Tribology review of blended bulk polymers and their coatings for high-load bearing applications
The present study reviews tribology research on bulk polymers and coatings, employed in several applications, including air-conditioning, refrigeration, and thrust pad bearings. Known polymers such as polyetheretherketone (PEEK), Polytetrafluoroethylene (PTFE), and aromatic thermosetting polyester (...
- Autores:
-
Escobar Nuñez, Emerson
Gheisari, Reza
Polycarpou, Andreas
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11518
- Palabra clave:
- Polímeros - Propiedades mecánicas
Polymers - Mechanical properties
ATSP
PEEK
PTFE
Polyimide
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_caab77a34e61042bdd9490241677cfd3 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11518 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Tribology review of blended bulk polymers and their coatings for high-load bearing applications |
title |
Tribology review of blended bulk polymers and their coatings for high-load bearing applications |
spellingShingle |
Tribology review of blended bulk polymers and their coatings for high-load bearing applications Polímeros - Propiedades mecánicas Polymers - Mechanical properties ATSP PEEK PTFE Polyimide |
title_short |
Tribology review of blended bulk polymers and their coatings for high-load bearing applications |
title_full |
Tribology review of blended bulk polymers and their coatings for high-load bearing applications |
title_fullStr |
Tribology review of blended bulk polymers and their coatings for high-load bearing applications |
title_full_unstemmed |
Tribology review of blended bulk polymers and their coatings for high-load bearing applications |
title_sort |
Tribology review of blended bulk polymers and their coatings for high-load bearing applications |
dc.creator.fl_str_mv |
Escobar Nuñez, Emerson Gheisari, Reza Polycarpou, Andreas |
dc.contributor.author.none.fl_str_mv |
Escobar Nuñez, Emerson Gheisari, Reza Polycarpou, Andreas |
dc.subject.armarc.spa.fl_str_mv |
Polímeros - Propiedades mecánicas |
topic |
Polímeros - Propiedades mecánicas Polymers - Mechanical properties ATSP PEEK PTFE Polyimide |
dc.subject.armarc.eng.fl_str_mv |
Polymers - Mechanical properties |
dc.subject.proposal.eng.fl_str_mv |
ATSP PEEK PTFE Polyimide |
description |
The present study reviews tribology research on bulk polymers and coatings, employed in several applications, including air-conditioning, refrigeration, and thrust pad bearings. Known polymers such as polyetheretherketone (PEEK), Polytetrafluoroethylene (PTFE), and aromatic thermosetting polyester (ATSP) were reviewed. PEEK outperforms PTFE when used in bulk format, while PTFE coatings demonstrated superior performance, and ATSP-based polymers exhibited remarkably low wear rates. The effect of critical operating conditions namely load, environmental pressure and temperature at different lubrication regimes were investigated. The ability to develop a transfer film on the countersurface was determined as a key factor in polymer tribological performance. High performance bulk polymers and coatings are viable candidates for today's demanding tribological applications |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-15T20:37:00Z |
dc.date.available.none.fl_str_mv |
2019-11-15T20:37:00Z |
dc.date.issued.none.fl_str_mv |
2019-01 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0301679X |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11518 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.triboint.2018.08.002 |
identifier_str_mv |
0301679X |
url |
http://hdl.handle.net/10614/11518 https://doi.org/10.1016/j.triboint.2018.08.002 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
111 |
dc.relation.citationstartpage.none.fl_str_mv |
92 |
dc.relation.citationvolume.none.fl_str_mv |
129 |
dc.relation.cites.spa.fl_str_mv |
Escobar Nuñez, E., Gheisari, R., & Polycarpou, A. A. (2019). Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribology International. 129, 92-111. https://doi.org/10.1016/j.triboint.2018.08.002 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Tribology International |
dc.relation.references.none.fl_str_mv |
[1] Demas NG, Polycarpou AA, F Conry T. Tribological studies on scuffing due to the influence of carbon dioxide used as a refrigerant in compressors. Tribol Trans 2005;48:336–42. [2] Lui H, Cheng J, Cheng Z. Experimental investigation of a CO2 air conditioner. Int’l. Jour of refrigeration 2005;28:1293–301. [3] Lee KM, Suh AY, Demas NG, Polycarpou AA. Surface and sub-micron sub-surface evolution of Al390-T6 undergoing Tribological testing under submerged lubrication conditions in the presence of CO2 refrigerant. Tribol Lett 2005;18:1–12. [4] Demas NG, Polycarpou AA. Ultra high pressure tribometer for testing CO2 refrigerant at chamber pressures up to 2000 psi to simulate compressor conditions. Tribol Trans 2006;49:1–6. [5] Cannaday ML, Polycarpou AA. Advantages of CO2 compared to R410a refrigerant of tribologically tested Aluminum 390-T6 surfaces. Tribol Lett 2006;21:185–92. [6] Nunez EE, Demas NG, Polychronopoulou K, Polycarpou AA. Tribological study comparing PAG and POE lubricants used in air-conditioning compressors under the presence of CO2. Tribol Trans 2008;51:1–8. [7] Nunez EE, Demas NG, Polychronopoulou K, Polycarpou AA. Comparative scuffing performance and chemical analysis of metallic surfaces for air-conditioning compressors in the presence of environmentally friendly CO2 refrigerant. Wear 2010;268:668–76. [8] Nunez EE, Polychronopoulou K, Polycarpou AA. Lubricity effect of carbon dioxide used as an environmentally friendly refrigerant in air-conditioning and refrigeration compressors. Wear 2010;270:46–56. [9] Akram MW, Polychronopoulou K, Polycarpou AA. Lubricity of environmentally friendly HFO-1234yf refrigerant. Tribol Int 2014;57:92–100. [10] Akram MW, Polychronopoulou K, Polycarpou AA. Tribological performance comparing different refrigerant–lubricant systems: the case of environmentally friendly HFO-1234yf refrigerant. Tribol Int 2014;78:176–86. [11] Cannaday ML, Polycarpou AA. Tribology of unfilled and filled polymeric surfaces in refrigerant environment for compressor applications. Tribol Lett 2005;19:249–62. [12] Demas NG, Polycarpou AA. Tribological performance of PTFE-based coatings for air-conditioning compressors. Surf Coating Technol 2008;203:307–16. [13] Dascalescu D, Polychronopoulou K, Polycarpou AA. The significance of tribochemistry on the performance of PTFE-based coatings in CO2 refrigerant environment. Surf Coating Technol 2009;204:319–29. [14] Yeo SM, Polycarpou AA. Tribological performance of PTFE- and PEEK-based coatings under oil-less compressor conditions. Wear 2012;296:638–47. [15] Yeo SM, Polycarpou AA. Micromechanical properties of polymeric coatings. Tribol Int 2013;60:198–208. [16] Lan P, Polychronopoulou K, Zhang Y, Polycarpou AA. Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear 2017;382:40–50. [17] Nguyen HX, Ishida H. Poly(Ary1-E t her-E ther-Ketone) and its advanced composites: a Review. Polym Compos 1987;8:57–73. [18] Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer 1983;24:953–8. [19] Regis M, Lanzutti A, Bracco P, Fedrizzi L. Wear behavior of medical grade PEEK and CFR PEEK under dry and bovine serum conditions. Wear 2018;408–409:86–95. [20] Wyatt H, Elliott M, Revill P, Clarke A. The effect of engineered surface topography on the tribology of CFR-PEEK for novel hip implant materials. Biotribology 2016;7:22–30. [21] Song I, Xiang D, Wang S, Liao Z, Lu J, Liu Y, Liu W, Peng Z. In vitro wear study of PEEK and CFRPEEK against UHMWPE for artificial cervical disc application. Tribol Int 2018;122:218–27. [22] Sampaio M, Buciumeanu M, Henriques B, Silva FS, Souza JCM, Gomes JR. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications. Journal of the Mechanical Behavior of Biomedical Materials 2016;60:212–9. [23] Kraft M, Koch DK, Bushelow M. An investigation into PEEK-on-PEEK as a bearing surface candidate for cervical total disc replacement. Spine J 2012;12:603–11. [24] Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28:4845–69. [25] Zhang G, Wetzel B, Wang Q. Tribological behavior of PEEK-based materials under mixed and boundary lubrication conditions. Tribol Int 2015;88:153–61. [26] Lin L, Pei X, Bennewitz R, Schlarb AK. Friction and wear of PEEK in continuous sliding and unidirectional scratch tests. Tribol Int 2018;122:108–13. [27] Avanzini A, Donzella G, Mazzù A, Petrogalli C. Wear and rolling contact fatigue of PEEK and PEEK composites. Tribol Int 2013;57:22–30. [28] Schroeder R, Torres FW, Binder C, Klein AN, de Mello JDB. Failure mode in sliding wear of PEEK based composites. Wear 2013;301:717–26. [29] Zalaznik M, Kalin M, Novak S, Jakša G. Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK. Wear 2016;364–365:31–9. [30] Rodriguez V, Sukumaran J, Schlarb AK, De Baets P. Reciprocating sliding wear behaviour of PEEK-based hybrid composites. Wear 2016;362–363:161–9. [31] Kalin M, Zalaznik M, Novak S. Wear and friction behaviour of poly-ether-etherketone (PEEK) filled with graphene, WS2 and CNT nanoparticles. Wear 2015;332–333:855–62. [32] Li G, Qi H, Zhang G, Zhao F, Wang T, Wang Q. Significant friction and wear reduction by assembling two individual PEEK composites with specific functionalities. Mater Des 2017;116:152–9. [33] Sawyer GW, Freudenberg KD, Bhimaraj P, S Schadler L. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 2003;254:573–80. [34] Lu ZP, Friedrich K. On sliding friction and wear of PEEK and its composites. Wear 1995;181–183:624–31. [35] Yanhai C, Hengyang C, Dongtai H, Yong Z, Zhencai Z. Effect of PTFE addition on the properties of electroless Ni-Cu-P-PTFE deposits. Rare Metal Mater Eng 2014;43:1025–30. [36] Conte M, Pinedo B, Igartua A. Role of crystallinity on wear behavior of PTFE composites. Wear 2013;307:81–6. [37] Liu XX, Li TS, Liu XJ, Lv RG, Cong PH. An investigation on the friction of oriented polytetrafluoroethylene (PTFE). Wear 2007;262:1414–8. [38] Dubey MK, Bijwe J, Ramakumar SSV. Nano-PTFE: new entrant as a very promising EP additive. Tribol Int 2015;87:121–31. [39] Li J, Qu J, Zhang Y. Wear properties of brass and PTFE–matrix composite in traveling wave ultrasonic motors. Wear 2015;338–339:385–93. [40] Ye J, Khare HS, Burris DL. Transfer film evolution and its role in promoting ultralow wear of a PTFE nanocomposite. Wear 2013;297:1095–102. [41] Song F, Wang Q, Wang T. The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE. Tribol Int 2016;93:1–10. [42] Shi J, Feng X, Wang HY, Liu C, Lu XH. Effects of filler crystal structure and shape on the tribological properties of PTFE composites. Tribol Int 2007;40:1195–203. [43] Zhang YZ, Wu YY, Sun KN, Yao M. Characterization of electroless Ni-P-PTFE composite deposits. J Mater Sci Lett 1998;17:119–22. [44] Briscoe BJ, Yao LH, Stolarski TA. The friction and wear of poly (tetrafluoroethylene)-poly (etheretherketone) composites: an initial appraisal of the optimum composition. Wear 1986;108:357–74. [45] Bahadur S, Gong D. The action of fillers in the modification of the friction and wear behavior of polymers. Wear 1992;158:41–59. [46] Bahadur S, Gong D. The role of copper compounds as fillers in the transfer and wear behavior of polyetheretherketone. Wear 1992;154:151–65. [47] Blanchet TA, E Kennedy F. Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 1992;153:229–43. [48] Friedrich K, Lu Z, M Hager A. Recent advances in polymer composites’ tribology. Wear 1995;190:139–44. [49] Pozdnyakov AO, Kudryavtsev VV, Friedrich K. Sliding wear of polyimide-C60 composite coatings. Wear 2003;254:501–13. [50] Friedrich K. Sliding wear performance of different polyimide formulations. Tribol Int 1989;22:25–31. [51] Evans DC, Senlor GS. Self lubricating materials for plain bearings. Tribol Int 1982;15:243–8. [52] Liu H, Wang T, Wang Q. Tribological properties of thermosetting polyimide/TiO2 nanocomposites under dry sliding and water-lubricated conditions. J Macromol 2012;51:2284–96. [53] Watson KA, Palmieri FL, Connell JW. Space environmentally stable polyimides and copolyimides derived from [2,4-Bis(3-aminophenoxy)phenyl]diphenyl- phosphine oxide. Macromolecules 2002;35. 4968–4968. [54] Ruijie Y, Yinping YE, Hongqi W, Huidi Z, Jianmin C. Tribological properties of polyimide bonded MoS2 solid lubricant coatings in differen toils. Tribology 2011;31:278–82. [55] Zhao G, Hussainova I, Antonov M, Wang Q, Wang T, Yung DL. Effect of temperatura on sliding and erosive wear of fiber reinforced polyimide hybrids. Tribol Int 2015;82:525–33. [56] Sliney HE. Solid lubricant materials for high temperatures—a review. Tribol Int 1982;15:303–15. [57] Cai H, Yan F, Xue YQ. Investigation of tribological properties of polyimide/carbón nanotube nanocomposites. Mater Sci Eng 2004;364:94–100. [58] Demas NG, Zhang J, Polycarpou AA, Economy J. Tribological characterization of aromatic thermosetting copolyester–PTFE blends in air conditioning compressor environment. Tribol Lett 2008;29:253–8. [59] Nunez EE, Polycarpou AA. The effect of surface roughness on the transfer of polymer films under unlubricated testing conditions. Wear 2015;326:74–83. [60] Frich D, Goranov K, Schneggendurger L, Economy J. Novel high-temperature aromatic copolyester thermosets: synthesis, characterization, and physical properties. Macromolecules 1996;29:7734–9. [61] Frich D, Economy J. Thermally stable liquid crystalline thermosets based on aromatic copolyesters: preparation and properties. J Polym Sci Part A: Polymer Chem 1997;35:1061–7. [62] Zhang J. Design of polymer composites with improved adhesion and wear properties. University of Illinois; 2008. [63] Cifci OS, Bakir M, Meyer JL, Kocyigit A. Morphological and electrical properties of ATSP/p-Si photodiode. Mater Sci Semicond Process 2018;74:175–82. [64] Akram MW, Meyer JL, Polycarpou AA. Tribological interactions of advanced polymeric coatings with polyalkylene glycol lubricant and r1234yf refrigerant. Tribol Int 2016;97:200–11. [65] Demas NG, Zhang J, Polycarpou AA, Economy J. Tribological characterization of aromatic thermosetting copolyester–PTFE blends in air conditioning compressor environment. Tribol Lett 2008;29:253–8. [66] Zhang J, Demas NG, Polycarpou AA, Economy J. A new family of low wear low coefficient of friction polymer blends based on polytetrafluoroethylene and aromatic thermosetting polyester. Polym Adv Technol 2008;19:1105–12. [67] Zhang J, Polycarpou AA, Economy J. An improved tribological polymer coating system for metal surfaces. Tribol Lett 2010;38(3):355–65. [68] Yeo SM, Nunez EE, Polycarpou AA. Tribological performances of polymer-based coating materials designed for compressor applications. Adv Sci Technol 2010;64:33–42. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
20 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.spa.fl_str_mv |
instname:Universidad Autónoma de Occidente reponame:Repositorio Institucional UAO |
instname_str |
Universidad Autónoma de Occidente |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/4ee2bc32-cc2a-431f-8009-a3eafc7f79df/download https://red.uao.edu.co/bitstreams/d4619826-551e-47f3-b307-f386fa663091/download https://red.uao.edu.co/bitstreams/d689309a-5da1-47ef-94f3-feec6e831811/download https://red.uao.edu.co/bitstreams/292f6e84-b7b6-48e4-854b-49beaae0444f/download https://red.uao.edu.co/bitstreams/eb843f5c-0d86-44f3-849e-e5a6756fa536/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 4be954adc297da26fb09190e0284bc24 fb8d5b92600d284acead6484e7c19b3c 8a5b49bd5abd83f4fee5436d433c0003 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259964299968512 |
spelling |
Escobar Nuñez, Emersonvirtual::1585-1Gheisari, Reza94bfc63a34b3550278c929bf2eca3307Polycarpou, Andreas51a78532c448dfc4918c9cf58357d98aUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-15T20:37:00Z2019-11-15T20:37:00Z2019-010301679Xhttp://hdl.handle.net/10614/11518https://doi.org/10.1016/j.triboint.2018.08.002The present study reviews tribology research on bulk polymers and coatings, employed in several applications, including air-conditioning, refrigeration, and thrust pad bearings. Known polymers such as polyetheretherketone (PEEK), Polytetrafluoroethylene (PTFE), and aromatic thermosetting polyester (ATSP) were reviewed. PEEK outperforms PTFE when used in bulk format, while PTFE coatings demonstrated superior performance, and ATSP-based polymers exhibited remarkably low wear rates. The effect of critical operating conditions namely load, environmental pressure and temperature at different lubrication regimes were investigated. The ability to develop a transfer film on the countersurface was determined as a key factor in polymer tribological performance. High performance bulk polymers and coatings are viable candidates for today's demanding tribological applicationsapplication/pdf20 páginasengElsevierDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAOTribology review of blended bulk polymers and their coatings for high-load bearing applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Polímeros - Propiedades mecánicasPolymers - Mechanical propertiesATSPPEEKPTFEPolyimide11192129Escobar Nuñez, E., Gheisari, R., & Polycarpou, A. A. (2019). Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribology International. 129, 92-111. https://doi.org/10.1016/j.triboint.2018.08.002Tribology International[1] Demas NG, Polycarpou AA, F Conry T. Tribological studies on scuffing due to the influence of carbon dioxide used as a refrigerant in compressors. Tribol Trans 2005;48:336–42.[2] Lui H, Cheng J, Cheng Z. Experimental investigation of a CO2 air conditioner. Int’l. Jour of refrigeration 2005;28:1293–301.[3] Lee KM, Suh AY, Demas NG, Polycarpou AA. Surface and sub-micron sub-surface evolution of Al390-T6 undergoing Tribological testing under submerged lubrication conditions in the presence of CO2 refrigerant. Tribol Lett 2005;18:1–12.[4] Demas NG, Polycarpou AA. Ultra high pressure tribometer for testing CO2 refrigerant at chamber pressures up to 2000 psi to simulate compressor conditions. Tribol Trans 2006;49:1–6.[5] Cannaday ML, Polycarpou AA. Advantages of CO2 compared to R410a refrigerant of tribologically tested Aluminum 390-T6 surfaces. Tribol Lett 2006;21:185–92.[6] Nunez EE, Demas NG, Polychronopoulou K, Polycarpou AA. Tribological study comparing PAG and POE lubricants used in air-conditioning compressors under the presence of CO2. Tribol Trans 2008;51:1–8.[7] Nunez EE, Demas NG, Polychronopoulou K, Polycarpou AA. Comparative scuffing performance and chemical analysis of metallic surfaces for air-conditioning compressors in the presence of environmentally friendly CO2 refrigerant. Wear 2010;268:668–76.[8] Nunez EE, Polychronopoulou K, Polycarpou AA. Lubricity effect of carbon dioxide used as an environmentally friendly refrigerant in air-conditioning and refrigeration compressors. Wear 2010;270:46–56.[9] Akram MW, Polychronopoulou K, Polycarpou AA. Lubricity of environmentally friendly HFO-1234yf refrigerant. Tribol Int 2014;57:92–100.[10] Akram MW, Polychronopoulou K, Polycarpou AA. Tribological performance comparing different refrigerant–lubricant systems: the case of environmentally friendly HFO-1234yf refrigerant. Tribol Int 2014;78:176–86.[11] Cannaday ML, Polycarpou AA. Tribology of unfilled and filled polymeric surfaces in refrigerant environment for compressor applications. Tribol Lett 2005;19:249–62.[12] Demas NG, Polycarpou AA. Tribological performance of PTFE-based coatings for air-conditioning compressors. Surf Coating Technol 2008;203:307–16.[13] Dascalescu D, Polychronopoulou K, Polycarpou AA. The significance of tribochemistry on the performance of PTFE-based coatings in CO2 refrigerant environment. Surf Coating Technol 2009;204:319–29.[14] Yeo SM, Polycarpou AA. Tribological performance of PTFE- and PEEK-based coatings under oil-less compressor conditions. Wear 2012;296:638–47.[15] Yeo SM, Polycarpou AA. Micromechanical properties of polymeric coatings. Tribol Int 2013;60:198–208.[16] Lan P, Polychronopoulou K, Zhang Y, Polycarpou AA. Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear 2017;382:40–50.[17] Nguyen HX, Ishida H. Poly(Ary1-E t her-E ther-Ketone) and its advanced composites: a Review. Polym Compos 1987;8:57–73.[18] Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer 1983;24:953–8.[19] Regis M, Lanzutti A, Bracco P, Fedrizzi L. Wear behavior of medical grade PEEK and CFR PEEK under dry and bovine serum conditions. Wear 2018;408–409:86–95.[20] Wyatt H, Elliott M, Revill P, Clarke A. The effect of engineered surface topography on the tribology of CFR-PEEK for novel hip implant materials. Biotribology 2016;7:22–30.[21] Song I, Xiang D, Wang S, Liao Z, Lu J, Liu Y, Liu W, Peng Z. In vitro wear study of PEEK and CFRPEEK against UHMWPE for artificial cervical disc application. Tribol Int 2018;122:218–27.[22] Sampaio M, Buciumeanu M, Henriques B, Silva FS, Souza JCM, Gomes JR. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications. Journal of the Mechanical Behavior of Biomedical Materials 2016;60:212–9.[23] Kraft M, Koch DK, Bushelow M. An investigation into PEEK-on-PEEK as a bearing surface candidate for cervical total disc replacement. Spine J 2012;12:603–11.[24] Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007;28:4845–69.[25] Zhang G, Wetzel B, Wang Q. Tribological behavior of PEEK-based materials under mixed and boundary lubrication conditions. Tribol Int 2015;88:153–61.[26] Lin L, Pei X, Bennewitz R, Schlarb AK. Friction and wear of PEEK in continuous sliding and unidirectional scratch tests. Tribol Int 2018;122:108–13.[27] Avanzini A, Donzella G, Mazzù A, Petrogalli C. Wear and rolling contact fatigue of PEEK and PEEK composites. Tribol Int 2013;57:22–30.[28] Schroeder R, Torres FW, Binder C, Klein AN, de Mello JDB. Failure mode in sliding wear of PEEK based composites. Wear 2013;301:717–26.[29] Zalaznik M, Kalin M, Novak S, Jakša G. Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK. Wear 2016;364–365:31–9.[30] Rodriguez V, Sukumaran J, Schlarb AK, De Baets P. Reciprocating sliding wear behaviour of PEEK-based hybrid composites. Wear 2016;362–363:161–9.[31] Kalin M, Zalaznik M, Novak S. Wear and friction behaviour of poly-ether-etherketone (PEEK) filled with graphene, WS2 and CNT nanoparticles. Wear 2015;332–333:855–62.[32] Li G, Qi H, Zhang G, Zhao F, Wang T, Wang Q. Significant friction and wear reduction by assembling two individual PEEK composites with specific functionalities. Mater Des 2017;116:152–9.[33] Sawyer GW, Freudenberg KD, Bhimaraj P, S Schadler L. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 2003;254:573–80.[34] Lu ZP, Friedrich K. On sliding friction and wear of PEEK and its composites. Wear 1995;181–183:624–31.[35] Yanhai C, Hengyang C, Dongtai H, Yong Z, Zhencai Z. Effect of PTFE addition on the properties of electroless Ni-Cu-P-PTFE deposits. Rare Metal Mater Eng 2014;43:1025–30.[36] Conte M, Pinedo B, Igartua A. Role of crystallinity on wear behavior of PTFE composites. Wear 2013;307:81–6.[37] Liu XX, Li TS, Liu XJ, Lv RG, Cong PH. An investigation on the friction of oriented polytetrafluoroethylene (PTFE). Wear 2007;262:1414–8.[38] Dubey MK, Bijwe J, Ramakumar SSV. Nano-PTFE: new entrant as a very promising EP additive. Tribol Int 2015;87:121–31.[39] Li J, Qu J, Zhang Y. Wear properties of brass and PTFE–matrix composite in traveling wave ultrasonic motors. Wear 2015;338–339:385–93.[40] Ye J, Khare HS, Burris DL. Transfer film evolution and its role in promoting ultralow wear of a PTFE nanocomposite. Wear 2013;297:1095–102.[41] Song F, Wang Q, Wang T. The effects of crystallinity on the mechanical properties and the limiting PV (pressure×velocity) value of PTFE. Tribol Int 2016;93:1–10.[42] Shi J, Feng X, Wang HY, Liu C, Lu XH. Effects of filler crystal structure and shape on the tribological properties of PTFE composites. Tribol Int 2007;40:1195–203.[43] Zhang YZ, Wu YY, Sun KN, Yao M. Characterization of electroless Ni-P-PTFE composite deposits. J Mater Sci Lett 1998;17:119–22.[44] Briscoe BJ, Yao LH, Stolarski TA. The friction and wear of poly (tetrafluoroethylene)-poly (etheretherketone) composites: an initial appraisal of the optimum composition. Wear 1986;108:357–74.[45] Bahadur S, Gong D. The action of fillers in the modification of the friction and wear behavior of polymers. Wear 1992;158:41–59.[46] Bahadur S, Gong D. The role of copper compounds as fillers in the transfer and wear behavior of polyetheretherketone. Wear 1992;154:151–65.[47] Blanchet TA, E Kennedy F. Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 1992;153:229–43.[48] Friedrich K, Lu Z, M Hager A. Recent advances in polymer composites’ tribology. Wear 1995;190:139–44.[49] Pozdnyakov AO, Kudryavtsev VV, Friedrich K. Sliding wear of polyimide-C60 composite coatings. Wear 2003;254:501–13.[50] Friedrich K. Sliding wear performance of different polyimide formulations. Tribol Int 1989;22:25–31.[51] Evans DC, Senlor GS. Self lubricating materials for plain bearings. Tribol Int 1982;15:243–8.[52] Liu H, Wang T, Wang Q. Tribological properties of thermosetting polyimide/TiO2 nanocomposites under dry sliding and water-lubricated conditions. J Macromol 2012;51:2284–96.[53] Watson KA, Palmieri FL, Connell JW. Space environmentally stable polyimides and copolyimides derived from [2,4-Bis(3-aminophenoxy)phenyl]diphenyl- phosphine oxide. Macromolecules 2002;35. 4968–4968.[54] Ruijie Y, Yinping YE, Hongqi W, Huidi Z, Jianmin C. Tribological properties of polyimide bonded MoS2 solid lubricant coatings in differen toils. Tribology 2011;31:278–82.[55] Zhao G, Hussainova I, Antonov M, Wang Q, Wang T, Yung DL. Effect of temperatura on sliding and erosive wear of fiber reinforced polyimide hybrids. Tribol Int 2015;82:525–33.[56] Sliney HE. Solid lubricant materials for high temperatures—a review. Tribol Int 1982;15:303–15.[57] Cai H, Yan F, Xue YQ. Investigation of tribological properties of polyimide/carbón nanotube nanocomposites. Mater Sci Eng 2004;364:94–100.[58] Demas NG, Zhang J, Polycarpou AA, Economy J. Tribological characterization of aromatic thermosetting copolyester–PTFE blends in air conditioning compressor environment. Tribol Lett 2008;29:253–8.[59] Nunez EE, Polycarpou AA. The effect of surface roughness on the transfer of polymer films under unlubricated testing conditions. Wear 2015;326:74–83.[60] Frich D, Goranov K, Schneggendurger L, Economy J. Novel high-temperature aromatic copolyester thermosets: synthesis, characterization, and physical properties. Macromolecules 1996;29:7734–9.[61] Frich D, Economy J. Thermally stable liquid crystalline thermosets based on aromatic copolyesters: preparation and properties. J Polym Sci Part A: Polymer Chem 1997;35:1061–7.[62] Zhang J. Design of polymer composites with improved adhesion and wear properties. University of Illinois; 2008.[63] Cifci OS, Bakir M, Meyer JL, Kocyigit A. Morphological and electrical properties of ATSP/p-Si photodiode. Mater Sci Semicond Process 2018;74:175–82.[64] Akram MW, Meyer JL, Polycarpou AA. Tribological interactions of advanced polymeric coatings with polyalkylene glycol lubricant and r1234yf refrigerant. Tribol Int 2016;97:200–11.[65] Demas NG, Zhang J, Polycarpou AA, Economy J. Tribological characterization of aromatic thermosetting copolyester–PTFE blends in air conditioning compressor environment. Tribol Lett 2008;29:253–8.[66] Zhang J, Demas NG, Polycarpou AA, Economy J. A new family of low wear low coefficient of friction polymer blends based on polytetrafluoroethylene and aromatic thermosetting polyester. Polym Adv Technol 2008;19:1105–12.[67] Zhang J, Polycarpou AA, Economy J. An improved tribological polymer coating system for metal surfaces. Tribol Lett 2010;38(3):355–65.[68] Yeo SM, Nunez EE, Polycarpou AA. Tribological performances of polymer-based coating materials designed for compressor applications. Adv Sci Technol 2010;64:33–42.Publication7e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::1585-17e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::1585-1https://scholar.google.com/citations?user=vQ6ZVoIAAAAJ&hl=esvirtual::1585-10000-0002-9582-551Xvirtual::1585-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000151203virtual::1585-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/4ee2bc32-cc2a-431f-8009-a3eafc7f79df/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/d4619826-551e-47f3-b307-f386fa663091/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALTribology review of blended bulk polymers and their coatings for high-load bearing applications.pdfTribology review of blended bulk polymers and their coatings for high-load bearing applications.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf7053270https://red.uao.edu.co/bitstreams/d689309a-5da1-47ef-94f3-feec6e831811/download4be954adc297da26fb09190e0284bc24MD54TEXTTribology review of blended bulk polymers and their coatings for high-load bearing applications.pdf.txtTribology review of blended bulk polymers and their coatings for high-load bearing applications.pdf.txtExtracted texttext/plain93872https://red.uao.edu.co/bitstreams/292f6e84-b7b6-48e4-854b-49beaae0444f/downloadfb8d5b92600d284acead6484e7c19b3cMD55THUMBNAILTribology review of blended bulk polymers and their coatings for high-load bearing applications.pdf.jpgTribology review of blended bulk polymers and their coatings for high-load bearing applications.pdf.jpgGenerated Thumbnailimage/jpeg14988https://red.uao.edu.co/bitstreams/eb843f5c-0d86-44f3-849e-e5a6756fa536/download8a5b49bd5abd83f4fee5436d433c0003MD5610614/11518oai:red.uao.edu.co:10614/115182024-03-04 16:31:04.538https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |