, no. 1, pp. 112–147, Jan. 1998.Publication5f003138-bfcd-4407-904b-9b9a0010990cvirtual::745-15f003138-bfcd-4407-904b-9b9a0010990cvirtual::745-1https://scholar.google.com/citations?user=dkpsiDsAAAAJ&hl=esvirtual::745-10000-0002-2608-755Xvirtual::745-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000821276virtual::745-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/86bf2cfa-059c-459e-b3c5-a4aac5294dec/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/225e839a-81aa-40a5-919c-16f93ededae9/download20b5ba22b1117f71589c7318baa2c560MD5310614/11491oai:red.uao.edu.co:10614/114912024-02-28 15:23:50.069https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K