Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity
An experimental study of the interaction between a Mylar® polymer flm and a multimode fber-optic is presented for the simultaneous fber-optic detection of low-pressure and liquid levels. The junction between the polymer and optical fber produces an interference spectrum with maximal visibility and f...
- Autores:
-
Jauregui-Vazquez, Daniel
Gutiérrez Rivera, M. E.
Garcia Mina, Diego Felipe
Sierra Hernández, Juan. M.
Gallegos-Arellano, Eloisa
Estudillo-Ayala, Julián Moisés
Hernández García, José C.
Rojas-Laguna, Roberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13898
- Acceso en línea:
- https://hdl.handle.net/10614/13898
https://red.uao.edu.co/
- Palabra clave:
- Polímeros - Propiedades mecánicas
Detectores ópticos
Análisis numérico
Fabry–Perot interferometer
Liquid level measurement
Pressure detection
Polymer
Fiber optic sensor
- Rights
- openAccess
- License
- Derechos reservados - Springer, 2021
id |
REPOUAO2_c404f6db8aead8373c08602deee66e31 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13898 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity |
title |
Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity |
spellingShingle |
Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity Polímeros - Propiedades mecánicas Detectores ópticos Análisis numérico Fabry–Perot interferometer Liquid level measurement Pressure detection Polymer Fiber optic sensor |
title_short |
Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity |
title_full |
Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity |
title_fullStr |
Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity |
title_full_unstemmed |
Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity |
title_sort |
Low‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity |
dc.creator.fl_str_mv |
Jauregui-Vazquez, Daniel Gutiérrez Rivera, M. E. Garcia Mina, Diego Felipe Sierra Hernández, Juan. M. Gallegos-Arellano, Eloisa Estudillo-Ayala, Julián Moisés Hernández García, José C. Rojas-Laguna, Roberto |
dc.contributor.author.none.fl_str_mv |
Jauregui-Vazquez, Daniel Gutiérrez Rivera, M. E. Garcia Mina, Diego Felipe Sierra Hernández, Juan. M. Gallegos-Arellano, Eloisa Estudillo-Ayala, Julián Moisés Hernández García, José C. Rojas-Laguna, Roberto |
dc.subject.armarc.spa.fl_str_mv |
Polímeros - Propiedades mecánicas Detectores ópticos Análisis numérico |
topic |
Polímeros - Propiedades mecánicas Detectores ópticos Análisis numérico Fabry–Perot interferometer Liquid level measurement Pressure detection Polymer Fiber optic sensor |
dc.subject.proposal.eng.fl_str_mv |
Fabry–Perot interferometer Liquid level measurement Pressure detection Polymer Fiber optic sensor |
description |
An experimental study of the interaction between a Mylar® polymer flm and a multimode fber-optic is presented for the simultaneous fber-optic detection of low-pressure and liquid levels. The junction between the polymer and optical fber produces an interference spectrum with maximal visibility and free spectral range around 9 dB and 31 nm, respectively. Water pressure, which is controlled by the liquid level, stresses the polymer. As a result, the spectrum wavelength shifts to the blue region, achieving high sensitivities around 2.49 nm/kPa and 24.5 nm/m. The polymeric membrane was analyzed using a fnite element model; according to the results, the polymer shows linear stress response. Furthermore, the membrane material is operated below the yielding point. Moreover, the fnite analysis provides information about the stress efect over the thickness and the birefringence changes. This sensor exhibits a quadratic polynomial ftting with an adjusted R-squared of 0.9539. The proposed sensing setup ofers a cost-efective alternative for liquid level and low-pressure detection |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-04 |
dc.date.accessioned.none.fl_str_mv |
2022-05-20T14:37:43Z |
dc.date.available.none.fl_str_mv |
2022-05-20T14:37:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
3068919 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13898 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
3068919 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13898 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
12 |
dc.relation.citationissue.spa.fl_str_mv |
237 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
53 |
dc.relation.cites.eng.fl_str_mv |
D. Jauregui Vázquez. M. E. Gutiérrez Rivera. D. F. García Mina. J. M. Sierra Hernández. E. Gallegos Arellano. J. M. Estudillo Ayala. Juan C. Hernández García. R. Rojas Laguna. (2021). Low pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity. Optical and Quantum Electronics, pp. 1-12. https://link.springer.com/content/pdf/10.1007/s11082-021-02871-6.pdf |
dc.relation.ispartofjournal.eng.fl_str_mv |
Optical and Quantum Electronics |
dc.relation.references.none.fl_str_mv |
Abeysinghe, D.C., Dasgupta, S., Boyd, J.T., Jackson, H.E.: A novel MEMS pressure sensor fabricated on an optical fiber. IEEE Photonics Technol. Lett. 13, 993–995 (2001). https:// doi. org/ 10. 1109/ 68. 942671 Ameen, O.F., Younus, M.H., Aziz, M.S., Azmi, A.I., Raja Ibrahim, R.K., Ghoshal, S.K.: Graphene diaphragm integrated FBG sensors for simultaneous measurement of water level and temperature. Sensors Actuators A Phys. 252, 225–232 (2016). https:// doi. org/ 10. 1016/j. sna. 2016. 10. 018 Antonio-Lopez, J.E., Sanchez-Mondragon, J.J., LiKamWa, P., May-Arrioja, D.A.: Fiber-optic sensor for liquid level measurement. Opt. Lett. 36, 3425–3427 (2011). https:// doi. org/ 10. 1364/ OL. 36. 003425 Bai, Y., Yan, F., Liu, S., Wen, X.: All fiber Fabry–Pérot interferometer for high-sensitive micro-displacement sensing. Opt. Quantum Electron. 48, 1–10 (2016). https:// doi. org/ 10. 1007/ s11082- 015- 0323-y Castellani, C.E.S., Ximenes, H.C.B., Silva, R.L., Frizera-Neto, A., Ribeiro, M.R.N., Pontes, M.J.: Multiparameter interferometric sensor based on a reduced diameter core axial offseted fiber. IEEE Photonics Technol. Lett. 29, 239–242 (2017). https:// doi. org/ 10. 1109/ LPT. 2016. 26378 70 Chen, W.P., Wang, D.N., Xu, B., Zhao, C.L., Chen, H.F.: Multimode fiber tip Fabry–Perot cavity for highly sensitive pressure measurement. Sci. Rep. 7, 1–6 (2017). https:// doi. org/ 10. 1038/ s41598- 017- 00300-x Diáz, C.A.R., Leal-Junior, A.G., André, P.S.B., Da Costa Antunes, P.F., Pontes, M.J., Frizera-Neto, A., Ribeiro, M.R.N.: Liquid level measurement based on FBG-embedded diaphragms with temperature compensation. IEEE Sens. J. 18, 193–200 (2018). https:// doi. org/ 10. 1109/ JSEN. 2017. 27685 10 Diaz, C.A.R., Leal-Junior, A., Marques, C., Frizera, A., Pontes, M.J., Antunes, P.F.C., Andre, P.S.B., Ribeiro, M.R.N.: Optical fiber sensing for sub-millimeter liquid-level monitoring: a review. IEEE Sens. J. 19, 7179–7191 (2019). https:// doi. org/ 10. 1109/ JSEN. 2019. 29150 31 Escudero, P., Yeste, J., Pascual-Izarra, C., Villa, R., Alvarez, M.: Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications. Sci. Rep. 9, 1–10 (2019). https:// doi. org/ 10. 1038/ s41598- 019- 40267-5 Guo, Z., Lv, W., Wang, W., Chen, Q., Zhang, X., Chen, H., Ma, Z.: Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method. Sensors (Switzerland). (2019). https:// doi. org/ 10. 3390/ s1907 1628 Hsu, J., Lee, C., Chang, H., Shih, W.C., Li, C.: Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing. IEEE Photonics Technol. Lett. 25, 1354–1357 (2013). https:// doi. org/ 10. 1109/ LPT. 2013. 22657 38 Kim, J.T., Choi, H., Shin, E.J., Park, S., Kim, I.G.: Graphene-based optical waveguide tactile sensor for dynamic response. Sci. Rep. 8, 1–6 (2018). https:// doi. org/ 10. 1038/ s41598- 018- 34613-2 Lacam, A., Chateau, C.: High-pressure measurements at moderate temperatures in a diamond anvil cell with a new optical sensor: SrB4O7:Sm2+. J. Appl. Phys. 66, 366–372 (1989). https:// doi. org/ 10. 1063/1. 343884 Leger, J.M., Chateau, C., Lacam, A.: SrB4O7:Sm2 + pressure optical sensor: Investigations in the megabar range. J. Appl. Phys. 68, 2351–2354 (1990). https:// doi. org/ 10. 1063/1. 346543 Leitão, C., Antunes, P., Pinto, J., Mesquita Bastos, J., André, P.: Optical fiber sensors for central arterial pressure monitoring. Opt. Quantum Electron. 48, 1–9 (2016). https:// doi. org/ 10. 1007/ s11082- 016- 0494-1 Li, M., Wang, M., Li, H.: Optical MEMS pressure sensor based on Fabry–Perot interferometry. Opt. Express. 14, 1497 (2006). https:// doi. org/ 10. 1364/ oe. 14. 001497 Li, P., Yan, H., Zhang, H.: Highly sensitive liquid level sensor based on an optical fiber Michelson interferometer with core-offset structure. Optik (Stuttg). 171, 781–785 (2018). https:// doi. org/ 10. 1016/j. ijleo. 2018. 06. 126 Lin, C., Fang, X.: Miniature MEMS Fabry–Perot interferometry pressure sensor and the fabrication system. In: 2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 105–108 (2016). https:// doi. org/ 10. 1109/ ICASID. 2016. 78739 27 Liu, Q., He, X., Fu, H., Yang, D., Xiao, F., Wang, X.: Temperature-insensitive optical fiber reflective micro-liquid level sensor base on the drop shape quasi-Mach Zehnder interferometer. Optik (Stuttg). 216, 164893 (2020). https:// doi. org/ 10. 1016/j. ijleo. 2020. 164893 Lü, T., Yang, S.: Extrinsic Fabry–Perot cavity optical fiber liquid-level sensor. Appl. Opt. 46, 3682–3687 (2007). https:// doi. org/ 10. 1364/ AO. 46. 003682 Ma, J., Ju, J., Jin, L., Jin, W.: A compact fiber-tip micro-cavity sensor for high-pressure measurement. IEEE Photonics Technol. Lett. 23, 1561–1563 (2011). https:// doi. org/ 10. 1109/ LPT. 2011. 21640 60 Ma, Z.M., Huang, Y.W., Meng, H., Huang, X.G.: Simultaneous measurement of temperature and pressure by utilizing an integrated Mach–Zehnder. J. Light. Technol. 35, 4924–4929 (2017). https:// doi. org/ 10. 1109/ JLT. 2017. 27652 78 Marques, C.A.F., Webb, D.J., Andre, P.: Polymer optical fiber sensors in human life safety. Opt. Fiber Technol. 36, 144–154 (2017). https:// doi. org/ 10. 1016/j. yofte. 2017. 03. 010 Martins, J., Diaz, C.A.R., Domingues, M.F., Ferreira, R.A.S., Antunes, P., Andre, P.S.: Low-cost and high-performance optical fiber-based sensor for liquid level monitoring. IEEE Sens. J. 19, 4882– 4888 (2019). https:// doi. org/ 10. 1109/ JSEN. 2019. 28955 49 Musayev, E., Karlik, S.E.: A novel liquid level detection method and its implementation. Sensors Actuators A Phys. 109, 21–24 (2003). https:// doi. org/ 10. 1016/ S0924- 4247(03) 00347-9 Oliveira, R., Bilro, L., Nogueira, R., Rocha, A.M.: Adhesive based Fabry-Pérot hydrostatic pressure sensor with improved and controlled sensitivity. J. Light. Technol. 37, 1909–1915 (2019). https:// doi. org/ 10. 1109/ JLT. 2019. 28949 49 Qi, X., Wang, S., Jiang, J., Liu, K., Wang, X., Yang, Y., Liu, T.: Fiber optic Fabry–Perot pressure sensor with embedded MEMS micro-cavity for ultra-high pressure detection. J. Light. Technol. 37, 2719–2725 (2019). https:// doi. org/ 10. 1109/ JLT. 2018. 28767 17 Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, Second Edition. Taylor & Francis (2006). https:// doi. org/ 10. 1201/ 97808 49384 165 Sanaâ, F., Palierne, J.F., Gharbia, M.: Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film. Opt. Mater. (Amst). 57, 193–201 (2016). https:// doi. org/ 10. 1016/j. optmat. 2016. 04. 036 Sartiano, D., Sales, S.: Low cost plastic optical fiber pressure sensor embedded in mattress for vital signal monitoring. Sensors (Switzerland). (2017). https:// doi. org/ 10. 3390/ s1712 2900 Shin, J., Liu, Z., Bai, W., Liu, Y., Yan, Y., Xue, Y., Kandela, I., Pezhouh, M., MacEwan, M.R., Huang, Y., Ray, W.Z., Zhou, W., Rogers, J.A.: Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5, 1–13 (2019). https:// doi. org/ 10. 1126/ sciadv. aaw18 99 Spillman, W.B.: Multimode fiber-optic pressure sensor based on the photoelastic effect. Opt. Lett. 7, 388 (1982). https:// doi. org/ 10. 1364/ ol.7. 000388 Srivastava, R., Chattopadhyay, J.: Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications BT - Advanced Nanomaterials in Biomedical, Sensor and Energy Applications. (2017). https:// doi. org/ 10. 1007/ 978- 981- 10- 5346-7 Sun, M., Jin, Y., Dong, X.: All-Fiber Mach–Zehnder Interferometer for Liquid Level Measurement. IEEE Sens. J. 15, 3984–3988 (2015). https:// doi. org/ 10. 1109/ JSEN. 2015. 24068 72 Tian, J., Zhang, Q., Fink, T., Li, H., Peng, W., Han, M.: Tuning operating point of extrinsic Fabry–Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure. Opt. Lett. 37, 4672– 4674 (2012). https:// doi. org/ 10. 1364/ OL. 37. 004672 Urbańczyk, W., Pietraszkiewicz, K.: Measurements of stress anisotropy in fiber preform: modification of the dynamic spatial filtering technique. Appl. Opt. 27, 4117 (1988). https:// doi. org/ 10. 1364/ ao. 27. 004117 Van De Stadt, H., Muller, J.M.: Multimirror Fabry–Perot interferometers. J. Opt. Soc. Am. A. 2, 1363–1370 (1985). https:// doi. org/ 10. 1364/ JOSAA.2. 001363 Volynskii, L., Bakeev, N.F.: Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers. CRC Press (2018). https:// doi. org/ 10. 1201/ 97813 15367 873 Vorathin, E., Hafizi, Z.M., Aizzuddin, A.M., Zaini, M.K.A., Lim, K.S.: A novel temperature-insensitive hydrostatic liquid-level sensor using chirped FBG. IEEE Sens. J. 19, 157–162 (2019). https:// doi. org/ 10. 1109/ JSEN. 2018. 28755 32 Vorathin, E., Hafizi, Z.M., Ismail, N., Loman, M.: Review of high sensitivity fibre-optic pressure sensors for low pressure sensing. Opt. Laser Technol. (2020). https:// doi. org/ 10. 1016/j. optla stec. 2019. 105841 Wang, W., Li, F.: Large-range liquid level sensor based on an optical fibre extrinsic Fabry–Perot interferometer. Opt. Lasers Eng. 52, 201–205 (2014). https:// doi. org/ 10. 1016/j. optla seng. 2013. 06. 009 Wang, X., Li, B., Russo, O.L., Roman, H.T., Chin, K.K., Farmer, K.R.: Diaphragm design guidelines and an optical pressure sensor based on MEMS technique. Microelectronics J. 37, 50–56 (2006a). https:// doi. org/ 10. 1016/j. mejo. 2005. 06. 015 Wang, X., Xu, J., Zhu, Y., Cooper, K.L., Wang, A.: All-fused-silica miniature optical fiber tip pressure sensor. Opt. Lett. 31, 885–887 (2006b). https:// doi. org/ 10. 1364/ OL. 31. 000885 Wolthuis, R.A., Mitchell, G.L., Saaski, E., Hartl, J.C., Afromowitz, M.A.: Development of medical pressure and temperature sensors employing optical spectrum modulation. IEEE Trans. Biomed. Eng. 38, 974–981 (1991). https:// doi. org/ 10. 1109/ 10. 88443 Yu, Y., Chen, X., Huang, Q., Du, C., Ruan, S., Wei, H.: Enhancing the pressure sensitivity of a Fabry–Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel. Appl. Phys. B. 120, 461–467 (2015). https:// doi. org/ 10. 1007/ s00340- 015- 6155-4 Zhang, L., Jiang, Y., Gao, H., Jia, J., Cui, Y., Ma, W., Wang, S., Hu, J.: A diaphragm-free fiber Fabry–Perot gas pressure sensor. Rev. Sci. Instrum. 90, 25005 (2019). https:// doi. org/ 10. 1063/1. 50556 60 Zhang, Q., Lei, J., Chen, Y., Wu, Y., Xiao, H.: Glass 3D printing of microfluidic pressure sensor interrogated by fiber-optic refractometry. IEEE Photonics Technol. Lett. 32, 414–417 (2020). https:// doi. org/ 10. 1109/ LPT. 2020. 29773 24 Zhang, Z., Liao, C., Tang, J., Bai, Z., Guo, K., Hou, M., He, J., Wang, Y., Wang, Y., Liu, S., Zhang, F.: High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Pérot interferometer. J. Light. Technol. 35, 4067–4071 (2017). https:// doi. org/ 10. 1109/ JLT. 2017. 27102 10 Zhao, Y., Yuan, Y., Gan, W., Yang, M.: Optical fiber Fabry–Perot humidity sensor based on polyimide membrane: sensitivity and adsorption kinetics. Sensors Actuators A Phys. 281, 48–54 (2018). https:// doi. org/ 10. 1016/j. sna. 2018. 08. 044 Zhu, J., Wang, M., Chen, L., Ni, X., Ni, H.: An optical fiber Fabry–Perot pressure sensor using corrugated diaphragm and angle polished fiber. Opt. Fiber Technol. 34, 42–46 (2017). https:// doi. org/ 10. 1016/j. yofte. 2016. 12. 004 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Springer, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Springer, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Springer |
dc.source.eng.fl_str_mv |
https://link.springer.com/content/pdf/10.1007/s11082-021-02871-6.pdf |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/cd7efdd6-54ea-472b-a600-1d0dec296754/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260176215080960 |
spelling |
Jauregui-Vazquez, Daniele5c14b665a5ffef7b899f55cb736726aGutiérrez Rivera, M. E.426fe79b298bdd03f56748a3a7d03c73Garcia Mina, Diego Felipec444e6cc93186e7c24a52a7b8e4a1f2dSierra Hernández, Juan. M.24d623bcebf920a82b61ad7b44760de7Gallegos-Arellano, Eloisac487cb5c00884f2945c20a11d7fe3cd4Estudillo-Ayala, Julián Moisés461f2baa86eadf7985584ff6e523f461Hernández García, José C.46e5ef638bf89e9935fc00fbf597f5e4Rojas-Laguna, Roberto1fa0b8616c13ea35108748b19cbc8e5c2022-05-20T14:37:43Z2022-05-20T14:37:43Z2021-043068919https://hdl.handle.net/10614/13898Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/An experimental study of the interaction between a Mylar® polymer flm and a multimode fber-optic is presented for the simultaneous fber-optic detection of low-pressure and liquid levels. The junction between the polymer and optical fber produces an interference spectrum with maximal visibility and free spectral range around 9 dB and 31 nm, respectively. Water pressure, which is controlled by the liquid level, stresses the polymer. As a result, the spectrum wavelength shifts to the blue region, achieving high sensitivities around 2.49 nm/kPa and 24.5 nm/m. The polymeric membrane was analyzed using a fnite element model; according to the results, the polymer shows linear stress response. Furthermore, the membrane material is operated below the yielding point. Moreover, the fnite analysis provides information about the stress efect over the thickness and the birefringence changes. This sensor exhibits a quadratic polynomial ftting with an adjusted R-squared of 0.9539. The proposed sensing setup ofers a cost-efective alternative for liquid level and low-pressure detection12 páginasapplication/pdfengSpringerDerechos reservados - Springer, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://link.springer.com/content/pdf/10.1007/s11082-021-02871-6.pdfLow‑pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavityArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Polímeros - Propiedades mecánicasDetectores ópticosAnálisis numéricoFabry–Perot interferometerLiquid level measurementPressure detectionPolymerFiber optic sensor12237153D. Jauregui Vázquez. M. E. Gutiérrez Rivera. D. F. García Mina. J. M. Sierra Hernández. E. Gallegos Arellano. J. M. Estudillo Ayala. Juan C. Hernández García. R. Rojas Laguna. (2021). Low pressure and liquid level fber‐optic sensor based on polymeric Fabry–Perot cavity. Optical and Quantum Electronics, pp. 1-12. https://link.springer.com/content/pdf/10.1007/s11082-021-02871-6.pdfOptical and Quantum ElectronicsAbeysinghe, D.C., Dasgupta, S., Boyd, J.T., Jackson, H.E.: A novel MEMS pressure sensor fabricated on an optical fiber. IEEE Photonics Technol. Lett. 13, 993–995 (2001). https:// doi. org/ 10. 1109/ 68. 942671Ameen, O.F., Younus, M.H., Aziz, M.S., Azmi, A.I., Raja Ibrahim, R.K., Ghoshal, S.K.: Graphene diaphragm integrated FBG sensors for simultaneous measurement of water level and temperature. Sensors Actuators A Phys. 252, 225–232 (2016). https:// doi. org/ 10. 1016/j. sna. 2016. 10. 018Antonio-Lopez, J.E., Sanchez-Mondragon, J.J., LiKamWa, P., May-Arrioja, D.A.: Fiber-optic sensor for liquid level measurement. Opt. Lett. 36, 3425–3427 (2011). https:// doi. org/ 10. 1364/ OL. 36. 003425Bai, Y., Yan, F., Liu, S., Wen, X.: All fiber Fabry–Pérot interferometer for high-sensitive micro-displacement sensing. Opt. Quantum Electron. 48, 1–10 (2016). https:// doi. org/ 10. 1007/ s11082- 015- 0323-yCastellani, C.E.S., Ximenes, H.C.B., Silva, R.L., Frizera-Neto, A., Ribeiro, M.R.N., Pontes, M.J.: Multiparameter interferometric sensor based on a reduced diameter core axial offseted fiber. IEEE Photonics Technol. Lett. 29, 239–242 (2017). https:// doi. org/ 10. 1109/ LPT. 2016. 26378 70Chen, W.P., Wang, D.N., Xu, B., Zhao, C.L., Chen, H.F.: Multimode fiber tip Fabry–Perot cavity for highly sensitive pressure measurement. Sci. Rep. 7, 1–6 (2017). https:// doi. org/ 10. 1038/ s41598- 017- 00300-xDiáz, C.A.R., Leal-Junior, A.G., André, P.S.B., Da Costa Antunes, P.F., Pontes, M.J., Frizera-Neto, A., Ribeiro, M.R.N.: Liquid level measurement based on FBG-embedded diaphragms with temperature compensation. IEEE Sens. J. 18, 193–200 (2018). https:// doi. org/ 10. 1109/ JSEN. 2017. 27685 10Diaz, C.A.R., Leal-Junior, A., Marques, C., Frizera, A., Pontes, M.J., Antunes, P.F.C., Andre, P.S.B., Ribeiro, M.R.N.: Optical fiber sensing for sub-millimeter liquid-level monitoring: a review. IEEE Sens. J. 19, 7179–7191 (2019). https:// doi. org/ 10. 1109/ JSEN. 2019. 29150 31Escudero, P., Yeste, J., Pascual-Izarra, C., Villa, R., Alvarez, M.: Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications. Sci. Rep. 9, 1–10 (2019). https:// doi. org/ 10. 1038/ s41598- 019- 40267-5Guo, Z., Lv, W., Wang, W., Chen, Q., Zhang, X., Chen, H., Ma, Z.: Absolute single cavity length interrogation of fiber-optic compound Fabry–Perot pressure sensors through a white light non-scanning correlation method. Sensors (Switzerland). (2019). https:// doi. org/ 10. 3390/ s1907 1628Hsu, J., Lee, C., Chang, H., Shih, W.C., Li, C.: Highly sensitive tapered fiber Mach–Zehnder interferometer for liquid level sensing. IEEE Photonics Technol. Lett. 25, 1354–1357 (2013). https:// doi. org/ 10. 1109/ LPT. 2013. 22657 38Kim, J.T., Choi, H., Shin, E.J., Park, S., Kim, I.G.: Graphene-based optical waveguide tactile sensor for dynamic response. Sci. Rep. 8, 1–6 (2018). https:// doi. org/ 10. 1038/ s41598- 018- 34613-2Lacam, A., Chateau, C.: High-pressure measurements at moderate temperatures in a diamond anvil cell with a new optical sensor: SrB4O7:Sm2+. J. Appl. Phys. 66, 366–372 (1989). https:// doi. org/ 10. 1063/1. 343884Leger, J.M., Chateau, C., Lacam, A.: SrB4O7:Sm2 + pressure optical sensor: Investigations in the megabar range. J. Appl. Phys. 68, 2351–2354 (1990). https:// doi. org/ 10. 1063/1. 346543Leitão, C., Antunes, P., Pinto, J., Mesquita Bastos, J., André, P.: Optical fiber sensors for central arterial pressure monitoring. Opt. Quantum Electron. 48, 1–9 (2016). https:// doi. org/ 10. 1007/ s11082- 016- 0494-1Li, M., Wang, M., Li, H.: Optical MEMS pressure sensor based on Fabry–Perot interferometry. Opt. Express. 14, 1497 (2006). https:// doi. org/ 10. 1364/ oe. 14. 001497Li, P., Yan, H., Zhang, H.: Highly sensitive liquid level sensor based on an optical fiber Michelson interferometer with core-offset structure. Optik (Stuttg). 171, 781–785 (2018). https:// doi. org/ 10. 1016/j. ijleo. 2018. 06. 126Lin, C., Fang, X.: Miniature MEMS Fabry–Perot interferometry pressure sensor and the fabrication system. In: 2016 10th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), pp. 105–108 (2016). https:// doi. org/ 10. 1109/ICASID. 2016. 78739 27Liu, Q., He, X., Fu, H., Yang, D., Xiao, F., Wang, X.: Temperature-insensitive optical fiber reflective micro-liquid level sensor base on the drop shape quasi-Mach Zehnder interferometer. Optik (Stuttg). 216, 164893 (2020). https:// doi. org/ 10. 1016/j. ijleo. 2020. 164893Lü, T., Yang, S.: Extrinsic Fabry–Perot cavity optical fiber liquid-level sensor. Appl. Opt. 46, 3682–3687 (2007). https:// doi. org/ 10. 1364/ AO. 46. 003682Ma, J., Ju, J., Jin, L., Jin, W.: A compact fiber-tip micro-cavity sensor for high-pressure measurement. IEEE Photonics Technol. Lett. 23, 1561–1563 (2011). https:// doi. org/ 10. 1109/ LPT. 2011. 21640 60Ma, Z.M., Huang, Y.W., Meng, H., Huang, X.G.: Simultaneous measurement of temperature and pressure by utilizing an integrated Mach–Zehnder. J. Light. Technol. 35, 4924–4929 (2017). https:// doi. org/ 10. 1109/ JLT. 2017. 27652 78Marques, C.A.F., Webb, D.J., Andre, P.: Polymer optical fiber sensors in human life safety. Opt. Fiber Technol. 36, 144–154 (2017). https:// doi. org/ 10. 1016/j. yofte. 2017. 03. 010Martins, J., Diaz, C.A.R., Domingues, M.F., Ferreira, R.A.S., Antunes, P., Andre, P.S.: Low-cost and high-performance optical fiber-based sensor for liquid level monitoring. IEEE Sens. J. 19, 4882– 4888 (2019). https:// doi. org/ 10. 1109/ JSEN. 2019. 28955 49Musayev, E., Karlik, S.E.: A novel liquid level detection method and its implementation. Sensors Actuators A Phys. 109, 21–24 (2003). https:// doi. org/ 10. 1016/ S0924- 4247(03) 00347-9Oliveira, R., Bilro, L., Nogueira, R., Rocha, A.M.: Adhesive based Fabry-Pérot hydrostatic pressure sensor with improved and controlled sensitivity. J. Light. Technol. 37, 1909–1915 (2019). https:// doi. org/ 10. 1109/ JLT. 2019. 28949 49Qi, X., Wang, S., Jiang, J., Liu, K., Wang, X., Yang, Y., Liu, T.: Fiber optic Fabry–Perot pressure sensor with embedded MEMS micro-cavity for ultra-high pressure detection. J. Light. Technol. 37, 2719–2725 (2019). https:// doi. org/ 10. 1109/ JLT. 2018. 28767 17Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, Second Edition. Taylor & Francis (2006). https:// doi. org/ 10. 1201/ 97808 49384 165Sanaâ, F., Palierne, J.F., Gharbia, M.: Channelled spectrum method for birefringence dispersion measurement of anisotropic Mylar film. Opt. Mater. (Amst). 57, 193–201 (2016). https:// doi. org/ 10. 1016/j. optmat. 2016. 04. 036Sartiano, D., Sales, S.: Low cost plastic optical fiber pressure sensor embedded in mattress for vital signal monitoring. Sensors (Switzerland). (2017). https:// doi. org/ 10. 3390/ s1712 2900Shin, J., Liu, Z., Bai, W., Liu, Y., Yan, Y., Xue, Y., Kandela, I., Pezhouh, M., MacEwan, M.R., Huang, Y., Ray, W.Z., Zhou, W., Rogers, J.A.: Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. Sci. Adv. 5, 1–13 (2019). https:// doi. org/ 10. 1126/ sciadv. aaw18 99Spillman, W.B.: Multimode fiber-optic pressure sensor based on the photoelastic effect. Opt. Lett. 7, 388 (1982). https:// doi. org/ 10. 1364/ ol.7. 000388Srivastava, R., Chattopadhyay, J.: Design and Fabrication of Nanomaterial-Based Device for Pressure Sensorial Applications BT - Advanced Nanomaterials in Biomedical, Sensor and Energy Applications. (2017). https:// doi. org/ 10. 1007/ 978- 981- 10- 5346-7Sun, M., Jin, Y., Dong, X.: All-Fiber Mach–Zehnder Interferometer for Liquid Level Measurement. IEEE Sens. J. 15, 3984–3988 (2015). https:// doi. org/ 10. 1109/ JSEN. 2015. 24068 72Tian, J., Zhang, Q., Fink, T., Li, H., Peng, W., Han, M.: Tuning operating point of extrinsic Fabry–Perot interferometric fiber-optic sensors using microstructured fiber and gas pressure. Opt. Lett. 37, 4672– 4674 (2012). https:// doi. org/ 10. 1364/ OL. 37. 004672Urbańczyk, W., Pietraszkiewicz, K.: Measurements of stress anisotropy in fiber preform: modification of the dynamic spatial filtering technique. Appl. Opt. 27, 4117 (1988). https:// doi. org/ 10. 1364/ ao. 27. 004117Van De Stadt, H., Muller, J.M.: Multimirror Fabry–Perot interferometers. J. Opt. Soc. Am. A. 2, 1363–1370 (1985). https:// doi. org/ 10. 1364/ JOSAA.2. 001363Volynskii, L., Bakeev, N.F.: Surface Phenomena in the Structural and Mechanical Behaviour of Solid Polymers. CRC Press (2018). https:// doi. org/ 10. 1201/ 97813 15367 873Vorathin, E., Hafizi, Z.M., Aizzuddin, A.M., Zaini, M.K.A., Lim, K.S.: A novel temperature-insensitive hydrostatic liquid-level sensor using chirped FBG. IEEE Sens. J. 19, 157–162 (2019). https:// doi. org/ 10. 1109/ JSEN. 2018. 28755 32Vorathin, E., Hafizi, Z.M., Ismail, N., Loman, M.: Review of high sensitivity fibre-optic pressure sensors for low pressure sensing. Opt. Laser Technol. (2020). https:// doi. org/ 10. 1016/j. optla stec. 2019. 105841Wang, W., Li, F.: Large-range liquid level sensor based on an optical fibre extrinsic Fabry–Perot interferometer. Opt. Lasers Eng. 52, 201–205 (2014). https:// doi. org/ 10. 1016/j. optla seng. 2013. 06. 009Wang, X., Li, B., Russo, O.L., Roman, H.T., Chin, K.K., Farmer, K.R.: Diaphragm design guidelines and an optical pressure sensor based on MEMS technique. Microelectronics J. 37, 50–56 (2006a). https:// doi. org/ 10. 1016/j. mejo. 2005. 06. 015Wang, X., Xu, J., Zhu, Y., Cooper, K.L., Wang, A.: All-fused-silica miniature optical fiber tip pressure sensor. Opt. Lett. 31, 885–887 (2006b). https:// doi. org/ 10. 1364/ OL. 31. 000885Wolthuis, R.A., Mitchell, G.L., Saaski, E., Hartl, J.C., Afromowitz, M.A.: Development of medical pressure and temperature sensors employing optical spectrum modulation. IEEE Trans. Biomed. Eng. 38, 974–981 (1991). https:// doi. org/ 10. 1109/ 10. 88443Yu, Y., Chen, X., Huang, Q., Du, C., Ruan, S., Wei, H.: Enhancing the pressure sensitivity of a Fabry–Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel. Appl. Phys. B. 120, 461–467 (2015). https:// doi. org/ 10. 1007/ s00340- 015- 6155-4Zhang, L., Jiang, Y., Gao, H., Jia, J., Cui, Y., Ma, W., Wang, S., Hu, J.: A diaphragm-free fiber Fabry–Perot gas pressure sensor. Rev. Sci. Instrum. 90, 25005 (2019). https:// doi. org/ 10. 1063/1. 50556 60Zhang, Q., Lei, J., Chen, Y., Wu, Y., Xiao, H.: Glass 3D printing of microfluidic pressure sensor interrogated by fiber-optic refractometry. IEEE Photonics Technol. Lett. 32, 414–417 (2020). https:// doi. org/ 10. 1109/ LPT. 2020. 29773 24Zhang, Z., Liao, C., Tang, J., Bai, Z., Guo, K., Hou, M., He, J., Wang, Y., Wang, Y., Liu, S., Zhang, F.: High-sensitivity gas-pressure sensor based on fiber-tip PVC diaphragm Fabry-Pérot interferometer. J. Light. Technol. 35, 4067–4071 (2017). https:// doi. org/ 10. 1109/ JLT. 2017. 27102 10Zhao, Y., Yuan, Y., Gan, W., Yang, M.: Optical fiber Fabry–Perot humidity sensor based on polyimide membrane: sensitivity and adsorption kinetics. Sensors Actuators A Phys. 281, 48–54 (2018). https:// doi. org/ 10. 1016/j. sna. 2018. 08. 044Zhu, J., Wang, M., Chen, L., Ni, X., Ni, H.: An optical fiber Fabry–Perot pressure sensor using corrugated diaphragm and angle polished fiber. Opt. Fiber Technol. 34, 42–46 (2017). https:// doi. org/ 10. 1016/j. yofte. 2016. 12. 004Comunidad generalPublicationLICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/cd7efdd6-54ea-472b-a600-1d0dec296754/download20b5ba22b1117f71589c7318baa2c560MD5210614/13898oai:dspace7-uao.metacatalogo.com:10614/138982024-01-19 17:20:36.52https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer, 2021metadata.onlyhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |