Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power

The variability and uncertainty of renewable resources impose new challenges in the operational planning related to the unit commitment of generation units. The development of day‐ahead multi‐period optimal power flow, under integration of wind power, requires modelling of multiple scenarios in orde...

Full description

Autores:
Zuluaga, Jorge
Murillo Sánchez, Carlos E.
Moreno Chuquen, Ricardo
Chamorro, Harold R.
Sood, Vijay K.
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14748
Acceso en línea:
https://hdl.handle.net/10614/14748
https://red.uao.edu.co/
Palabra clave:
Energía eólica
Day‐ahead dispatch
Hydro power
Progressive hedging
Wind power
Rights
openAccess
License
Derechos reservados - Institution of Engineering and Technology (IET), 2022
id REPOUAO2_c4efeb7ae4be16902d6a4151fb0564c9
oai_identifier_str oai:red.uao.edu.co:10614/14748
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power
title Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power
spellingShingle Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power
Energía eólica
Day‐ahead dispatch
Hydro power
Progressive hedging
Wind power
title_short Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power
title_full Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power
title_fullStr Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power
title_full_unstemmed Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power
title_sort Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power
dc.creator.fl_str_mv Zuluaga, Jorge
Murillo Sánchez, Carlos E.
Moreno Chuquen, Ricardo
Chamorro, Harold R.
Sood, Vijay K.
dc.contributor.author.none.fl_str_mv Zuluaga, Jorge
Murillo Sánchez, Carlos E.
Moreno Chuquen, Ricardo
Chamorro, Harold R.
Sood, Vijay K.
dc.subject.armarc.spa.fl_str_mv Energía eólica
topic Energía eólica
Day‐ahead dispatch
Hydro power
Progressive hedging
Wind power
dc.subject.proposal.eng.fl_str_mv Day‐ahead dispatch
Hydro power
Progressive hedging
Wind power
description The variability and uncertainty of renewable resources impose new challenges in the operational planning related to the unit commitment of generation units. The development of day‐ahead multi‐period optimal power flow, under integration of wind power, requires modelling of multiple scenarios in order to ensure an optimal power flow minimising the generation cost. A progressive hedging approach has been proposed and developed to solve efficiently the unit commitment problem as a two‐stage stochastic programming problem to update each stage in parallel. The performance of progressive hedging is compared with a standard mixed‐integer linear programming problem. The results indicate that the computation time is 50 times faster than standard mixed‐integer linear program ming. The test case system is based on a reduced version of the interconnected Colombian system. The comparative results indicate an important reduction in computational time
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-05-16T19:50:24Z
dc.date.available.none.fl_str_mv 2023-05-16T19:50:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14748
dc.identifier.eissn.spa.fl_str_mv 25168401
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
url https://hdl.handle.net/10614/14748
https://red.uao.edu.co/
identifier_str_mv 25168401
Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 9
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 5
dc.relation.cites.spa.fl_str_mv Zuluaga, J., Murillo Sánchez, C.E., Moreno Chuquen, R., Chamorro, H.R., Sood, V.K. (2022). Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power. IET Renewable Power Generation, 5(2), 1-9. https://hdl.handle.net/10614/14748
dc.relation.ispartofjournal.eng.fl_str_mv IET Energy Systems Integration
dc.relation.references.none.fl_str_mv Meraz, P., et al.: Renewable Energy and Economic Dispatch Integration Within the Honduras Electricity Market, pp. 1–34 (2021). [Online]. http://link.springer.com/chapter/10.1007/978-981-33-6753-1
Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Opera tion, and Control, 3rd ed. John Wiley & Sons Ltd. (2014)
Padhy, N.P.: Unit commitment—a bibliographical survey. IEEE Trans. Power Syst. 19(2), 1196–1205 (2004). https://doi.org/10.1109/tpwrs. 2003.821611
Papavasiliou, A.: Coupling renewable energy supply with deferrable de mand. ProQuest Dissertations and Theses 3499039, 100 (20
Murillo‐Sánchez, C.E., et al.: Secure planning and operations of systems with stochastic sources, energy storage, and active demand. IEEE Trans. Smart Grid 4(4), 2220–2229 (2013). https://doi.org/10.1109/tsg.2013. 2281001
Lowery, C., O'Malley, M.: Reserves in stochastic unit commitment: an Irish system case study. IEEE Trans. Sustain. Energy 6(3), 1029–1038 (2015). https://doi.org/10.1109/tste.2014.2364520
Condren, J., Gedra, T.W.: Expected‐security‐cost optimal power flow with small‐signal stability constraints. IEEE Trans. Power Syst. 21(4), 1736–1743 (2006). https://doi.org/10.1109/tpwrs.2006.882453
Condren, J., Gedra, T.W., Damrongkulkamjorn, P.: Optimal power flow with expected security costs. IEEE Trans. Power Syst. 21(2), 541–547 (2006). https://doi.org/10.1109/tpwrs.2006.873114
Morales, J.M., et al.: Pricing electricity in pools with wind producers. IEEE Trans. Power Syst. 27(3), 1366–1376 (2012). https://doi.org/10. 1109/tpwrs.2011.2182622
Alqunun, K., et al.: Stochastic unit commitment problem, incorporating wind power and an energy storage system. Sustainability 12(23), 10100 (2020). https://doi.org/10.3390/su122310100
Zhao, N., You, F.: Unit commitment under uncertainty using data‐driven optimization with clustering techniques. Chem. Eng. Trans. 88, 1195–1200 (2021)
Gollmer, R., et al.: Unit commitment in power generation – a basic model and some extensions. Ann. Oper. Res. 96(1/4), 167–189 (2000). https://doi.org/10.1023/a:1018947401538
Rockafellar, R., Wets, R.J.‐B.: Scenarios and policy aggregation in opti mization under uncertainty. Math. Oper. Res. 16(1), 119–147 (1991). https://doi.org/10.1287/moor.16.1.119
Haugen, K.K., Løkketangen, A., Woodruff, D.L.: Progressive hedging as a meta‐heuristic applied to stochastic lot‐sizing. Eur. J. Oper. Res. 132(1), 116–122 (2001). https://doi.org/10.1016/s0377-2217(00)00116-8
Mulvey, J.M., Vladimirou, H.: Applying the progressive hedging algo rithm to stochastic generalized networks. Oper. Res. 31(1), 399–424 (1991). https://doi.org/10.1007/bf02204860
Zimmerman, R.D., Murillo‐Sánchez, C.E.: Matpower (version 7.1). (2020)[Online]. https://matpower.org
dc.rights.spa.fl_str_mv Derechos reservados - Institution of Engineering and Technology (IET), 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Institution of Engineering and Technology (IET), 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Institution of Engineering and Technology (IET)
Tianjin University
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/b2b1cbf0-cc7e-471c-a06a-da2f5dcd8bd3/download
https://red.uao.edu.co/bitstreams/b3b88920-b568-448e-bc52-ab220b883b23/download
https://red.uao.edu.co/bitstreams/dbfcf7c1-d6e2-4e07-8626-ca96dc20e6fa/download
https://red.uao.edu.co/bitstreams/e009e7c0-97c9-4c13-8d8e-7c8372ce710e/download
bitstream.checksum.fl_str_mv 51e0b09396e04712880581a1088dca97
20b5ba22b1117f71589c7318baa2c560
40eaa909cab71c22a5a92ec8a322b2a1
37faa29e6d40b759260a656ce8de24d0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260148344979456
spelling Zuluaga, Jorged840305c35d9f214ee9e1c37f126923aMurillo Sánchez, Carlos E.9b723855016901df080d51dd343607d0Moreno Chuquen, Ricardo1ba55dc18211144016950d3899f50db9Chamorro, Harold R.4b08e14f56fb217874cde66f1d371352Sood, Vijay K.be7ffe4ade6c8866a466709543e7b5262023-05-16T19:50:24Z2023-05-16T19:50:24Z2022https://hdl.handle.net/10614/1474825168401Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/The variability and uncertainty of renewable resources impose new challenges in the operational planning related to the unit commitment of generation units. The development of day‐ahead multi‐period optimal power flow, under integration of wind power, requires modelling of multiple scenarios in order to ensure an optimal power flow minimising the generation cost. A progressive hedging approach has been proposed and developed to solve efficiently the unit commitment problem as a two‐stage stochastic programming problem to update each stage in parallel. The performance of progressive hedging is compared with a standard mixed‐integer linear programming problem. The results indicate that the computation time is 50 times faster than standard mixed‐integer linear program ming. The test case system is based on a reduced version of the interconnected Colombian system. The comparative results indicate an important reduction in computational time 9 páginasapplication/pdfengInstitution of Engineering and Technology (IET)Tianjin UniversityDerechos reservados - Institution of Engineering and Technology (IET), 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Day-ahead unit commitment for hydro-thermal coordination with high participation of wind powerArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Energía eólicaDay‐ahead dispatchHydro powerProgressive hedgingWind power9215Zuluaga, J., Murillo Sánchez, C.E., Moreno Chuquen, R., Chamorro, H.R., Sood, V.K. (2022). Day-ahead unit commitment for hydro-thermal coordination with high participation of wind power. IET Renewable Power Generation, 5(2), 1-9. https://hdl.handle.net/10614/14748IET Energy Systems IntegrationMeraz, P., et al.: Renewable Energy and Economic Dispatch Integration Within the Honduras Electricity Market, pp. 1–34 (2021). [Online]. http://link.springer.com/chapter/10.1007/978-981-33-6753-1Wood, A.J., Wollenberg, B.F., Sheblé, G.B.: Power Generation, Opera tion, and Control, 3rd ed. John Wiley & Sons Ltd. (2014)Padhy, N.P.: Unit commitment—a bibliographical survey. IEEE Trans. Power Syst. 19(2), 1196–1205 (2004). https://doi.org/10.1109/tpwrs. 2003.821611Papavasiliou, A.: Coupling renewable energy supply with deferrable de mand. ProQuest Dissertations and Theses 3499039, 100 (20Murillo‐Sánchez, C.E., et al.: Secure planning and operations of systems with stochastic sources, energy storage, and active demand. IEEE Trans. Smart Grid 4(4), 2220–2229 (2013). https://doi.org/10.1109/tsg.2013. 2281001Lowery, C., O'Malley, M.: Reserves in stochastic unit commitment: an Irish system case study. IEEE Trans. Sustain. Energy 6(3), 1029–1038 (2015). https://doi.org/10.1109/tste.2014.2364520Condren, J., Gedra, T.W.: Expected‐security‐cost optimal power flow with small‐signal stability constraints. IEEE Trans. Power Syst. 21(4), 1736–1743 (2006). https://doi.org/10.1109/tpwrs.2006.882453Condren, J., Gedra, T.W., Damrongkulkamjorn, P.: Optimal power flow with expected security costs. IEEE Trans. Power Syst. 21(2), 541–547 (2006). https://doi.org/10.1109/tpwrs.2006.873114Morales, J.M., et al.: Pricing electricity in pools with wind producers. IEEE Trans. Power Syst. 27(3), 1366–1376 (2012). https://doi.org/10. 1109/tpwrs.2011.2182622Alqunun, K., et al.: Stochastic unit commitment problem, incorporating wind power and an energy storage system. Sustainability 12(23), 10100 (2020). https://doi.org/10.3390/su122310100Zhao, N., You, F.: Unit commitment under uncertainty using data‐driven optimization with clustering techniques. Chem. Eng. Trans. 88, 1195–1200 (2021)Gollmer, R., et al.: Unit commitment in power generation – a basic model and some extensions. Ann. Oper. Res. 96(1/4), 167–189 (2000). https://doi.org/10.1023/a:1018947401538Rockafellar, R., Wets, R.J.‐B.: Scenarios and policy aggregation in opti mization under uncertainty. Math. Oper. Res. 16(1), 119–147 (1991). https://doi.org/10.1287/moor.16.1.119Haugen, K.K., Løkketangen, A., Woodruff, D.L.: Progressive hedging as a meta‐heuristic applied to stochastic lot‐sizing. Eur. J. Oper. Res. 132(1), 116–122 (2001). https://doi.org/10.1016/s0377-2217(00)00116-8Mulvey, J.M., Vladimirou, H.: Applying the progressive hedging algo rithm to stochastic generalized networks. Oper. Res. 31(1), 399–424 (1991). https://doi.org/10.1007/bf02204860Zimmerman, R.D., Murillo‐Sánchez, C.E.: Matpower (version 7.1). (2020)[Online]. https://matpower.orgComunidad universitaria en generalPublicationORIGINALDay_ahead_unit_commitment_for_hydro_thermal_coordination_with_high_participation_of_wind_power.pdfDay_ahead_unit_commitment_for_hydro_thermal_coordination_with_high_participation_of_wind_power.pdftexto completo del artículoapplication/pdf1125381https://red.uao.edu.co/bitstreams/b2b1cbf0-cc7e-471c-a06a-da2f5dcd8bd3/download51e0b09396e04712880581a1088dca97MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/b3b88920-b568-448e-bc52-ab220b883b23/download20b5ba22b1117f71589c7318baa2c560MD52TEXTDay_ahead_unit_commitment_for_hydro_thermal_coordination_with_high_participation_of_wind_power.pdf.txtDay_ahead_unit_commitment_for_hydro_thermal_coordination_with_high_participation_of_wind_power.pdf.txtExtracted texttext/plain42958https://red.uao.edu.co/bitstreams/dbfcf7c1-d6e2-4e07-8626-ca96dc20e6fa/download40eaa909cab71c22a5a92ec8a322b2a1MD53THUMBNAILDay_ahead_unit_commitment_for_hydro_thermal_coordination_with_high_participation_of_wind_power.pdf.jpgDay_ahead_unit_commitment_for_hydro_thermal_coordination_with_high_participation_of_wind_power.pdf.jpgGenerated Thumbnailimage/jpeg16716https://red.uao.edu.co/bitstreams/e009e7c0-97c9-4c13-8d8e-7c8372ce710e/download37faa29e6d40b759260a656ce8de24d0MD5410614/14748oai:red.uao.edu.co:10614/147482024-04-05 09:49:52.787https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Institution of Engineering and Technology (IET), 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K