Color coding in the cortex: a modified approach to bottom-upvisual attention

Itti and Koch’s (Vision Research 40:1489–1506,2000) saliency-based visual attention model is a broadlyaccepted model that describes how attention processes aredeployed in the visual cortex in a pure bottom-up strategy.This work complements their model by modifying the colorfeature calculation. Evide...

Full description

Autores:
Ramírez Moreno, David Fernando
Ramírez Villegas, Juan Felipe
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11620
Acceso en línea:
http://red.uao.edu.co//handle/10614/11620
https://doi.org/10.1007/s00422-012-0522-6
Palabra clave:
Color Perception
Models, Theoretical
Visual Cortex
Humans
Percepción de Color
Corteza Visual
Saliency
Visual attention
Double-opponentcell
Center-surround difference
Color map
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_cd3008269ad5f85624969d3b783ed767
oai_identifier_str oai:red.uao.edu.co:10614/11620
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Color coding in the cortex: a modified approach to bottom-upvisual attention
title Color coding in the cortex: a modified approach to bottom-upvisual attention
spellingShingle Color coding in the cortex: a modified approach to bottom-upvisual attention
Color Perception
Models, Theoretical
Visual Cortex
Humans
Percepción de Color
Corteza Visual
Saliency
Visual attention
Double-opponentcell
Center-surround difference
Color map
title_short Color coding in the cortex: a modified approach to bottom-upvisual attention
title_full Color coding in the cortex: a modified approach to bottom-upvisual attention
title_fullStr Color coding in the cortex: a modified approach to bottom-upvisual attention
title_full_unstemmed Color coding in the cortex: a modified approach to bottom-upvisual attention
title_sort Color coding in the cortex: a modified approach to bottom-upvisual attention
dc.creator.fl_str_mv Ramírez Moreno, David Fernando
Ramírez Villegas, Juan Felipe
dc.contributor.author.none.fl_str_mv Ramírez Moreno, David Fernando
Ramírez Villegas, Juan Felipe
dc.subject.mesh.eng.fl_str_mv Color Perception
Models, Theoretical
Visual Cortex
topic Color Perception
Models, Theoretical
Visual Cortex
Humans
Percepción de Color
Corteza Visual
Saliency
Visual attention
Double-opponentcell
Center-surround difference
Color map
dc.subject.mesh.spa.fl_str_mv Humans
dc.subject.decs.spa.fl_str_mv Percepción de Color
Corteza Visual
dc.subject.proposal.eng.fl_str_mv Saliency
Visual attention
Double-opponentcell
Center-surround difference
Color map
description Itti and Koch’s (Vision Research 40:1489–1506,2000) saliency-based visual attention model is a broadlyaccepted model that describes how attention processes aredeployed in the visual cortex in a pure bottom-up strategy.This work complements their model by modifying the colorfeature calculation. Evidence suggests that S-cone responsesare elicited in the same spatial distribution and have the samesign as responses to M-cone stimuli; these cells are tenta-tively referred to as red-cyan. For other cells, the S-coneinput seems to be aligned with the L-cone input; these cellsmight be green-magenta cells. To model red-cyan and green-magenta double-opponent cells, we implement a center-sur-round difference approach of the aforementioned model. Theresulting color maps elicited enhanced responses to colorsalient stimuli when compared to the classic ones at highstatistical significance levels. We also show that the modi-fied model improves the prediction of locations attended byhuman viewers
publishDate 2012
dc.date.issued.none.fl_str_mv 2012-09
dc.date.accessioned.none.fl_str_mv 2019-11-29T15:43:43Z
dc.date.available.none.fl_str_mv 2019-11-29T15:43:43Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv Ramirez-Villegas, J.F., Ramirez-Moreno, D.F. Color coding in the cortex: a modified approach to bottom-up visual attention. Biol Cybern 107, 39–47 (2013). https://doi.org/10.1007/s00422-012-0522-6
dc.identifier.uri.none.fl_str_mv http://red.uao.edu.co//handle/10614/11620
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s00422-012-0522-6
identifier_str_mv Ramirez-Villegas, J.F., Ramirez-Moreno, D.F. Color coding in the cortex: a modified approach to bottom-up visual attention. Biol Cybern 107, 39–47 (2013). https://doi.org/10.1007/s00422-012-0522-6
url http://red.uao.edu.co//handle/10614/11620
https://doi.org/10.1007/s00422-012-0522-6
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.eng.fl_str_mv Biological Cybernetics. Volumen 107, número 1 (September 2012); páginas 39-47
dc.relation.citationendpage.none.fl_str_mv 47
dc.relation.citationstartpage.none.fl_str_mv 39
dc.relation.citationvolume.none.fl_str_mv 107
dc.relation.ispartofjournal.eng.fl_str_mv Biological Cybernetics
dc.relation.references.none.fl_str_mv Bergen JR, Julesz B (1983) Parallel versus serial processing in rapid pattern discrimination. Nature 303:696–698
Bollman M, Hoischen R, Mertsching B (1997) In: Berlin et al (eds) Integration of static and dynamic scene features guiding visual attention. Springer, pp 483–490
Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31:532–540
Conway BR (2001) Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J Neurosci 21:2768–2783
Conway BR (2009) Color vision, cones and color-coding in the cortex. Neuroscientist 15:274–290
Conway BR, Livingstone MS (2006) Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J Neurosci 26:10826–10846
Conway BR, Hubel DH, Livingstone MS (2002) Color contrast in macaque V1. Cereb Cortex 12:915–925
De Brecht M, Saiki J (2006) A neural network implementation of a saliency map model. Neural Netw 19:1467–1474
Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222
Engel S, Zhang X,Wandell B (1997) Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388:68–71
Fawcett T (2006) An introduction to ROC analysis. Pat Rec Lett 27:861–874
Gao D, Vasconcelos N (2007) Bottom-up saliency is a discriminant process. Proceedings of the IEEE international conference on computer visión Gegenfurtner KR, Kiper DC (2003) Color vision. Annu Rev Neurosci 26:181–206
Hofer H, Singer B, Williams DR (2005) Different sensations from cones with the same photopigment. J Vis 5:444–454
Itti L (2000) Models of bottom-up and top-down visual attention. Dissertation, California
Institute of Technology, Pasadena, CA Itti L (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans Image Process 13:1304–1318
Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 40:1489–1506
Itti L, Koch C (2001) Computational modeling of visual attention. Nat Rev Neurosci 2:194–203
Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal Mach Intel 20:1254–1259
Johnson EN, Hawken MJ, Shapley R (2001) The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4:409–416
Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227
Liu T, Sun J, Zheng NN, Tang X, Shum HY (2007a) Learning to detect a salient object. Proceedings of IEEE computer society conference on computer and vision pattern recognition
Liu T, Sun J, Zheng NN, Tang X, Shum HY (2007b) MSRA Salient Object Database. Microsoft Research. http://research.microsoft.com/en-us/um/people/jiansun/salientobject/salient_object.htm. Accessed 12 June 2012
Masciocchi CM, Mihalas S, Parkhurst D, Niebur E (2009) Everyone knows what is interesting: salient locations which should be fixated. J Vis 9:1–22
Peters RJ, Iyer A, Itti L, Koch C (2005) Components of bottom-up gaze allocation in natural images. Vis Res 45:2397–2416
Rapantzikos K, Tsapatsoulis N, Avrithis Y, Kollias S (2007) Bottomup spatiotemporal visual attention model for video analysis. Image Process IET 1:237–248
Solomon SG, Lennie P (2005) Chromatic gain controls in visual cortical neurons. J Neurosci 25:4779–4792
Solomon SG, Lennie P (2007) The machinery of colour vision. Nat Rev Neurosci 8:276–286
Schluppeck D, Engel SA (2002) Color opponent neurons in V1: a review and model reconciling results from imaging and singleunit recording. J Vis 2:480–492
T’so DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8:1712–1727
Tatler BW, Hayhoe MM, Land MF, Ballard DH (2011) Eye guidance in natural vision: reinterpreting salience. J Vis 11:1–23
Treisman A, Sykes M, Gelade G (1977) Selective attention stimulus integration. Lawrence Erlbaum Associates, Hillsdale, pp 333–361
Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12:97–136
Wachtler T, Sejnowski TJ, Albright TD (2003) Representation of color stimuli in awake macaque primary visual cortex. Neuron 37:681– 691
Walther D, Koch C (2006) Modeling attention to salient proto-objects. Neural Netw 19:1395–1407
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.none.fl_str_mv páginas 39-47
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/e98e0c3e-0be0-444a-b21f-c0f9befa37c9/download
https://red.uao.edu.co/bitstreams/fac385fd-e8ab-4017-916d-33ed315a2826/download
https://red.uao.edu.co/bitstreams/10f47e11-de65-4a87-95e1-70786e1b3ea9/download
https://red.uao.edu.co/bitstreams/e60068c7-19e9-442a-add1-c5943c16cdc1/download
https://red.uao.edu.co/bitstreams/060fe269-0afe-4241-84c0-fa57a74c58b0/download
bitstream.checksum.fl_str_mv e83c68bede5d2d2e4117bda3d61341fc
e5f40bb472b00227d9dd052951b45010
69c7846f98bf3999c175bb725a530cc3
4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259735690477568
spelling Ramírez Moreno, David Fernandovirtual::4317-1Ramírez Villegas, Juan Felipe45c3dbaeb005b88577208dbed7f90618Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-29T15:43:43Z2019-11-29T15:43:43Z2012-09Ramirez-Villegas, J.F., Ramirez-Moreno, D.F. Color coding in the cortex: a modified approach to bottom-up visual attention. Biol Cybern 107, 39–47 (2013). https://doi.org/10.1007/s00422-012-0522-6http://red.uao.edu.co//handle/10614/11620https://doi.org/10.1007/s00422-012-0522-6Itti and Koch’s (Vision Research 40:1489–1506,2000) saliency-based visual attention model is a broadlyaccepted model that describes how attention processes aredeployed in the visual cortex in a pure bottom-up strategy.This work complements their model by modifying the colorfeature calculation. Evidence suggests that S-cone responsesare elicited in the same spatial distribution and have the samesign as responses to M-cone stimuli; these cells are tenta-tively referred to as red-cyan. For other cells, the S-coneinput seems to be aligned with the L-cone input; these cellsmight be green-magenta cells. To model red-cyan and green-magenta double-opponent cells, we implement a center-sur-round difference approach of the aforementioned model. Theresulting color maps elicited enhanced responses to colorsalient stimuli when compared to the classic ones at highstatistical significance levels. We also show that the modi-fied model improves the prediction of locations attended byhuman viewersapplication/pdfpáginas 39-47engUniversidad Autónoma de OccidenteBiological Cybernetics. Volumen 107, número 1 (September 2012); páginas 39-474739107Biological CyberneticsBergen JR, Julesz B (1983) Parallel versus serial processing in rapid pattern discrimination. Nature 303:696–698Bollman M, Hoischen R, Mertsching B (1997) In: Berlin et al (eds) Integration of static and dynamic scene features guiding visual attention. Springer, pp 483–490Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31:532–540Conway BR (2001) Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1). J Neurosci 21:2768–2783Conway BR (2009) Color vision, cones and color-coding in the cortex. Neuroscientist 15:274–290Conway BR, Livingstone MS (2006) Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J Neurosci 26:10826–10846Conway BR, Hubel DH, Livingstone MS (2002) Color contrast in macaque V1. Cereb Cortex 12:915–925De Brecht M, Saiki J (2006) A neural network implementation of a saliency map model. Neural Netw 19:1467–1474Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222Engel S, Zhang X,Wandell B (1997) Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388:68–71Fawcett T (2006) An introduction to ROC analysis. Pat Rec Lett 27:861–874Gao D, Vasconcelos N (2007) Bottom-up saliency is a discriminant process. Proceedings of the IEEE international conference on computer visión Gegenfurtner KR, Kiper DC (2003) Color vision. Annu Rev Neurosci 26:181–206Hofer H, Singer B, Williams DR (2005) Different sensations from cones with the same photopigment. J Vis 5:444–454Itti L (2000) Models of bottom-up and top-down visual attention. Dissertation, CaliforniaInstitute of Technology, Pasadena, CA Itti L (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans Image Process 13:1304–1318Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 40:1489–1506Itti L, Koch C (2001) Computational modeling of visual attention. Nat Rev Neurosci 2:194–203Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Patt Anal Mach Intel 20:1254–1259Johnson EN, Hawken MJ, Shapley R (2001) The spatial transformation of color in the primary visual cortex of the macaque monkey. Nat Neurosci 4:409–416Koch C, Ullman S (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum Neurobiol 4:219–227Liu T, Sun J, Zheng NN, Tang X, Shum HY (2007a) Learning to detect a salient object. Proceedings of IEEE computer society conference on computer and vision pattern recognitionLiu T, Sun J, Zheng NN, Tang X, Shum HY (2007b) MSRA Salient Object Database. Microsoft Research. http://research.microsoft.com/en-us/um/people/jiansun/salientobject/salient_object.htm. Accessed 12 June 2012Masciocchi CM, Mihalas S, Parkhurst D, Niebur E (2009) Everyone knows what is interesting: salient locations which should be fixated. J Vis 9:1–22Peters RJ, Iyer A, Itti L, Koch C (2005) Components of bottom-up gaze allocation in natural images. Vis Res 45:2397–2416Rapantzikos K, Tsapatsoulis N, Avrithis Y, Kollias S (2007) Bottomup spatiotemporal visual attention model for video analysis. Image Process IET 1:237–248Solomon SG, Lennie P (2005) Chromatic gain controls in visual cortical neurons. J Neurosci 25:4779–4792Solomon SG, Lennie P (2007) The machinery of colour vision. Nat Rev Neurosci 8:276–286Schluppeck D, Engel SA (2002) Color opponent neurons in V1: a review and model reconciling results from imaging and singleunit recording. J Vis 2:480–492T’so DY, Gilbert CD (1988) The organization of chromatic and spatial interactions in the primate striate cortex. J Neurosci 8:1712–1727Tatler BW, Hayhoe MM, Land MF, Ballard DH (2011) Eye guidance in natural vision: reinterpreting salience. J Vis 11:1–23Treisman A, Sykes M, Gelade G (1977) Selective attention stimulus integration. Lawrence Erlbaum Associates, Hillsdale, pp 333–361Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12:97–136Wachtler T, Sejnowski TJ, Albright TD (2003) Representation of color stimuli in awake macaque primary visual cortex. Neuron 37:681– 691Walther D, Koch C (2006) Modeling attention to salient proto-objects. Neural Netw 19:1395–1407Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Color PerceptionModels, TheoreticalVisual CortexHumansPercepción de ColorCorteza VisualSaliencyVisual attentionDouble-opponentcellCenter-surround differenceColor mapColor coding in the cortex: a modified approach to bottom-upvisual attentionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Publication61e20236-82c5-4dcc-b05c-0eaa9ac06b11virtual::4317-161e20236-82c5-4dcc-b05c-0eaa9ac06b11virtual::4317-1https://scholar.google.com/citations?user=RTce1fkAAAAJ&hl=esvirtual::4317-10000-0003-2372-3554virtual::4317-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000353744virtual::4317-1TEXTA0219.pdf.txtA0219.pdf.txtExtracted texttext/plain38273https://red.uao.edu.co/bitstreams/e98e0c3e-0be0-444a-b21f-c0f9befa37c9/downloade83c68bede5d2d2e4117bda3d61341fcMD54THUMBNAILA0219.pdf.jpgA0219.pdf.jpgGenerated Thumbnailimage/jpeg14421https://red.uao.edu.co/bitstreams/fac385fd-e8ab-4017-916d-33ed315a2826/downloade5f40bb472b00227d9dd052951b45010MD55ORIGINALA0219.pdfA0219.pdfapplication/pdf473885https://red.uao.edu.co/bitstreams/10f47e11-de65-4a87-95e1-70786e1b3ea9/download69c7846f98bf3999c175bb725a530cc3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/e60068c7-19e9-442a-add1-c5943c16cdc1/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/060fe269-0afe-4241-84c0-fa57a74c58b0/download20b5ba22b1117f71589c7318baa2c560MD5310614/11620oai:red.uao.edu.co:10614/116202024-03-13 16:36:40.905https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K