Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
This paper proposes a new methodology to evaluate the technical state of a Francis turbine installed in a hydroelectric plant by coupling computational fluid dynamics (CFD) and rotor-dynamic analysis. CFD simulations predicted the hydraulic performance of the turbine. The obtained field forces, due...
- Autores:
-
Laín Beatove, Santiago
Quintero Arboleda, Brian
Garcia Ruiz, Manuel Julian
Orrego, Santiago
Barbosa, Jaime
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11089
- Acceso en línea:
- http://hdl.handle.net/10614/11089
- Palabra clave:
- Turbinas
Turbinas - Vibración
Turbomáquinas
Turbines
Turbines - Vibration
Turbomachines
CFD
Fluid structure interaction
Francis turbine
Diagnosis
Vibrations
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_cb89bea623cf8abb9edabe2eeb797ff8 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11089 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine |
title |
Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine |
spellingShingle |
Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine Turbinas Turbinas - Vibración Turbomáquinas Turbines Turbines - Vibration Turbomachines CFD Fluid structure interaction Francis turbine Diagnosis Vibrations |
title_short |
Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine |
title_full |
Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine |
title_fullStr |
Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine |
title_full_unstemmed |
Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine |
title_sort |
Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine |
dc.creator.fl_str_mv |
Laín Beatove, Santiago Quintero Arboleda, Brian Garcia Ruiz, Manuel Julian Orrego, Santiago Barbosa, Jaime |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago |
dc.contributor.author.spa.fl_str_mv |
Quintero Arboleda, Brian Garcia Ruiz, Manuel Julian Orrego, Santiago Barbosa, Jaime |
dc.subject.armarc.spa.fl_str_mv |
Turbinas Turbinas - Vibración Turbomáquinas |
topic |
Turbinas Turbinas - Vibración Turbomáquinas Turbines Turbines - Vibration Turbomachines CFD Fluid structure interaction Francis turbine Diagnosis Vibrations |
dc.subject.armarc.eng.fl_str_mv |
Turbines Turbines - Vibration Turbomachines |
dc.subject.proposal.eng.fl_str_mv |
CFD Fluid structure interaction Francis turbine Diagnosis Vibrations |
description |
This paper proposes a new methodology to evaluate the technical state of a Francis turbine installed in a hydroelectric plant by coupling computational fluid dynamics (CFD) and rotor-dynamic analysis. CFD simulations predicted the hydraulic performance of the turbine. The obtained field forces, due to the fluid-structure interaction over the blades of the runner, were used as boundary condition in the shaft rotor-dynamic numerical model, which accurately predicted the dynamic behavior of the turbine’s shaft. Both numerical models were validated with in situ experimental measurements. The CFD model was validated measuring the pressure fluctuations near the rotor–stator interaction area and the torque and radial force in the shaft using strain gages. The rotor-dynamic model was validated using accelerometers installed over the bearings supporting the shaft. Results from both numerical models were in agreement with experimental measurements and provided a full diagnose of the dynamic working condition of the principal systems of the turbine. Implementation of this methodology can be applied to further identify potential failure and improve future designs |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-08 |
dc.date.accessioned.none.fl_str_mv |
2019-09-10T21:20:27Z |
dc.date.available.none.fl_str_mv |
2019-09-10T21:20:27Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
1955-2513 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11089 |
dc.identifier.doi.spa.fl_str_mv |
doi:10.1007/s12008-016-0336-1 |
identifier_str_mv |
1955-2513 doi:10.1007/s12008-016-0336-1 |
url |
http://hdl.handle.net/10614/11089 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
632 |
dc.relation.citationissue.none.fl_str_mv |
3 |
dc.relation.citationstartpage.none.fl_str_mv |
623 |
dc.relation.citationvolume.none.fl_str_mv |
11 |
dc.relation.cites.eng.fl_str_mv |
Garcia, M., Laín, S., Orrego, S., Barbosa, J., & Quintero, B. (2017). Hydraulic and rotor-dynamic interaction for performance evaluation on a Francis turbine. International Journal on Interactive Design and Manufacturing (IJIDeM), 11(3), 623-632. DOI 10.1007/s12008-016-0336-1 |
dc.relation.ispartofjournal.eng.fl_str_mv |
International Journal on Interactive Design and Manufacturing (IJIDeM) |
dc.relation.references.spa.fl_str_mv |
Bently, D.E., Hatch, C.T.: Fundamentals of Rotating Machinery Diagnostics. Amer Society of Mechanical (2002) Byskov, R.K., Jacobsen, C.B., Pedersen, N.: Flow in a centrifugal pump impeller at design and off-design conditions. Part II: large eddy simulations, ASME. J. Fluids Eng. 125(1), 73–83 (2003). doi: 10.1115/1.1524585 Chen, S.H., Liaw, L.F.: The flowfield calculations of a centrifugal pump with volute. In: International Gas Turbine and Aeroengine Congress and Exhibition, Orlando (1997) Ciocan, G.D., Iliescu, M.S., Vu, T.C., Nennemann, B., Avellan, F.: Experimental study and numerical simulation of the flindt draft tube rotating vortex. J. Fluids Eng. 129(2), 146–158 (2007) Cui, L.: Maintenance Models and Optimization, pp. 789–805. Springer London (2008). doi: 10.1007/978-1-84800-131-2_48 Estévez, E.E., do Nascimento, L.d.P., Ferrando, M.d.C.V., Santacreu, E.J.: El diagnóstico de daños en grupos hidroeléctricos mediante el análisis de vibraciones. Ingeniería del agua 1(3) (1994) Gagnon, J., Deschenes, C.: Numerical Simulation of a Rotor–Stator Unsteady Interaction in a Propeller Turbine. CFD Society of Canada, Toronto (2007) García, M., Duque, J., Boulanger, P., Figueroa, P.: Computational steering of cfd simulations using a grid computing environment. Int. J. Interact. Design Manuf. (IJIDeM) 9(3), 235–245 (2015). doi: 10.1007/s12008-014-0236-1 Göz, M., Laín, S., Sommerfeld, M.: Study of the numerical instabilities in lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 28(12), 2727–2733 (2004) Guedes, A., Kueny, J.L., Ciocan, G.D., Avellan, F.: Unsteady rotor–stator analysis of hydraulic pump-turbine: CFD and experimental approach. In: 21st IAHR Symposium on Hydraulic Machinery and Systems (2002) Gustavsson, R.: Modelling and analysis of hydropower generator rotors. Lulea University of Technology. The Polhem Laboratory. Division of Computer Aided Design (2005) Karlsson, M., Aidanpää, J.O.: Dynamic behaviour in a hydro power rotor system due to the influence of generator shape and fluid dynamics. In: ASME 2005 Power Conference, pp. 905–913. American Society of Mechanical Engineers (2005) Keck, H., Sick, M.: Thirty years of numerical flow simulation in hydraulic turbomachines. Acta Mech. 201(1–4), 211–229 (2008) Kicinski, J.: Rotor Dynamics. Wydaw, IMP PAN Gdansk (2006) Kreylos, O., Tesdall, A., Hamann, B., Hunter, J., Joy, K.: Interactive visualization and steering of CFD simulations. In: Proceedings of the symposium on Data Visualisation 2002, pp. 25–34. Eurographics Association (2002) Krodkiewski, A.J.: Dynamics of Rotors. The University of Melbourne (2007). http://www.ktdw.pl/ksiazki/13lec.pdf Laı n, S., Aliod, R.: Study on the eulerian dispersed phase equations in non-uniform turbulent two-phase flows: discussion and comparison with experiments. Int. J. Heat Fluid Flow 21(3), 374–380 (2000) Laín, S., García, M., Avellan, F., Quintero, B., Orrego, S.: Simulación numérica de turbinas Francis. Fondo Editorial EAFIT (2011). http://www.eafit.edu.co/cultura-eafit/fondo-editorial/colecciones/Paginas/simulacion-numerica-turbinas-francis.aspx López, O., Meneses, D., Quintero, B., Laín, S.: Computational study of transient flow around darrieus type cross flow water turbines. J. Renew. Sustain. Energy 8(1), 014,501 (2016) Majidi, K.: Numerische berechnung der sekundärströmung in radialen kreiselpumpen zur feststoffförderung. Ph.D. thesis, TU Berlin. Berlin (1997) Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994) Muggli, F.A., Eisele, K., Zhang, Z., Casey, M.V.: Numerical investigations of the flow in a pump turbine in pump mode. In: 3rd European Conference on Turbomachinery, pp. 997–1002, Londres (1999) Ng, E.Y.K., Tan, S.T.: Evaluation of turbulence models for fluid machinery application. In: ASME/ JSME Conference. ASME, San Francisco (1999) Ojala, J., Rautaheimo, P., Siikonen, T.: Numerical Simulation of a Centrifugal Pump Using k-Omega Model Including the Effects of Rotation. Wiley, New York (1998) Ritzinger, S.: Simulation realer Laufradströmungen. Herbert Utz Verlag, Munich (1998) Schenkel, S.: Modellierung und numerische simulation der strömungsvoränge am laufradeintritt von turboarbeitsmaschinen. Ph.D. thesis, TU Darmstadt (1998) Sedlar, M., Mensik, P.: Investigation of rotor–stator interaction influence on flow fields in radial pump flows. In: 3rd European Conference on Turbomachinery, pp. 1017–1025, Londres (1999) Sedlar, M., Vlach, M., Soukal, J.: Numerical and experimental investigation of flow in axial flow hydraulic machinery. In: 3rd European Conference on Turbomachinery, pp. 1007–1016, Londres (1999) Shuliang, C.: Three-dimensional turbulent flow in a centrifugal pump impeller under desing and off-desing operating conditions. In: ASME Fluids Engineering Division Summer Meeting (FEDSM99-6872). ASME (1999) Sommerfeld, M., Lain, S.: Parameters influencing dilute-phase pneumatic conveying through pipe systems: a computational study by the euler/lagrange approach. Can. J. Chem. Eng. 93(1), 1–17 (2015) Song, C.C.S., Chen, X., Ikohagi, T., Sato, J., Sinmei, K., Tani, K.: Simulation of flow through Francis turbine by LES method. In: Proceedings of the 18th Symposium on Hydraulic Machinery and Cavitation, pp. 267–276, Valencia (1996) Stolarski, T.: Turbomachinery Rotordynamics (1995) Treutz, G.: Numerische simulation der instationären strömung in einer kreiselpumpe, Ph.D. thesis. TU Darmstadt, Alemania (2002) Vance, J.M.: Rotordynamics of Turbomachinery. Wiley, New York (1988) Von Hoyningen-Huene, M., Hermeler, J.: Comparison of three approaches to model stator–rotor interaction in turbine front stage of an industrial gas turbine. In: 3rd European Conference on Turbomachinery, pp. 307–322, Londres (1999) Wenisch, P., Treeck, Cv, Borrmann, A., Rank, E., Wenisch, O.: Computational steering on distributed systems: indoor comfort simulations as a case study of interactive cfd on supercomputers. Int. J. Parallel Emerg. Distrib. Syst. 22(4), 275–291 (2007) MathSciNet Wu, Y., Li, S., Liu, S., Dou, H.S., Qian, Z.: Vibration of Hydraulic Machinery, chap. Rotordynamic Simulation of Hydraulic Machinery, pp. 307–373. Springer Netherlands, Dordrecht (2013).doi: 10.1007/978-94-007-6422-4_9 Xia, Y., Qiu, Z., Friswell, M.I.: The time response of structures with bounded parameters and interval initial conditions. J. Sound Vibr. 329(3), 353–365 (2010) Zimnitzki, A.: Beitrag zur optimalen gestaltung des spiralgehäuses einer kreiselpumpe. Ph.D. thesis. TU Dresden, Alemania (2000) Zobeiri, A., Kueny, J.L., Farhat, M., Avellan, F.: Pump-turbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. In: 23rd IAHR Symposium on Hydraulic Machinery and Systems, LMH-CONF-2006-008 (2006) Żółtowski, B., Cempel, C.: Engineering of machine diagnostics (2004) Żółtowski, B., Perez, J.L.B., Heredia, L.F.C.: Study of the technical state of a francis turbine by rotor dynamic simulations. Journal of Polish CIMAC 4(3), 113–123 (2009) |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.coverage.spatial.spa.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Springer Verlag France |
dc.source.spa.fl_str_mv |
https://link.springer.com/article/10.1007/s12008-016-0336-1 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/97ef5fd0-ba88-4721-8c16-52ee6494f8cc/download https://red.uao.edu.co/bitstreams/a9eea0d5-3645-49ef-a552-ce3750620748/download https://red.uao.edu.co/bitstreams/be54a508-3401-4e3e-97ef-23b0e86b925d/download https://red.uao.edu.co/bitstreams/0690a3cd-e125-4fe0-b6e9-774fd6c1af8e/download https://red.uao.edu.co/bitstreams/5d533afd-c998-47a7-86dc-b8ec9fc9882c/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 24745db6e81fb9314f3422897f4e8bfd f8314d1c7bdb2a52f6c6a68029914dad e27b4d99067452dccbaa194ce95dafee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260241280270336 |
spelling |
Laín Beatove, Santiagovirtual::2538-1Quintero Arboleda, Brian7f7fc4504e4d4e7ade577ec67789dbebGarcia Ruiz, Manuel Julian0eacca5f9138071afbf223ae1c9f73d5Orrego, Santiagof3832d55047a4d34cd6ace22db0834c9Barbosa, Jaime27eae061f4a15b3ab87d9ca83cb76771Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-09-10T21:20:27Z2019-09-10T21:20:27Z2017-081955-2513http://hdl.handle.net/10614/11089doi:10.1007/s12008-016-0336-1This paper proposes a new methodology to evaluate the technical state of a Francis turbine installed in a hydroelectric plant by coupling computational fluid dynamics (CFD) and rotor-dynamic analysis. CFD simulations predicted the hydraulic performance of the turbine. The obtained field forces, due to the fluid-structure interaction over the blades of the runner, were used as boundary condition in the shaft rotor-dynamic numerical model, which accurately predicted the dynamic behavior of the turbine’s shaft. Both numerical models were validated with in situ experimental measurements. The CFD model was validated measuring the pressure fluctuations near the rotor–stator interaction area and the torque and radial force in the shaft using strain gages. The rotor-dynamic model was validated using accelerometers installed over the bearings supporting the shaft. Results from both numerical models were in agreement with experimental measurements and provided a full diagnose of the dynamic working condition of the principal systems of the turbine. Implementation of this methodology can be applied to further identify potential failure and improve future designsapplication/pdf10 páginasengSpringer Verlag FranceDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://link.springer.com/article/10.1007/s12008-016-0336-1Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbineArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85TurbinasTurbinas - VibraciónTurbomáquinasTurbinesTurbines - VibrationTurbomachinesCFDFluid structure interactionFrancis turbineDiagnosisVibrations632362311Garcia, M., Laín, S., Orrego, S., Barbosa, J., & Quintero, B. (2017). Hydraulic and rotor-dynamic interaction for performance evaluation on a Francis turbine. International Journal on Interactive Design and Manufacturing (IJIDeM), 11(3), 623-632. DOI 10.1007/s12008-016-0336-1International Journal on Interactive Design and Manufacturing (IJIDeM)Bently, D.E., Hatch, C.T.: Fundamentals of Rotating Machinery Diagnostics. Amer Society of Mechanical (2002)Byskov, R.K., Jacobsen, C.B., Pedersen, N.: Flow in a centrifugal pump impeller at design and off-design conditions. Part II: large eddy simulations, ASME. J. Fluids Eng. 125(1), 73–83 (2003). doi: 10.1115/1.1524585Chen, S.H., Liaw, L.F.: The flowfield calculations of a centrifugal pump with volute. In: International Gas Turbine and Aeroengine Congress and Exhibition, Orlando (1997)Ciocan, G.D., Iliescu, M.S., Vu, T.C., Nennemann, B., Avellan, F.: Experimental study and numerical simulation of the flindt draft tube rotating vortex. J. Fluids Eng. 129(2), 146–158 (2007)Cui, L.: Maintenance Models and Optimization, pp. 789–805. Springer London (2008). doi: 10.1007/978-1-84800-131-2_48Estévez, E.E., do Nascimento, L.d.P., Ferrando, M.d.C.V., Santacreu, E.J.: El diagnóstico de daños en grupos hidroeléctricos mediante el análisis de vibraciones. Ingeniería del agua 1(3) (1994)Gagnon, J., Deschenes, C.: Numerical Simulation of a Rotor–Stator Unsteady Interaction in a Propeller Turbine. CFD Society of Canada, Toronto (2007)García, M., Duque, J., Boulanger, P., Figueroa, P.: Computational steering of cfd simulations using a grid computing environment. Int. J. Interact. Design Manuf. (IJIDeM) 9(3), 235–245 (2015). doi: 10.1007/s12008-014-0236-1Göz, M., Laín, S., Sommerfeld, M.: Study of the numerical instabilities in lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 28(12), 2727–2733 (2004)Guedes, A., Kueny, J.L., Ciocan, G.D., Avellan, F.: Unsteady rotor–stator analysis of hydraulic pump-turbine: CFD and experimental approach. In: 21st IAHR Symposium on Hydraulic Machinery and Systems (2002)Gustavsson, R.: Modelling and analysis of hydropower generator rotors. Lulea University of Technology. The Polhem Laboratory. Division of Computer Aided Design (2005)Karlsson, M., Aidanpää, J.O.: Dynamic behaviour in a hydro power rotor system due to the influence of generator shape and fluid dynamics. In: ASME 2005 Power Conference, pp. 905–913. American Society of Mechanical Engineers (2005)Keck, H., Sick, M.: Thirty years of numerical flow simulation in hydraulic turbomachines. Acta Mech. 201(1–4), 211–229 (2008)Kicinski, J.: Rotor Dynamics. Wydaw, IMP PAN Gdansk (2006)Kreylos, O., Tesdall, A., Hamann, B., Hunter, J., Joy, K.: Interactive visualization and steering of CFD simulations. In: Proceedings of the symposium on Data Visualisation 2002, pp. 25–34. Eurographics Association (2002)Krodkiewski, A.J.: Dynamics of Rotors. The University of Melbourne (2007). http://www.ktdw.pl/ksiazki/13lec.pdfLaı n, S., Aliod, R.: Study on the eulerian dispersed phase equations in non-uniform turbulent two-phase flows: discussion and comparison with experiments. Int. J. Heat Fluid Flow 21(3), 374–380 (2000)Laín, S., García, M., Avellan, F., Quintero, B., Orrego, S.: Simulación numérica de turbinas Francis. Fondo Editorial EAFIT (2011). http://www.eafit.edu.co/cultura-eafit/fondo-editorial/colecciones/Paginas/simulacion-numerica-turbinas-francis.aspxLópez, O., Meneses, D., Quintero, B., Laín, S.: Computational study of transient flow around darrieus type cross flow water turbines. J. Renew. Sustain. Energy 8(1), 014,501 (2016)Majidi, K.: Numerische berechnung der sekundärströmung in radialen kreiselpumpen zur feststoffförderung. Ph.D. thesis, TU Berlin. Berlin (1997)Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)Muggli, F.A., Eisele, K., Zhang, Z., Casey, M.V.: Numerical investigations of the flow in a pump turbine in pump mode. In: 3rd European Conference on Turbomachinery, pp. 997–1002, Londres (1999)Ng, E.Y.K., Tan, S.T.: Evaluation of turbulence models for fluid machinery application. In: ASME/ JSME Conference. ASME, San Francisco (1999)Ojala, J., Rautaheimo, P., Siikonen, T.: Numerical Simulation of a Centrifugal Pump Using k-Omega Model Including the Effects of Rotation. Wiley, New York (1998)Ritzinger, S.: Simulation realer Laufradströmungen. Herbert Utz Verlag, Munich (1998)Schenkel, S.: Modellierung und numerische simulation der strömungsvoränge am laufradeintritt von turboarbeitsmaschinen. Ph.D. thesis, TU Darmstadt (1998)Sedlar, M., Mensik, P.: Investigation of rotor–stator interaction influence on flow fields in radial pump flows. In: 3rd European Conference on Turbomachinery, pp. 1017–1025, Londres (1999)Sedlar, M., Vlach, M., Soukal, J.: Numerical and experimental investigation of flow in axial flow hydraulic machinery. In: 3rd European Conference on Turbomachinery, pp. 1007–1016, Londres (1999)Shuliang, C.: Three-dimensional turbulent flow in a centrifugal pump impeller under desing and off-desing operating conditions. In: ASME Fluids Engineering Division Summer Meeting (FEDSM99-6872). ASME (1999)Sommerfeld, M., Lain, S.: Parameters influencing dilute-phase pneumatic conveying through pipe systems: a computational study by the euler/lagrange approach. Can. J. Chem. Eng. 93(1), 1–17 (2015)Song, C.C.S., Chen, X., Ikohagi, T., Sato, J., Sinmei, K., Tani, K.: Simulation of flow through Francis turbine by LES method. In: Proceedings of the 18th Symposium on Hydraulic Machinery and Cavitation, pp. 267–276, Valencia (1996)Stolarski, T.: Turbomachinery Rotordynamics (1995)Treutz, G.: Numerische simulation der instationären strömung in einer kreiselpumpe, Ph.D. thesis. TU Darmstadt, Alemania (2002)Vance, J.M.: Rotordynamics of Turbomachinery. Wiley, New York (1988)Von Hoyningen-Huene, M., Hermeler, J.: Comparison of three approaches to model stator–rotor interaction in turbine front stage of an industrial gas turbine. In: 3rd European Conference on Turbomachinery, pp. 307–322, Londres (1999)Wenisch, P., Treeck, Cv, Borrmann, A., Rank, E., Wenisch, O.: Computational steering on distributed systems: indoor comfort simulations as a case study of interactive cfd on supercomputers. Int. J. Parallel Emerg. Distrib. Syst. 22(4), 275–291 (2007) MathSciNetWu, Y., Li, S., Liu, S., Dou, H.S., Qian, Z.: Vibration of Hydraulic Machinery, chap. Rotordynamic Simulation of Hydraulic Machinery, pp. 307–373. Springer Netherlands, Dordrecht (2013).doi: 10.1007/978-94-007-6422-4_9Xia, Y., Qiu, Z., Friswell, M.I.: The time response of structures with bounded parameters and interval initial conditions. J. Sound Vibr. 329(3), 353–365 (2010)Zimnitzki, A.: Beitrag zur optimalen gestaltung des spiralgehäuses einer kreiselpumpe. Ph.D. thesis. TU Dresden, Alemania (2000)Zobeiri, A., Kueny, J.L., Farhat, M., Avellan, F.: Pump-turbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. In: 23rd IAHR Symposium on Hydraulic Machinery and Systems, LMH-CONF-2006-008 (2006)Żółtowski, B., Cempel, C.: Engineering of machine diagnostics (2004)Żółtowski, B., Perez, J.L.B., Heredia, L.F.C.: Study of the technical state of a francis turbine by rotor dynamic simulations. Journal of Polish CIMAC 4(3), 113–123 (2009)Publication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2538-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2538-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2538-10000-0002-0269-2608virtual::2538-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2538-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/97ef5fd0-ba88-4721-8c16-52ee6494f8cc/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/a9eea0d5-3645-49ef-a552-ce3750620748/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINAL00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdfArchivo texto completo del artículoapplication/pdf2087814https://red.uao.edu.co/bitstreams/be54a508-3401-4e3e-97ef-23b0e86b925d/download24745db6e81fb9314f3422897f4e8bfdMD54TEXT00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf.txt00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf.txtExtracted texttext/plain40770https://red.uao.edu.co/bitstreams/0690a3cd-e125-4fe0-b6e9-774fd6c1af8e/downloadf8314d1c7bdb2a52f6c6a68029914dadMD55THUMBNAIL00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf.jpg00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf.jpgGenerated Thumbnailimage/jpeg13330https://red.uao.edu.co/bitstreams/5d533afd-c998-47a7-86dc-b8ec9fc9882c/downloade27b4d99067452dccbaa194ce95dafeeMD5610614/11089oai:red.uao.edu.co:10614/110892024-03-06 16:05:31.937https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |