Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study
In this study, the properties of a polyolefin blend matrix (PP-HDPE) were evaluated and modified through the addition of raw coir coconut fibers-(CCF). PP-HDPE-CCF biocomposites were prepared using melt blending processes with CCF loadings up to 30% (w/w). CCF addition generates an increase of the t...
- Autores:
-
Hidalgo Salazar, Miguel Ángel
Correa Aguirre, Juan Pablo
García Navarro, Serafín
Roca Blay, Luis
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/13266
- Acceso en línea:
- https://hdl.handle.net/10614/13266
- Palabra clave:
- Fibras vegetales
Moldeo de plásticos por inyección
Plant fibers
Injection molding of plastics
Biocomposites
Mechanical properties
Thermal properties
Natural fibers
Injection molding
- Rights
- openAccess
- License
- Derechos reservados Revista Polymers
id |
REPOUAO2_c3546deed606331efac518f6de90f759 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13266 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study |
title |
Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study |
spellingShingle |
Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study Fibras vegetales Moldeo de plásticos por inyección Plant fibers Injection molding of plastics Biocomposites Mechanical properties Thermal properties Natural fibers Injection molding |
title_short |
Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study |
title_full |
Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study |
title_fullStr |
Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study |
title_full_unstemmed |
Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study |
title_sort |
Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy Study |
dc.creator.fl_str_mv |
Hidalgo Salazar, Miguel Ángel Correa Aguirre, Juan Pablo García Navarro, Serafín Roca Blay, Luis |
dc.contributor.author.none.fl_str_mv |
Hidalgo Salazar, Miguel Ángel Correa Aguirre, Juan Pablo García Navarro, Serafín Roca Blay, Luis |
dc.contributor.corporatename.spa.fl_str_mv |
Polymers |
dc.subject.armarc.spa.fl_str_mv |
Fibras vegetales Moldeo de plásticos por inyección |
topic |
Fibras vegetales Moldeo de plásticos por inyección Plant fibers Injection molding of plastics Biocomposites Mechanical properties Thermal properties Natural fibers Injection molding |
dc.subject.armarc.eng.fl_str_mv |
Plant fibers Injection molding of plastics |
dc.subject.proposal.eng.fl_str_mv |
Biocomposites Mechanical properties Thermal properties Natural fibers Injection molding |
description |
In this study, the properties of a polyolefin blend matrix (PP-HDPE) were evaluated and modified through the addition of raw coir coconut fibers-(CCF). PP-HDPE-CCF biocomposites were prepared using melt blending processes with CCF loadings up to 30% (w/w). CCF addition generates an increase of the tensile and flexural modulus up to 78% and 99% compared to PP HDPE blend. This stiffening effect is caused by a decrease in the polymeric chain mobility due to CCF, the higher mechanical properties of the CCF compared to the polymeric matrix and could be an advantage for some biocomposites applications. Thermal characterizations show that CCF incorporation increases the PP-HDPE thermal stability up to 63 ◦C, slightly affecting the melting behavior of the PP and HDPE matrix. DMA analysis shows that CCF improves the PP-HDPE blend capacity to absorb higher external loads while exhibiting elastic behavior maintaining its characteristics at higher temperatures. Also, the three-dimensional microscopy study showed that CCF particles enhance the dimensional stability of the PP-HDPE matrix and decrease manufacturing defects as shrinkagein injected specimens. This research opens a feasible opportunity for considering PP-HDPE-CCF biocomposites as alternative materials for the design and manufacturing of sustainable products by injection molding |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-09-27T14:24:50Z |
dc.date.available.none.fl_str_mv |
2021-09-27T14:24:50Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
20734360 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13266 |
identifier_str_mv |
20734360 |
url |
https://hdl.handle.net/10614/13266 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 12, número 7 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
20 |
dc.relation.citationissue.spa.fl_str_mv |
Número 7 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
Volumen 12 |
dc.relation.cites.none.fl_str_mv |
Hidalgo Salazar, M.A., Correa Aguirre, J.P., García Navarro, S., Roca Blay, L. (2020). Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study. Polymers, (Vol. 12 (7), pp. 2-20. https://doi.org/10.3390/polym12071507 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Polymers |
dc.relation.references.spa.fl_str_mv |
Robeson, L.M. Emerging Technology Involving Polymer Blends. In Polymer Blends; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2007; pp. 415–438 Xavier, S.F.; Xavier, S.F. Properties and performance of polymer blends. In Polymer Blends Handbook; Springer: Amsterdam, The Netherlands, 2014; pp. 1031–1201. ISBN 9789400760646. Utracki, L.A.; Wilkie, C.A. Polymer Blends Handbook; Springer: Amsterdam, The Netherlands, 2014; ISBN 9789400760646. Mittal, V. Functional Polymer Blends Synthesis, Properties, and Performances; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781138074347 ACOPLASTICOS Plastics in Colombia. Available online: http://www.acoplasticos.org/index.php/mnu-nos/ mnu-pyr/pec (accessed on 27 August 2018 Hubo, S.; Delva, L.; Van Damme, N.; Ragaert, K. Blending of recycled mixed polyolefins with recycled polypropylene: Effect on physical and mechanical properties. AIP Conf. Proc. 2016, 1779, 140006 Aumnate, C.; Rudolph, N.; Sarmadi, M. Recycling of polypropylene/polyethylene blends: Effect of chain structure on the crystallization behaviors. Polymers 2019, 11, 1456 Bertin, S.; Robin, J.-J. Study and characterization of virgin and recycled LDPE/PP blends. Eur. Polym. J. 2002, 38, 2255–2264. Rachtanapun, P.; Selke, S.E.M.; Matuana, L.M. Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. J. Appl. Polym. Sci. 2003, 88, 2842–2850 Van Eygen, E.; Laner, D.; Fellner, J. Circular economy of plastic packaging: Current practice and perspectives in Austria. Waste Manag. 2018, 72, 55–64. Dikobe, D.G.; Luyt, A.S. Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polym. Lett. 2010, 4, 729–741 Hidalgo-Salazar, M.A.; Salinas, E. Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Compos. Part B Eng. 2019, 107135 Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198. Muñoz-Vélez, M.; Hidalgo-Salazar, M.; Mina-Hernández, J.; Muñoz-Vélez, M.F.; Hidalgo-Salazar, M.A.; Mina-Hernández, J.H. Effect of Content and Surface Modification of Fique Fibers on the Properties of a Low-Density Polyethylene (LDPE)-Al/Fique Composite. Polymers 2018, 10, 1050 Hidalgo Salazar, M.A.; Muñoz Velez, M.F.; Quintana Cuellar, K.J. Análisis mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional (Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement). Rev. Latinoam. Metal. Mater. 2012, 32, 89–95 Correa, J.P.; Montalvo-Navarrete, J.M.; Hidalgo-Salazar, M.A. Carbon footprint considerations for biocomposite materials for sustainable products: A review. J. Clean. Prod. 2019, 208, 785–794 Väisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017, 149, 582–596 Sapuan, S.M. Materials Selection for Composites: Concurrent Engineering Perspective. In Composite Materials; Butterworth-Heinemann: Oxford, UK, 2017; Chapter 6 Essabir, H.; Raji, M.; Laaziz, S.A.; Rodrique, D.; Bouhfid, R.; Qaiss, A. el kacem Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Compos. Part B Eng. 2018, 149, 1–11. Haque, M.; Rahman, R.; Islam, N.; Huque, M.; Hasan, M. Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. J. Reinf. Plast. Compos. 2010, 29, 2253–2261 Alves Fidelis, M.E.; Pereira, T.V.C.; Gomes, O.D.F.M.; De Andrade Silva, F.; Toledo Filho, R.D. The effect of fiber morphology on the tensile strength of natural fibers. J. Mater. Res. Technol. 2013, 2, 149–157 Hidalgo-Salazar, M.; Luna-Vera, F.; Pablo Correa-Aguirre, J. Biocomposites from Colombian Sugarcane Bagasse with Polypropylene: Mechanical, Thermal and Viscoelastic Properties. In Characterizations of Some Composite Materials; IntechOpen: London, UK, 2019. Mohana Krishnudu, D.; Sreeramulu, D.; Venkateshwar Reddy, P. A study of filler content influence on dynamic mechanical and thermal characteristics of coir and luffa cylindrica reinforced hybrid composites. Constr. Build. Mater. 2020, 251, 119040 Fischer, J.M. Handbook of Molded Part Shrinkage and Warpage, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; ISBN 9781455730575 Tolinski, M. Additives for Polyolefins: Getting the Most Out of Polypropylene, Polyethylene and TPO, 2nd ed.; William Andrew: Oxford, UK, 2015; ISBN 9780323371773 Azaman, M.D.; Sapuan, S.M.; Sulaiman, S.; Zainudin, E.S.; Khalina, A. Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Mater. Des. 2013, 52, 1018–1026 Azaman, M.D.; Sapuan, S.M.; Sulaiman, S.; Zainudin, E.S.; Abdan, K. An investigation of the processability of natural fibre reinforced polymer composites on shallow and flat thin-walled parts by injection moulding process. Mater. Des. 2013, 50, 451–456 antos, J.D.; Fajardo, J.I.; Cuji, A.R.; García, J.A.; Garzón, L.E.; López, L.M. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers. Front. Mech. Eng. 2015, 10, 287–293 |
dc.rights.spa.fl_str_mv |
Derechos reservados Revista Polymers |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados Revista Polymers https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.place.spa.fl_str_mv |
Basel |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/2a0fcb9c-2370-4c84-9f75-bb0edd82762a/download https://red.uao.edu.co/bitstreams/00e8e56b-82f9-437d-81f6-1ac339513c68/download https://red.uao.edu.co/bitstreams/2a27485a-35fe-4fc1-aa98-695b6003512c/download https://red.uao.edu.co/bitstreams/0e5e9d9f-58bc-4dbf-9489-3a79884c5f0d/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 cd6fc79532eaf3eb9fd57bb2fe64e291 c369d75d6e4e4f1c297e67be43212712 a7459310bcb9adaf4d9920098cddb959 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259875622944768 |
spelling |
Hidalgo Salazar, Miguel Ángelvirtual::2120-1Correa Aguirre, Juan Pabloe37041bc496bde8cf2fdefb8ed0a7675García Navarro, Serafín5899d251273944327770ee70d89ad334Roca Blay, Luisc682537bb18f515ad555fcb7246c2c16Polymers2021-09-27T14:24:50Z2021-09-27T14:24:50Z202020734360https://hdl.handle.net/10614/13266In this study, the properties of a polyolefin blend matrix (PP-HDPE) were evaluated and modified through the addition of raw coir coconut fibers-(CCF). PP-HDPE-CCF biocomposites were prepared using melt blending processes with CCF loadings up to 30% (w/w). CCF addition generates an increase of the tensile and flexural modulus up to 78% and 99% compared to PP HDPE blend. This stiffening effect is caused by a decrease in the polymeric chain mobility due to CCF, the higher mechanical properties of the CCF compared to the polymeric matrix and could be an advantage for some biocomposites applications. Thermal characterizations show that CCF incorporation increases the PP-HDPE thermal stability up to 63 ◦C, slightly affecting the melting behavior of the PP and HDPE matrix. DMA analysis shows that CCF improves the PP-HDPE blend capacity to absorb higher external loads while exhibiting elastic behavior maintaining its characteristics at higher temperatures. Also, the three-dimensional microscopy study showed that CCF particles enhance the dimensional stability of the PP-HDPE matrix and decrease manufacturing defects as shrinkagein injected specimens. This research opens a feasible opportunity for considering PP-HDPE-CCF biocomposites as alternative materials for the design and manufacturing of sustainable products by injection moldingapplication/pdfspaDerechos reservados Revista Polymershttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy StudyArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Fibras vegetalesMoldeo de plásticos por inyecciónPlant fibersInjection molding of plasticsBiocompositesMechanical propertiesThermal propertiesNatural fibersInjection moldingBaselVolumen 12, número 7 (2020)20Número 71Volumen 12Hidalgo Salazar, M.A., Correa Aguirre, J.P., García Navarro, S., Roca Blay, L. (2020). Injection molding of coir coconut fiber reinforced polyolefin blends: mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study. Polymers, (Vol. 12 (7), pp. 2-20. https://doi.org/10.3390/polym12071507PolymersRobeson, L.M. Emerging Technology Involving Polymer Blends. In Polymer Blends; Carl Hanser Verlag GmbH & Co. KG: München, Germany, 2007; pp. 415–438Xavier, S.F.; Xavier, S.F. Properties and performance of polymer blends. In Polymer Blends Handbook; Springer: Amsterdam, The Netherlands, 2014; pp. 1031–1201. ISBN 9789400760646.Utracki, L.A.; Wilkie, C.A. Polymer Blends Handbook; Springer: Amsterdam, The Netherlands, 2014; ISBN 9789400760646.Mittal, V. Functional Polymer Blends Synthesis, Properties, and Performances; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781138074347ACOPLASTICOS Plastics in Colombia. Available online: http://www.acoplasticos.org/index.php/mnu-nos/ mnu-pyr/pec (accessed on 27 August 2018Hubo, S.; Delva, L.; Van Damme, N.; Ragaert, K. Blending of recycled mixed polyolefins with recycled polypropylene: Effect on physical and mechanical properties. AIP Conf. Proc. 2016, 1779, 140006Aumnate, C.; Rudolph, N.; Sarmadi, M. Recycling of polypropylene/polyethylene blends: Effect of chain structure on the crystallization behaviors. Polymers 2019, 11, 1456Bertin, S.; Robin, J.-J. Study and characterization of virgin and recycled LDPE/PP blends. Eur. Polym. J. 2002, 38, 2255–2264.Rachtanapun, P.; Selke, S.E.M.; Matuana, L.M. Microcellular foam of polymer blends of HDPE/PP and their composites with wood fiber. J. Appl. Polym. Sci. 2003, 88, 2842–2850Van Eygen, E.; Laner, D.; Fellner, J. Circular economy of plastic packaging: Current practice and perspectives in Austria. Waste Manag. 2018, 72, 55–64.Dikobe, D.G.; Luyt, A.S. Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites. Express Polym. Lett. 2010, 4, 729–741Hidalgo-Salazar, M.A.; Salinas, E. Mechanical, thermal, viscoelastic performance and product application of PP- rice husk Colombian biocomposites. Compos. Part B Eng. 2019, 107135Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198.Muñoz-Vélez, M.; Hidalgo-Salazar, M.; Mina-Hernández, J.; Muñoz-Vélez, M.F.; Hidalgo-Salazar, M.A.; Mina-Hernández, J.H. Effect of Content and Surface Modification of Fique Fibers on the Properties of a Low-Density Polyethylene (LDPE)-Al/Fique Composite. Polymers 2018, 10, 1050Hidalgo Salazar, M.A.; Muñoz Velez, M.F.; Quintana Cuellar, K.J. Análisis mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional (Mechanical analysis of polyethylene aluminum composite reinforced with short fique fibers available a in two-dimensional arrangement). Rev. Latinoam. Metal. Mater. 2012, 32, 89–95Correa, J.P.; Montalvo-Navarrete, J.M.; Hidalgo-Salazar, M.A. Carbon footprint considerations for biocomposite materials for sustainable products: A review. J. Clean. Prod. 2019, 208, 785–794Väisänen, T.; Das, O.; Tomppo, L. A review on new bio-based constituents for natural fiber-polymer composites. J. Clean. Prod. 2017, 149, 582–596Sapuan, S.M. Materials Selection for Composites: Concurrent Engineering Perspective. In Composite Materials; Butterworth-Heinemann: Oxford, UK, 2017; Chapter 6Essabir, H.; Raji, M.; Laaziz, S.A.; Rodrique, D.; Bouhfid, R.; Qaiss, A. el kacem Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Compos. Part B Eng. 2018, 149, 1–11.Haque, M.; Rahman, R.; Islam, N.; Huque, M.; Hasan, M. Mechanical properties of polypropylene composites reinforced with chemically treated coir and abaca fiber. J. Reinf. Plast. Compos. 2010, 29, 2253–2261Alves Fidelis, M.E.; Pereira, T.V.C.; Gomes, O.D.F.M.; De Andrade Silva, F.; Toledo Filho, R.D. The effect of fiber morphology on the tensile strength of natural fibers. J. Mater. Res. Technol. 2013, 2, 149–157Hidalgo-Salazar, M.; Luna-Vera, F.; Pablo Correa-Aguirre, J. Biocomposites from Colombian Sugarcane Bagasse with Polypropylene: Mechanical, Thermal and Viscoelastic Properties. In Characterizations of Some Composite Materials; IntechOpen: London, UK, 2019.Mohana Krishnudu, D.; Sreeramulu, D.; Venkateshwar Reddy, P. A study of filler content influence on dynamic mechanical and thermal characteristics of coir and luffa cylindrica reinforced hybrid composites. Constr. Build. Mater. 2020, 251, 119040Fischer, J.M. Handbook of Molded Part Shrinkage and Warpage, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; ISBN 9781455730575Tolinski, M. Additives for Polyolefins: Getting the Most Out of Polypropylene, Polyethylene and TPO, 2nd ed.; William Andrew: Oxford, UK, 2015; ISBN 9780323371773Azaman, M.D.; Sapuan, S.M.; Sulaiman, S.; Zainudin, E.S.; Khalina, A. Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding. Mater. Des. 2013, 52, 1018–1026Azaman, M.D.; Sapuan, S.M.; Sulaiman, S.; Zainudin, E.S.; Abdan, K. An investigation of the processability of natural fibre reinforced polymer composites on shallow and flat thin-walled parts by injection moulding process. Mater. Des. 2013, 50, 451–456antos, J.D.; Fajardo, J.I.; Cuji, A.R.; García, J.A.; Garzón, L.E.; López, L.M. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers. Front. Mech. Eng. 2015, 10, 287–293Comunidad universitaria en generalPublication00f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2120-100f13bbf-fd1b-4026-8c93-f94105cbaa85virtual::2120-1https://scholar.google.es/citations?user=OTNvAeoAAAAJ&hl=esvirtual::2120-10000-0002-6907-2091virtual::2120-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000143936virtual::2120-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/2a0fcb9c-2370-4c84-9f75-bb0edd82762a/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINAL00396_Injection molding of coir coconut fiber reinforced polyolefin blends. Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study.pdf00396_Injection molding of coir coconut fiber reinforced polyolefin blends. Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1493298https://red.uao.edu.co/bitstreams/00e8e56b-82f9-437d-81f6-1ac339513c68/downloadcd6fc79532eaf3eb9fd57bb2fe64e291MD53TEXT00396_Injection molding of coir coconut fiber reinforced polyolefin blends. Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study.pdf.txt00396_Injection molding of coir coconut fiber reinforced polyolefin blends. Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study.pdf.txtExtracted texttext/plain84392https://red.uao.edu.co/bitstreams/2a27485a-35fe-4fc1-aa98-695b6003512c/downloadc369d75d6e4e4f1c297e67be43212712MD54THUMBNAIL00396_Injection molding of coir coconut fiber reinforced polyolefin blends. Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study.pdf.jpg00396_Injection molding of coir coconut fiber reinforced polyolefin blends. Mechanical, viscoelastic, thermal behavior and three-dimensional microscopy study.pdf.jpgGenerated Thumbnailimage/jpeg15351https://red.uao.edu.co/bitstreams/0e5e9d9f-58bc-4dbf-9489-3a79884c5f0d/downloada7459310bcb9adaf4d9920098cddb959MD5510614/13266oai:red.uao.edu.co:10614/132662024-03-06 09:42:44.217https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados Revista Polymersopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |