Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections

En este artículo se analizó el comportamiento hidrodinámico de un flujo monofásico en varios colectores solares, con diferentes perfiles transversales (circular, octagonal, hexagonal y cuadrado), de igual diámetro hidráulico y perfil longitudinal. Se evaluó el flujo secundario, las caídas de presión...

Full description

Autores:
Ramirez Duque, Jose Luis
Ramos Lucumi, Mabel Angelica
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11889
Acceso en línea:
http://red.uao.edu.co//handle/10614/11889
Palabra clave:
Hidrodinámica
Colectores solares
Hydrodynamics
Solar collectors
Biomasa microalgal
Dinámica de fluidos computacional
Esfuerzos cortantes
Microalgas
Fotobiorreactor tubular
Computational fluid dynamic
Microalgae
Microalgal biomass
Shear stress
Tubular photobioreactor
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_c89e072dba1bac75861459d666feb5a4
oai_identifier_str oai:red.uao.edu.co:10614/11889
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections
title Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections
spellingShingle Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections
Hidrodinámica
Colectores solares
Hydrodynamics
Solar collectors
Biomasa microalgal
Dinámica de fluidos computacional
Esfuerzos cortantes
Microalgas
Fotobiorreactor tubular
Computational fluid dynamic
Microalgae
Microalgal biomass
Shear stress
Tubular photobioreactor
title_short Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections
title_full Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections
title_fullStr Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections
title_full_unstemmed Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections
title_sort Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections
dc.creator.fl_str_mv Ramirez Duque, Jose Luis
Ramos Lucumi, Mabel Angelica
dc.contributor.author.none.fl_str_mv Ramirez Duque, Jose Luis
Ramos Lucumi, Mabel Angelica
dc.subject.armarc.spa.fl_str_mv Hidrodinámica
Colectores solares
topic Hidrodinámica
Colectores solares
Hydrodynamics
Solar collectors
Biomasa microalgal
Dinámica de fluidos computacional
Esfuerzos cortantes
Microalgas
Fotobiorreactor tubular
Computational fluid dynamic
Microalgae
Microalgal biomass
Shear stress
Tubular photobioreactor
dc.subject.armarc.eng.fl_str_mv Hydrodynamics
Solar collectors
dc.subject.proposal.spa.fl_str_mv Biomasa microalgal
Dinámica de fluidos computacional
Esfuerzos cortantes
Microalgas
Fotobiorreactor tubular
dc.subject.proposal.eng.fl_str_mv Computational fluid dynamic
Microalgae
Microalgal biomass
Shear stress
Tubular photobioreactor
description En este artículo se analizó el comportamiento hidrodinámico de un flujo monofásico en varios colectores solares, con diferentes perfiles transversales (circular, octagonal, hexagonal y cuadrado), de igual diámetro hidráulico y perfil longitudinal. Se evaluó el flujo secundario, las caídas de presión y el esfuerzo cortante del fluido, ya que de estos depende la eficiencia fotosintética y la vitalidad microalgal. Los anteriores parámetros se revisaron para seis diferentes velocidades de entrada del cultivo en el colector (entre 0,25 m/s a 0,5 m/s) enfatizándose en la región de los codos, donde se presenta una mayor velocidad y agitación en el colector solar cuadrado, contrario a lo que sucede con el circular. A pesar de esto, el colector solar circular continúa siendo la mejor opción en la etapa de implementación industrial. Sin embargo, el esfuerzo cortante que se genera en el cultivo, a medida que atraviesa el codo de 180° del colector solar, afecta el crecimiento de las microalgas, según lo estipulado en la literatura relacionada.
publishDate 2011
dc.date.issued.none.fl_str_mv 2011-11
dc.date.accessioned.none.fl_str_mv 2020-02-13T21:55:13Z
dc.date.available.none.fl_str_mv 2020-02-13T21:55:13Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0122-5383
dc.identifier.uri.none.fl_str_mv http://red.uao.edu.co//handle/10614/11889
identifier_str_mv 0122-5383
url http://red.uao.edu.co//handle/10614/11889
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.spa.fl_str_mv CT&F Ciencia, Tecnología y Futuro. volumen 4, número 4, (diciembre, 2011); páginas 59-72
dc.relation.citationissue.none.fl_str_mv 4
dc.relation.citationvolume.none.fl_str_mv 4
dc.relation.cites.spa.fl_str_mv Ramírez Duque, J. L., Ramos Lucumi, M. A.(2011). Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections. CT&F Ciencia, Tecnología y Futuro. 4(4), 59-72. http://red.uao.edu.co//handle/10614/11889
dc.relation.ispartofjournal.spa.fl_str_mv CT&F Ciencia, Tecnología y Futuro.
dc.relation.references.none.fl_str_mv Acién-Fernández, F. G., Fernández-Sevilla, J. M., Sánchez-Pérez, J. A., Molina-Grima, E. & Chisti, Y. (2001). Airliftdriven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem. Eng. Scie., 56: 2721-2732.
Alpma, E. & Long, L. N. (2005). Separated turbulent flow simulations using a Reynolds stress model and unstructured meshes. 43rd. Aerospace Sciences Meeting & Exhibit. Reno, Nevada USA.
Aparecido, J. B. & Cotta R. M. (1990). Laminar flow inside hexagonal ducts. Computational Mechanics, 6 (2), 93-100.
Arada, N., Pires, M. & Sequeira, A. (2007). Viscosity effects on flows of generalized Newtonian fluids through curved pipes. Computers and Mathematics with Applications, 53: 625-646.
Azzola, J., Humphrey, J. A. C., Iacovides, H. & Launder,B. E. (1986). Developing turbulent flow in a U-bend of circular cross-section: measurement and computation. J. Fluids Eng., 108: 214-221.
Belt, R. J., Van't Westende, J. M. C., Portela, L. M., Mudde R. F. & Oliemans, R.V. A. (2004). Particle-driven secondary flow in turbulent horizontal pipe flows. 3rd. International symposium on two-phase flow modeling and experimentation. Pisa, Italia.
Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S. & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. J. Comp. Elec., 76 (2), 131-147.
Camacho-Rubio, F., Acién-Fernández, F. G., Sánchez-Pérez, J. A., García-Camacho, F. & Molina-Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62 (1), 71-86.
Chang, S. W., Chiang, K. F. & Chou, T. C. (2010). Heat transfer and pressure drop in hexagonal ducts with Surface dimples. Experimental Thermal and Fluid Science, 34 (8), 1172-1181.
Chen, W. Y., Jiang, N., An, Y. R. & Yuan, Q. H. (2009). Study on numerical simulation of single-phase injection device flow flied. Second International Conference on Information and Computing Science, 358-361. Manchester, United Kingdom.
Contreras, A., García, F., Molina, E. & Merchuk, J. C. (1998). Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng, 60 (3), 317-325.
Dyer, D. L. & Richardson, D. E. (1962). Materials of construction in algal culture. Ap-pl. Microbial., 10: 129-131.
Fernández-Roque, T., Toledo-Velázquez, M. & Vázquez-Flores, J. F. (2006). Caída de presión debida a un flujo en torbellino. Científica, 10 (4), 159-165. García, F. & Haoulo, M. (2009). Estudio experimental de patrones de flujo bifásico aire-agua en tuberías horizontales y ligeramente inclinadas. Información Tecnológica, 20 (3), 3-12.
García-Camacho, F., Gallardo-Rodríguez, J. J., Sánchez- Mirón, A., Cerón-García, M. C., Belarbi, E. H. & Molina-Grima, E. (2007). Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks Implications in bioprocess engineering. Process Biochemistry, 42:1506-1515.
Hämäläinen, V. (2001). Implementing an explicit algebraic Reynolds stress model into the three-dimensional FINFLO flow solver. Report B-52. Finland: Helsinki University of Technology.
Harun, R., Singh, M. Forde, G. M. & Danquah, M. K. (2011). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14 (3), 1037-1047.
Huttl, T. J. & Friedrich, R. (2000). Influence of curvature and torsion on turbulent flow in helically coiled pipes. Int. J. Heat Fluid Flow, 21 (3), 345-353.
Huttl, T. J. & Friedrich, R. (2001). Direct numerical simulation of turbulent flows in curved and helically coiled pipes. Comput Fluids, 30 (5), 591-605.
Khalid, A., Legrand, J. & Rosant, J. M. (1996). Turbulent flow induced by an impeller in a closed toroidal loop. J. Fluids Eng.. 118 (4), 677-684.
Leeuwner, M. J. & Eksteen J. J. (2008). Computational fluid dynamic modeling of two phase flow in a hydrocyclone. J. South. Afri. Institute Min. and Metal., 108 (4), 231-236.
Ma, J. Shen, X. Zhang, M. & Zhang, B. (2006). Laminar developing flow in the entrance region of rotating curved pipes. J. Hydro Ser. B, 18 (4), 418-423.
Mata, T. M., Martins, A. A. & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14 (1), 217-232.
Mazzuca-Sobezuk, T., García-Camacho, F., Molina-Grima, E. & Chisti, Y. (2006). Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng., 28 (4), 243-250.
Michels, M., J. van der Goot, A., Norsker, N. H., Wijffels, R. H. (2010). Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng., 33 (8), 921-927.
Mitsuhashi, S., Hosaka, K., Tomonaga, E., Muramatsu, H. & Tanishita, K. (1995). Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Appl. Microbiol Biotechnol, 42 (5), 744-749.
Molina-Grima, E., Acién-Fernández, F. G., García-Camacho, F. & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. J. Biotech., 70 (1-3), 231-247.
Mott, R. L. (2005). Applied fluid mechanics. USA: Prentice Hall.
Perner-Nochta, I. & Posten, C. (2007). Simulations of light intensity variation in photobioreactors. J. Biotech., 131(3), 276-285.
Pruvost, J., Legrand, J. & Legentilhomme, P. (2004). Numerical investigation of bend and torus flows, part I: effect of swirl motion on flow structure in U-bend. Chem. Eng. Scie., 59(16), 3345-3357.
Rawat, I., Ranjith-Kumar, R., Mutanda, T. & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88 (10), 3411-3424.
Rosello Sastre, R., Csögör, Z., Perner-Nochta, I., Fleck-Schneider, P. & Posten, C. (2007). Scale-down of microalgae cultivations in tubular photo-bioreactors-A conceptual approach. J. Biotec., 132 (2), 127-133.
Rowe, M. (1970). Measurements and computations of flow in pipe bends. J. Fluids Mech., 43 (4), 771-783.
Salim, S. M. & Cheah, S. C. (2009). Wall Y+ strategy for dealing with wall-bounded turbulent flows. Proceedings of the International MultiConference of Engineers and Computer Scientists, 3 (2), 18-20.
Sánchez-Mirón, A., García-Camacho, F., Contreras-Gómez, A., Molina-Grima, E. & Chisti, Y. (2000). Bubble-column and airlift photobioreactors for algal culture. AIChE Journal, 46 (9), 1872-1887.
Santamarina, A., Weydahl, E., Siegel, J. M. & Moore, J. E. (1998). Computational analysis of flow in a curved tuve model of the coronary arteries: effects of time-varying curvature. Annals of Biomedical Engineering, 26 (6), 944-954.
Schneiderbauer, S. & Pirker, S. (2010). Determination of open boundary conditions for computational fluid dynamics (CFD) from interior observations. Applied Mathematical Modelling, 35 (2), 763-780.
Shalaby, H., Pachler, K., Wozniak, K. & Wozniak, G. (2005). Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Numer. Meth. Fluids, 48 (11), 1175-1197.
Spolaore, P., Joannis-Cassan, C., Durán, E. & Isambert, A. (2006). Commercial applications of microalgae. J. Bios. Bioen., 101 (6), 201-211.
Sudo, K., Sumida, M. & Hibara, H. (2000). Experimental investigation on turbulent flow through a circular-sectioned 180° bend. Experiments in Fluids, 28 (1), 51-57
Ugwu, C. U., Ogbonna, J. C. & Tanaka, H. (2005). Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochemistry, 40 (11), 3406-3411.
Ukeles, R. (1965). A simple method for the mass culture of marine algae. Limnology and Oceanography, 10 (3), 492-495.
Wu, X. & Merchuk, J. C. (2004). Simulation of algae growth in a bench scale internal loop airlift reactor. Chem. Eng. Scie., 59 (14), 2899-2912.
Yamamoto, K., Akita, T., Ikeuchi, H., & Kita, Y. (1995). Experimental study of the flow in a helical circular tube. Fluid Dyn Res., 16 (4), 237-249
Yue, P.; Dooley, J. & Feng, J. J. (2008). A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. J. Rheol., 52 (1), 315-332. Zhang, J., Zhang, B. & Jü, J. (2001). Fluid flow in a rotating curved rectangular duct. Int. J. Heat Fluid Flow, 22:563-592
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 14 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.spa.fl_str_mv Ecopetrol
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/894d9779-a490-4b26-a564-b808b5e4de0b/download
https://dspace7-uao.metacatalogo.com/bitstreams/abb625fa-faef-44cd-bca7-2b092be244e5/download
https://dspace7-uao.metacatalogo.com/bitstreams/7f4aca7e-0611-404a-8676-7f0862b969ae/download
https://dspace7-uao.metacatalogo.com/bitstreams/68c5f1f5-344c-4fc0-b0dc-b43de28989ee/download
https://dspace7-uao.metacatalogo.com/bitstreams/e958d944-5f1c-4833-af87-9624ec53ce1d/download
bitstream.checksum.fl_str_mv e91c4396c247996e7893d379afdeb00c
6e56a9b74798429d0e4583dc611a30b2
4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
9805ca1898055c332bbb050f32bbcaed
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1828230009382240256
spelling Ramirez Duque, Jose Luis3820aa7f54199c0576ee5230d4572ed3Ramos Lucumi, Mabel Angelicaf4c75fd80061bb41a41499221c8ea174Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2020-02-13T21:55:13Z2020-02-13T21:55:13Z2011-110122-5383http://red.uao.edu.co//handle/10614/11889En este artículo se analizó el comportamiento hidrodinámico de un flujo monofásico en varios colectores solares, con diferentes perfiles transversales (circular, octagonal, hexagonal y cuadrado), de igual diámetro hidráulico y perfil longitudinal. Se evaluó el flujo secundario, las caídas de presión y el esfuerzo cortante del fluido, ya que de estos depende la eficiencia fotosintética y la vitalidad microalgal. Los anteriores parámetros se revisaron para seis diferentes velocidades de entrada del cultivo en el colector (entre 0,25 m/s a 0,5 m/s) enfatizándose en la región de los codos, donde se presenta una mayor velocidad y agitación en el colector solar cuadrado, contrario a lo que sucede con el circular. A pesar de esto, el colector solar circular continúa siendo la mejor opción en la etapa de implementación industrial. Sin embargo, el esfuerzo cortante que se genera en el cultivo, a medida que atraviesa el codo de 180° del colector solar, afecta el crecimiento de las microalgas, según lo estipulado en la literatura relacionada.In this article, the hydrodynamic behavior of a single-phase flow in various solar collectors with different cross sections (circular, octagonal, hexagonal and square), with same hydraulic diameter and longitudinal profile was analyzed. Secondary flow, pressure drop and shear stress were evaluated, because the photosynthetic efficiency and microalgae endurance depend on these properties. These parameters were reviewed at six different culture inlet rates in the collector (from 0,25 m/s to 0,5 m/s), emphasizing in the bends regions. A higher speed and agitation was pre-sent in the square solar collector, contrary to what happened to the circular one. Despite this, the circular solar collector remains the best option for the industrial implementation phase. However, the shear stress generated in the culture -as it passes through the 180° bend of the solar collector- affects the microalgae growth, as stated in the literatureapplication/pdf14 páginasengEcopetrolCT&F Ciencia, Tecnología y Futuro. volumen 4, número 4, (diciembre, 2011); páginas 59-7244Ramírez Duque, J. L., Ramos Lucumi, M. A.(2011). Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections. CT&F Ciencia, Tecnología y Futuro. 4(4), 59-72. http://red.uao.edu.co//handle/10614/11889CT&F Ciencia, Tecnología y Futuro.Acién-Fernández, F. G., Fernández-Sevilla, J. M., Sánchez-Pérez, J. A., Molina-Grima, E. & Chisti, Y. (2001). Airliftdriven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem. Eng. Scie., 56: 2721-2732.Alpma, E. & Long, L. N. (2005). Separated turbulent flow simulations using a Reynolds stress model and unstructured meshes. 43rd. Aerospace Sciences Meeting & Exhibit. Reno, Nevada USA.Aparecido, J. B. & Cotta R. M. (1990). Laminar flow inside hexagonal ducts. Computational Mechanics, 6 (2), 93-100.Arada, N., Pires, M. & Sequeira, A. (2007). Viscosity effects on flows of generalized Newtonian fluids through curved pipes. Computers and Mathematics with Applications, 53: 625-646.Azzola, J., Humphrey, J. A. C., Iacovides, H. & Launder,B. E. (1986). Developing turbulent flow in a U-bend of circular cross-section: measurement and computation. J. Fluids Eng., 108: 214-221.Belt, R. J., Van't Westende, J. M. C., Portela, L. M., Mudde R. F. & Oliemans, R.V. A. (2004). Particle-driven secondary flow in turbulent horizontal pipe flows. 3rd. International symposium on two-phase flow modeling and experimentation. Pisa, Italia.Bitog, J. P., Lee, I. B., Lee, C. G., Kim, K. S., Hwang, H. S., Hong, S. W., Seo, I. H., Kwon, K. S. & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. J. Comp. Elec., 76 (2), 131-147.Camacho-Rubio, F., Acién-Fernández, F. G., Sánchez-Pérez, J. A., García-Camacho, F. & Molina-Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62 (1), 71-86.Chang, S. W., Chiang, K. F. & Chou, T. C. (2010). Heat transfer and pressure drop in hexagonal ducts with Surface dimples. Experimental Thermal and Fluid Science, 34 (8), 1172-1181.Chen, W. Y., Jiang, N., An, Y. R. & Yuan, Q. H. (2009). Study on numerical simulation of single-phase injection device flow flied. Second International Conference on Information and Computing Science, 358-361. Manchester, United Kingdom.Contreras, A., García, F., Molina, E. & Merchuk, J. C. (1998). Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng, 60 (3), 317-325.Dyer, D. L. & Richardson, D. E. (1962). Materials of construction in algal culture. Ap-pl. Microbial., 10: 129-131.Fernández-Roque, T., Toledo-Velázquez, M. & Vázquez-Flores, J. F. (2006). Caída de presión debida a un flujo en torbellino. Científica, 10 (4), 159-165. García, F. & Haoulo, M. (2009). Estudio experimental de patrones de flujo bifásico aire-agua en tuberías horizontales y ligeramente inclinadas. Información Tecnológica, 20 (3), 3-12.García-Camacho, F., Gallardo-Rodríguez, J. J., Sánchez- Mirón, A., Cerón-García, M. C., Belarbi, E. H. & Molina-Grima, E. (2007). Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks Implications in bioprocess engineering. Process Biochemistry, 42:1506-1515.Hämäläinen, V. (2001). Implementing an explicit algebraic Reynolds stress model into the three-dimensional FINFLO flow solver. Report B-52. Finland: Helsinki University of Technology.Harun, R., Singh, M. Forde, G. M. & Danquah, M. K. (2011). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14 (3), 1037-1047.Huttl, T. J. & Friedrich, R. (2000). Influence of curvature and torsion on turbulent flow in helically coiled pipes. Int. J. Heat Fluid Flow, 21 (3), 345-353.Huttl, T. J. & Friedrich, R. (2001). Direct numerical simulation of turbulent flows in curved and helically coiled pipes. Comput Fluids, 30 (5), 591-605.Khalid, A., Legrand, J. & Rosant, J. M. (1996). Turbulent flow induced by an impeller in a closed toroidal loop. J. Fluids Eng.. 118 (4), 677-684.Leeuwner, M. J. & Eksteen J. J. (2008). Computational fluid dynamic modeling of two phase flow in a hydrocyclone. J. South. Afri. Institute Min. and Metal., 108 (4), 231-236.Ma, J. Shen, X. Zhang, M. & Zhang, B. (2006). Laminar developing flow in the entrance region of rotating curved pipes. J. Hydro Ser. B, 18 (4), 418-423.Mata, T. M., Martins, A. A. & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14 (1), 217-232.Mazzuca-Sobezuk, T., García-Camacho, F., Molina-Grima, E. & Chisti, Y. (2006). Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng., 28 (4), 243-250.Michels, M., J. van der Goot, A., Norsker, N. H., Wijffels, R. H. (2010). Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng., 33 (8), 921-927.Mitsuhashi, S., Hosaka, K., Tomonaga, E., Muramatsu, H. & Tanishita, K. (1995). Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Appl. Microbiol Biotechnol, 42 (5), 744-749.Molina-Grima, E., Acién-Fernández, F. G., García-Camacho, F. & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. J. Biotech., 70 (1-3), 231-247.Mott, R. L. (2005). Applied fluid mechanics. USA: Prentice Hall.Perner-Nochta, I. & Posten, C. (2007). Simulations of light intensity variation in photobioreactors. J. Biotech., 131(3), 276-285.Pruvost, J., Legrand, J. & Legentilhomme, P. (2004). Numerical investigation of bend and torus flows, part I: effect of swirl motion on flow structure in U-bend. Chem. Eng. Scie., 59(16), 3345-3357.Rawat, I., Ranjith-Kumar, R., Mutanda, T. & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88 (10), 3411-3424.Rosello Sastre, R., Csögör, Z., Perner-Nochta, I., Fleck-Schneider, P. & Posten, C. (2007). Scale-down of microalgae cultivations in tubular photo-bioreactors-A conceptual approach. J. Biotec., 132 (2), 127-133.Rowe, M. (1970). Measurements and computations of flow in pipe bends. J. Fluids Mech., 43 (4), 771-783.Salim, S. M. & Cheah, S. C. (2009). Wall Y+ strategy for dealing with wall-bounded turbulent flows. Proceedings of the International MultiConference of Engineers and Computer Scientists, 3 (2), 18-20.Sánchez-Mirón, A., García-Camacho, F., Contreras-Gómez, A., Molina-Grima, E. & Chisti, Y. (2000). Bubble-column and airlift photobioreactors for algal culture. AIChE Journal, 46 (9), 1872-1887.Santamarina, A., Weydahl, E., Siegel, J. M. & Moore, J. E. (1998). Computational analysis of flow in a curved tuve model of the coronary arteries: effects of time-varying curvature. Annals of Biomedical Engineering, 26 (6), 944-954.Schneiderbauer, S. & Pirker, S. (2010). Determination of open boundary conditions for computational fluid dynamics (CFD) from interior observations. Applied Mathematical Modelling, 35 (2), 763-780.Shalaby, H., Pachler, K., Wozniak, K. & Wozniak, G. (2005). Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Numer. Meth. Fluids, 48 (11), 1175-1197.Spolaore, P., Joannis-Cassan, C., Durán, E. & Isambert, A. (2006). Commercial applications of microalgae. J. Bios. Bioen., 101 (6), 201-211.Sudo, K., Sumida, M. & Hibara, H. (2000). Experimental investigation on turbulent flow through a circular-sectioned 180° bend. Experiments in Fluids, 28 (1), 51-57Ugwu, C. U., Ogbonna, J. C. & Tanaka, H. (2005). Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochemistry, 40 (11), 3406-3411.Ukeles, R. (1965). A simple method for the mass culture of marine algae. Limnology and Oceanography, 10 (3), 492-495.Wu, X. & Merchuk, J. C. (2004). Simulation of algae growth in a bench scale internal loop airlift reactor. Chem. Eng. Scie., 59 (14), 2899-2912.Yamamoto, K., Akita, T., Ikeuchi, H., & Kita, Y. (1995). Experimental study of the flow in a helical circular tube. Fluid Dyn Res., 16 (4), 237-249Yue, P.; Dooley, J. & Feng, J. J. (2008). A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. J. Rheol., 52 (1), 315-332. Zhang, J., Zhang, B. & Jü, J. (2001). Fluid flow in a rotating curved rectangular duct. Int. J. Heat Fluid Flow, 22:563-592Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sectionsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85HidrodinámicaColectores solaresHydrodynamicsSolar collectorsBiomasa microalgalDinámica de fluidos computacionalEsfuerzos cortantesMicroalgasFotobiorreactor tubularComputational fluid dynamicMicroalgaeMicroalgal biomassShear stressTubular photobioreactorPublicationTEXTA0255_Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections.pdf.txtA0255_Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections.pdf.txtExtracted texttext/plain38254https://dspace7-uao.metacatalogo.com/bitstreams/894d9779-a490-4b26-a564-b808b5e4de0b/downloade91c4396c247996e7893d379afdeb00cMD57THUMBNAILA0255_Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections.pdf.jpgA0255_Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections.pdf.jpgGenerated Thumbnailimage/jpeg9226https://dspace7-uao.metacatalogo.com/bitstreams/abb625fa-faef-44cd-bca7-2b092be244e5/download6e56a9b74798429d0e4583dc611a30b2MD58CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/7f4aca7e-0611-404a-8676-7f0862b969ae/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/68c5f1f5-344c-4fc0-b0dc-b43de28989ee/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0255_Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections.pdfA0255_Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross sections.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf4464488https://dspace7-uao.metacatalogo.com/bitstreams/e958d944-5f1c-4833-af87-9624ec53ce1d/download9805ca1898055c332bbb050f32bbcaedMD5410614/11889oai:dspace7-uao.metacatalogo.com:10614/118892024-01-19 16:12:56.56https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K