Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine

This paper proposes a new methodology to evaluate the technical state of a Francis turbine installed in a hydroelectric plant by coupling computational fluid dynamics (CFD) and rotor-dynamic analysis. CFD simulations predicted the hydraulic performance of the turbine. The obtained field forces, due...

Full description

Autores:
Laín Beatove, Santiago
Quintero Arboleda, Brian
Garcia Ruiz, Manuel Julian
Orrego, Santiago
Barbosa, Jaime
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11089
Acceso en línea:
http://hdl.handle.net/10614/11089
Palabra clave:
Turbinas
Turbinas - Vibración
Turbomáquinas
Turbines
Turbines - Vibration
Turbomachines
CFD
Fluid structure interaction
Francis turbine
Diagnosis
Vibrations
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_cb89bea623cf8abb9edabe2eeb797ff8
oai_identifier_str oai:red.uao.edu.co:10614/11089
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
title Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
spellingShingle Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
Turbinas
Turbinas - Vibración
Turbomáquinas
Turbines
Turbines - Vibration
Turbomachines
CFD
Fluid structure interaction
Francis turbine
Diagnosis
Vibrations
title_short Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
title_full Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
title_fullStr Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
title_full_unstemmed Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
title_sort Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine
dc.creator.fl_str_mv Laín Beatove, Santiago
Quintero Arboleda, Brian
Garcia Ruiz, Manuel Julian
Orrego, Santiago
Barbosa, Jaime
dc.contributor.author.none.fl_str_mv Laín Beatove, Santiago
dc.contributor.author.spa.fl_str_mv Quintero Arboleda, Brian
Garcia Ruiz, Manuel Julian
Orrego, Santiago
Barbosa, Jaime
dc.subject.armarc.spa.fl_str_mv Turbinas
Turbinas - Vibración
Turbomáquinas
topic Turbinas
Turbinas - Vibración
Turbomáquinas
Turbines
Turbines - Vibration
Turbomachines
CFD
Fluid structure interaction
Francis turbine
Diagnosis
Vibrations
dc.subject.armarc.eng.fl_str_mv Turbines
Turbines - Vibration
Turbomachines
dc.subject.proposal.eng.fl_str_mv CFD
Fluid structure interaction
Francis turbine
Diagnosis
Vibrations
description This paper proposes a new methodology to evaluate the technical state of a Francis turbine installed in a hydroelectric plant by coupling computational fluid dynamics (CFD) and rotor-dynamic analysis. CFD simulations predicted the hydraulic performance of the turbine. The obtained field forces, due to the fluid-structure interaction over the blades of the runner, were used as boundary condition in the shaft rotor-dynamic numerical model, which accurately predicted the dynamic behavior of the turbine’s shaft. Both numerical models were validated with in situ experimental measurements. The CFD model was validated measuring the pressure fluctuations near the rotor–stator interaction area and the torque and radial force in the shaft using strain gages. The rotor-dynamic model was validated using accelerometers installed over the bearings supporting the shaft. Results from both numerical models were in agreement with experimental measurements and provided a full diagnose of the dynamic working condition of the principal systems of the turbine. Implementation of this methodology can be applied to further identify potential failure and improve future designs
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-08
dc.date.accessioned.none.fl_str_mv 2019-09-10T21:20:27Z
dc.date.available.none.fl_str_mv 2019-09-10T21:20:27Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1955-2513
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11089
dc.identifier.doi.spa.fl_str_mv doi:10.1007/s12008-016-0336-1
identifier_str_mv 1955-2513
doi:10.1007/s12008-016-0336-1
url http://hdl.handle.net/10614/11089
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 632
dc.relation.citationissue.none.fl_str_mv 3
dc.relation.citationstartpage.none.fl_str_mv 623
dc.relation.citationvolume.none.fl_str_mv 11
dc.relation.cites.eng.fl_str_mv Garcia, M., Laín, S., Orrego, S., Barbosa, J., & Quintero, B. (2017). Hydraulic and rotor-dynamic interaction for performance evaluation on a Francis turbine. International Journal on Interactive Design and Manufacturing (IJIDeM), 11(3), 623-632. DOI 10.1007/s12008-016-0336-1
dc.relation.ispartofjournal.eng.fl_str_mv International Journal on Interactive Design and Manufacturing (IJIDeM)
dc.relation.references.spa.fl_str_mv Bently, D.E., Hatch, C.T.: Fundamentals of Rotating Machinery Diagnostics. Amer Society of Mechanical (2002)
Byskov, R.K., Jacobsen, C.B., Pedersen, N.: Flow in a centrifugal pump impeller at design and off-design conditions. Part II: large eddy simulations, ASME. J. Fluids Eng. 125(1), 73–83 (2003). doi: 10.1115/1.1524585
Chen, S.H., Liaw, L.F.: The flowfield calculations of a centrifugal pump with volute. In: International Gas Turbine and Aeroengine Congress and Exhibition, Orlando (1997)
Ciocan, G.D., Iliescu, M.S., Vu, T.C., Nennemann, B., Avellan, F.: Experimental study and numerical simulation of the flindt draft tube rotating vortex. J. Fluids Eng. 129(2), 146–158 (2007)
Cui, L.: Maintenance Models and Optimization, pp. 789–805. Springer London (2008). doi: 10.1007/978-1-84800-131-2_48
Estévez, E.E., do Nascimento, L.d.P., Ferrando, M.d.C.V., Santacreu, E.J.: El diagnóstico de daños en grupos hidroeléctricos mediante el análisis de vibraciones. Ingeniería del agua 1(3) (1994)
Gagnon, J., Deschenes, C.: Numerical Simulation of a Rotor–Stator Unsteady Interaction in a Propeller Turbine. CFD Society of Canada, Toronto (2007)
García, M., Duque, J., Boulanger, P., Figueroa, P.: Computational steering of cfd simulations using a grid computing environment. Int. J. Interact. Design Manuf. (IJIDeM) 9(3), 235–245 (2015). doi: 10.1007/s12008-014-0236-1
Göz, M., Laín, S., Sommerfeld, M.: Study of the numerical instabilities in lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 28(12), 2727–2733 (2004)
Guedes, A., Kueny, J.L., Ciocan, G.D., Avellan, F.: Unsteady rotor–stator analysis of hydraulic pump-turbine: CFD and experimental approach. In: 21st IAHR Symposium on Hydraulic Machinery and Systems (2002)
Gustavsson, R.: Modelling and analysis of hydropower generator rotors. Lulea University of Technology. The Polhem Laboratory. Division of Computer Aided Design (2005)
Karlsson, M., Aidanpää, J.O.: Dynamic behaviour in a hydro power rotor system due to the influence of generator shape and fluid dynamics. In: ASME 2005 Power Conference, pp. 905–913. American Society of Mechanical Engineers (2005)
Keck, H., Sick, M.: Thirty years of numerical flow simulation in hydraulic turbomachines. Acta Mech. 201(1–4), 211–229 (2008)
Kicinski, J.: Rotor Dynamics. Wydaw, IMP PAN Gdansk (2006)
Kreylos, O., Tesdall, A., Hamann, B., Hunter, J., Joy, K.: Interactive visualization and steering of CFD simulations. In: Proceedings of the symposium on Data Visualisation 2002, pp. 25–34. Eurographics Association (2002)
Krodkiewski, A.J.: Dynamics of Rotors. The University of Melbourne (2007). http://www.ktdw.pl/ksiazki/13lec.pdf
Laı n, S., Aliod, R.: Study on the eulerian dispersed phase equations in non-uniform turbulent two-phase flows: discussion and comparison with experiments. Int. J. Heat Fluid Flow 21(3), 374–380 (2000)
Laín, S., García, M., Avellan, F., Quintero, B., Orrego, S.: Simulación numérica de turbinas Francis. Fondo Editorial EAFIT (2011). http://www.eafit.edu.co/cultura-eafit/fondo-editorial/colecciones/Paginas/simulacion-numerica-turbinas-francis.aspx
López, O., Meneses, D., Quintero, B., Laín, S.: Computational study of transient flow around darrieus type cross flow water turbines. J. Renew. Sustain. Energy 8(1), 014,501 (2016)
Majidi, K.: Numerische berechnung der sekundärströmung in radialen kreiselpumpen zur feststoffförderung. Ph.D. thesis, TU Berlin. Berlin (1997)
Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)
Muggli, F.A., Eisele, K., Zhang, Z., Casey, M.V.: Numerical investigations of the flow in a pump turbine in pump mode. In: 3rd European Conference on Turbomachinery, pp. 997–1002, Londres (1999)
Ng, E.Y.K., Tan, S.T.: Evaluation of turbulence models for fluid machinery application. In: ASME/ JSME Conference. ASME, San Francisco (1999)
Ojala, J., Rautaheimo, P., Siikonen, T.: Numerical Simulation of a Centrifugal Pump Using k-Omega Model Including the Effects of Rotation. Wiley, New York (1998)
Ritzinger, S.: Simulation realer Laufradströmungen. Herbert Utz Verlag, Munich (1998)
Schenkel, S.: Modellierung und numerische simulation der strömungsvoränge am laufradeintritt von turboarbeitsmaschinen. Ph.D. thesis, TU Darmstadt (1998)
Sedlar, M., Mensik, P.: Investigation of rotor–stator interaction influence on flow fields in radial pump flows. In: 3rd European Conference on Turbomachinery, pp. 1017–1025, Londres (1999)
Sedlar, M., Vlach, M., Soukal, J.: Numerical and experimental investigation of flow in axial flow hydraulic machinery. In: 3rd European Conference on Turbomachinery, pp. 1007–1016, Londres (1999)
Shuliang, C.: Three-dimensional turbulent flow in a centrifugal pump impeller under desing and off-desing operating conditions. In: ASME Fluids Engineering Division Summer Meeting (FEDSM99-6872). ASME (1999)
Sommerfeld, M., Lain, S.: Parameters influencing dilute-phase pneumatic conveying through pipe systems: a computational study by the euler/lagrange approach. Can. J. Chem. Eng. 93(1), 1–17 (2015)
Song, C.C.S., Chen, X., Ikohagi, T., Sato, J., Sinmei, K., Tani, K.: Simulation of flow through Francis turbine by LES method. In: Proceedings of the 18th Symposium on Hydraulic Machinery and Cavitation, pp. 267–276, Valencia (1996)
Stolarski, T.: Turbomachinery Rotordynamics (1995)
Treutz, G.: Numerische simulation der instationären strömung in einer kreiselpumpe, Ph.D. thesis. TU Darmstadt, Alemania (2002)
Vance, J.M.: Rotordynamics of Turbomachinery. Wiley, New York (1988)
Von Hoyningen-Huene, M., Hermeler, J.: Comparison of three approaches to model stator–rotor interaction in turbine front stage of an industrial gas turbine. In: 3rd European Conference on Turbomachinery, pp. 307–322, Londres (1999)
Wenisch, P., Treeck, Cv, Borrmann, A., Rank, E., Wenisch, O.: Computational steering on distributed systems: indoor comfort simulations as a case study of interactive cfd on supercomputers. Int. J. Parallel Emerg. Distrib. Syst. 22(4), 275–291 (2007) MathSciNet
Wu, Y., Li, S., Liu, S., Dou, H.S., Qian, Z.: Vibration of Hydraulic Machinery, chap. Rotordynamic Simulation of Hydraulic Machinery, pp. 307–373. Springer Netherlands, Dordrecht (2013).doi: 10.1007/978-94-007-6422-4_9
Xia, Y., Qiu, Z., Friswell, M.I.: The time response of structures with bounded parameters and interval initial conditions. J. Sound Vibr. 329(3), 353–365 (2010)
Zimnitzki, A.: Beitrag zur optimalen gestaltung des spiralgehäuses einer kreiselpumpe. Ph.D. thesis. TU Dresden, Alemania (2000)
Zobeiri, A., Kueny, J.L., Farhat, M., Avellan, F.: Pump-turbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. In: 23rd IAHR Symposium on Hydraulic Machinery and Systems, LMH-CONF-2006-008 (2006)
Żółtowski, B., Cempel, C.: Engineering of machine diagnostics (2004)
Żółtowski, B., Perez, J.L.B., Heredia, L.F.C.: Study of the technical state of a francis turbine by rotor dynamic simulations. Journal of Polish CIMAC 4(3), 113–123 (2009)
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Springer Verlag France
dc.source.spa.fl_str_mv https://link.springer.com/article/10.1007/s12008-016-0336-1
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/97ef5fd0-ba88-4721-8c16-52ee6494f8cc/download
https://red.uao.edu.co/bitstreams/a9eea0d5-3645-49ef-a552-ce3750620748/download
https://red.uao.edu.co/bitstreams/be54a508-3401-4e3e-97ef-23b0e86b925d/download
https://red.uao.edu.co/bitstreams/0690a3cd-e125-4fe0-b6e9-774fd6c1af8e/download
https://red.uao.edu.co/bitstreams/5d533afd-c998-47a7-86dc-b8ec9fc9882c/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
24745db6e81fb9314f3422897f4e8bfd
f8314d1c7bdb2a52f6c6a68029914dad
e27b4d99067452dccbaa194ce95dafee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260241280270336
spelling Laín Beatove, Santiagovirtual::2538-1Quintero Arboleda, Brian7f7fc4504e4d4e7ade577ec67789dbebGarcia Ruiz, Manuel Julian0eacca5f9138071afbf223ae1c9f73d5Orrego, Santiagof3832d55047a4d34cd6ace22db0834c9Barbosa, Jaime27eae061f4a15b3ab87d9ca83cb76771Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-09-10T21:20:27Z2019-09-10T21:20:27Z2017-081955-2513http://hdl.handle.net/10614/11089doi:10.1007/s12008-016-0336-1This paper proposes a new methodology to evaluate the technical state of a Francis turbine installed in a hydroelectric plant by coupling computational fluid dynamics (CFD) and rotor-dynamic analysis. CFD simulations predicted the hydraulic performance of the turbine. The obtained field forces, due to the fluid-structure interaction over the blades of the runner, were used as boundary condition in the shaft rotor-dynamic numerical model, which accurately predicted the dynamic behavior of the turbine’s shaft. Both numerical models were validated with in situ experimental measurements. The CFD model was validated measuring the pressure fluctuations near the rotor–stator interaction area and the torque and radial force in the shaft using strain gages. The rotor-dynamic model was validated using accelerometers installed over the bearings supporting the shaft. Results from both numerical models were in agreement with experimental measurements and provided a full diagnose of the dynamic working condition of the principal systems of the turbine. Implementation of this methodology can be applied to further identify potential failure and improve future designsapplication/pdf10 páginasengSpringer Verlag FranceDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://link.springer.com/article/10.1007/s12008-016-0336-1Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbineArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85TurbinasTurbinas - VibraciónTurbomáquinasTurbinesTurbines - VibrationTurbomachinesCFDFluid structure interactionFrancis turbineDiagnosisVibrations632362311Garcia, M., Laín, S., Orrego, S., Barbosa, J., & Quintero, B. (2017). Hydraulic and rotor-dynamic interaction for performance evaluation on a Francis turbine. International Journal on Interactive Design and Manufacturing (IJIDeM), 11(3), 623-632. DOI 10.1007/s12008-016-0336-1International Journal on Interactive Design and Manufacturing (IJIDeM)Bently, D.E., Hatch, C.T.: Fundamentals of Rotating Machinery Diagnostics. Amer Society of Mechanical (2002)Byskov, R.K., Jacobsen, C.B., Pedersen, N.: Flow in a centrifugal pump impeller at design and off-design conditions. Part II: large eddy simulations, ASME. J. Fluids Eng. 125(1), 73–83 (2003). doi: 10.1115/1.1524585Chen, S.H., Liaw, L.F.: The flowfield calculations of a centrifugal pump with volute. In: International Gas Turbine and Aeroengine Congress and Exhibition, Orlando (1997)Ciocan, G.D., Iliescu, M.S., Vu, T.C., Nennemann, B., Avellan, F.: Experimental study and numerical simulation of the flindt draft tube rotating vortex. J. Fluids Eng. 129(2), 146–158 (2007)Cui, L.: Maintenance Models and Optimization, pp. 789–805. Springer London (2008). doi: 10.1007/978-1-84800-131-2_48Estévez, E.E., do Nascimento, L.d.P., Ferrando, M.d.C.V., Santacreu, E.J.: El diagnóstico de daños en grupos hidroeléctricos mediante el análisis de vibraciones. Ingeniería del agua 1(3) (1994)Gagnon, J., Deschenes, C.: Numerical Simulation of a Rotor–Stator Unsteady Interaction in a Propeller Turbine. CFD Society of Canada, Toronto (2007)García, M., Duque, J., Boulanger, P., Figueroa, P.: Computational steering of cfd simulations using a grid computing environment. Int. J. Interact. Design Manuf. (IJIDeM) 9(3), 235–245 (2015). doi: 10.1007/s12008-014-0236-1Göz, M., Laín, S., Sommerfeld, M.: Study of the numerical instabilities in lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 28(12), 2727–2733 (2004)Guedes, A., Kueny, J.L., Ciocan, G.D., Avellan, F.: Unsteady rotor–stator analysis of hydraulic pump-turbine: CFD and experimental approach. In: 21st IAHR Symposium on Hydraulic Machinery and Systems (2002)Gustavsson, R.: Modelling and analysis of hydropower generator rotors. Lulea University of Technology. The Polhem Laboratory. Division of Computer Aided Design (2005)Karlsson, M., Aidanpää, J.O.: Dynamic behaviour in a hydro power rotor system due to the influence of generator shape and fluid dynamics. In: ASME 2005 Power Conference, pp. 905–913. American Society of Mechanical Engineers (2005)Keck, H., Sick, M.: Thirty years of numerical flow simulation in hydraulic turbomachines. Acta Mech. 201(1–4), 211–229 (2008)Kicinski, J.: Rotor Dynamics. Wydaw, IMP PAN Gdansk (2006)Kreylos, O., Tesdall, A., Hamann, B., Hunter, J., Joy, K.: Interactive visualization and steering of CFD simulations. In: Proceedings of the symposium on Data Visualisation 2002, pp. 25–34. Eurographics Association (2002)Krodkiewski, A.J.: Dynamics of Rotors. The University of Melbourne (2007). http://www.ktdw.pl/ksiazki/13lec.pdfLaı n, S., Aliod, R.: Study on the eulerian dispersed phase equations in non-uniform turbulent two-phase flows: discussion and comparison with experiments. Int. J. Heat Fluid Flow 21(3), 374–380 (2000)Laín, S., García, M., Avellan, F., Quintero, B., Orrego, S.: Simulación numérica de turbinas Francis. Fondo Editorial EAFIT (2011). http://www.eafit.edu.co/cultura-eafit/fondo-editorial/colecciones/Paginas/simulacion-numerica-turbinas-francis.aspxLópez, O., Meneses, D., Quintero, B., Laín, S.: Computational study of transient flow around darrieus type cross flow water turbines. J. Renew. Sustain. Energy 8(1), 014,501 (2016)Majidi, K.: Numerische berechnung der sekundärströmung in radialen kreiselpumpen zur feststoffförderung. Ph.D. thesis, TU Berlin. Berlin (1997)Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)Muggli, F.A., Eisele, K., Zhang, Z., Casey, M.V.: Numerical investigations of the flow in a pump turbine in pump mode. In: 3rd European Conference on Turbomachinery, pp. 997–1002, Londres (1999)Ng, E.Y.K., Tan, S.T.: Evaluation of turbulence models for fluid machinery application. In: ASME/ JSME Conference. ASME, San Francisco (1999)Ojala, J., Rautaheimo, P., Siikonen, T.: Numerical Simulation of a Centrifugal Pump Using k-Omega Model Including the Effects of Rotation. Wiley, New York (1998)Ritzinger, S.: Simulation realer Laufradströmungen. Herbert Utz Verlag, Munich (1998)Schenkel, S.: Modellierung und numerische simulation der strömungsvoränge am laufradeintritt von turboarbeitsmaschinen. Ph.D. thesis, TU Darmstadt (1998)Sedlar, M., Mensik, P.: Investigation of rotor–stator interaction influence on flow fields in radial pump flows. In: 3rd European Conference on Turbomachinery, pp. 1017–1025, Londres (1999)Sedlar, M., Vlach, M., Soukal, J.: Numerical and experimental investigation of flow in axial flow hydraulic machinery. In: 3rd European Conference on Turbomachinery, pp. 1007–1016, Londres (1999)Shuliang, C.: Three-dimensional turbulent flow in a centrifugal pump impeller under desing and off-desing operating conditions. In: ASME Fluids Engineering Division Summer Meeting (FEDSM99-6872). ASME (1999)Sommerfeld, M., Lain, S.: Parameters influencing dilute-phase pneumatic conveying through pipe systems: a computational study by the euler/lagrange approach. Can. J. Chem. Eng. 93(1), 1–17 (2015)Song, C.C.S., Chen, X., Ikohagi, T., Sato, J., Sinmei, K., Tani, K.: Simulation of flow through Francis turbine by LES method. In: Proceedings of the 18th Symposium on Hydraulic Machinery and Cavitation, pp. 267–276, Valencia (1996)Stolarski, T.: Turbomachinery Rotordynamics (1995)Treutz, G.: Numerische simulation der instationären strömung in einer kreiselpumpe, Ph.D. thesis. TU Darmstadt, Alemania (2002)Vance, J.M.: Rotordynamics of Turbomachinery. Wiley, New York (1988)Von Hoyningen-Huene, M., Hermeler, J.: Comparison of three approaches to model stator–rotor interaction in turbine front stage of an industrial gas turbine. In: 3rd European Conference on Turbomachinery, pp. 307–322, Londres (1999)Wenisch, P., Treeck, Cv, Borrmann, A., Rank, E., Wenisch, O.: Computational steering on distributed systems: indoor comfort simulations as a case study of interactive cfd on supercomputers. Int. J. Parallel Emerg. Distrib. Syst. 22(4), 275–291 (2007) MathSciNetWu, Y., Li, S., Liu, S., Dou, H.S., Qian, Z.: Vibration of Hydraulic Machinery, chap. Rotordynamic Simulation of Hydraulic Machinery, pp. 307–373. Springer Netherlands, Dordrecht (2013).doi: 10.1007/978-94-007-6422-4_9Xia, Y., Qiu, Z., Friswell, M.I.: The time response of structures with bounded parameters and interval initial conditions. J. Sound Vibr. 329(3), 353–365 (2010)Zimnitzki, A.: Beitrag zur optimalen gestaltung des spiralgehäuses einer kreiselpumpe. Ph.D. thesis. TU Dresden, Alemania (2000)Zobeiri, A., Kueny, J.L., Farhat, M., Avellan, F.: Pump-turbine rotor-stator interactions in generating mode: pressure fluctuation in distributor channel. In: 23rd IAHR Symposium on Hydraulic Machinery and Systems, LMH-CONF-2006-008 (2006)Żółtowski, B., Cempel, C.: Engineering of machine diagnostics (2004)Żółtowski, B., Perez, J.L.B., Heredia, L.F.C.: Study of the technical state of a francis turbine by rotor dynamic simulations. Journal of Polish CIMAC 4(3), 113–123 (2009)Publication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2538-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2538-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2538-10000-0002-0269-2608virtual::2538-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2538-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/97ef5fd0-ba88-4721-8c16-52ee6494f8cc/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/a9eea0d5-3645-49ef-a552-ce3750620748/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINAL00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdfArchivo texto completo del artículoapplication/pdf2087814https://red.uao.edu.co/bitstreams/be54a508-3401-4e3e-97ef-23b0e86b925d/download24745db6e81fb9314f3422897f4e8bfdMD54TEXT00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf.txt00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf.txtExtracted texttext/plain40770https://red.uao.edu.co/bitstreams/0690a3cd-e125-4fe0-b6e9-774fd6c1af8e/downloadf8314d1c7bdb2a52f6c6a68029914dadMD55THUMBNAIL00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf.jpg00323_Hydraulic and rotor-dynamic interaction for performance evaluation on a francis turbine.pdf.jpgGenerated Thumbnailimage/jpeg13330https://red.uao.edu.co/bitstreams/5d533afd-c998-47a7-86dc-b8ec9fc9882c/downloade27b4d99067452dccbaa194ce95dafeeMD5610614/11089oai:red.uao.edu.co:10614/110892024-03-06 16:05:31.937https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K