Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes

Nanocomposite polymer membranes based on PVA/TiO2 were prepared by a solution casting method. Glutaraldehyde solution (GA) was used as linking agent to improve the chemical, thermal and physical properties of the membranes. The degree of cross-linking was varied by changing the reaction time. The ph...

Full description

Autores:
Aparicio Rojas, Gladis Miriam
Bueno, Paulo Roberto
Vargas, Rubén Antonio
Aparicio Rojas, Gladis Miriam
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11558
Acceso en línea:
http://hdl.handle.net/10614/11558
https://doi.org/10.1016/j.jnoncrysol.2019.119520
Palabra clave:
Compuestos poliméricos
Polymeric composites
Materiales nanocompuestos
Nanocomposites (Materials)
Polymer membrane
PVA
TiO2
Ionic conductivity, thermogravimetric
Differential scanning calorimetry, lifetime
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_c26edb7543d93a908e4ebbeb1a233383
oai_identifier_str oai:red.uao.edu.co:10614/11558
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
title Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
spellingShingle Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
Compuestos poliméricos
Polymeric composites
Materiales nanocompuestos
Nanocomposites (Materials)
Polymer membrane
PVA
TiO2
Ionic conductivity, thermogravimetric
Differential scanning calorimetry, lifetime
title_short Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
title_full Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
title_fullStr Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
title_full_unstemmed Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
title_sort Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
dc.creator.fl_str_mv Aparicio Rojas, Gladis Miriam
Bueno, Paulo Roberto
Vargas, Rubén Antonio
Aparicio Rojas, Gladis Miriam
dc.contributor.author.none.fl_str_mv Aparicio Rojas, Gladis Miriam
Bueno, Paulo Roberto
Vargas, Rubén Antonio
Aparicio Rojas, Gladis Miriam
dc.subject.lemb.spa.fl_str_mv Compuestos poliméricos
topic Compuestos poliméricos
Polymeric composites
Materiales nanocompuestos
Nanocomposites (Materials)
Polymer membrane
PVA
TiO2
Ionic conductivity, thermogravimetric
Differential scanning calorimetry, lifetime
dc.subject.lemb.eng.fl_str_mv Polymeric composites
dc.subject.armarc.spa.fl_str_mv Materiales nanocompuestos
dc.subject.armarc.eng.fl_str_mv Nanocomposites (Materials)
dc.subject.proposal.eng.fl_str_mv Polymer membrane
PVA
TiO2
Ionic conductivity, thermogravimetric
Differential scanning calorimetry, lifetime
description Nanocomposite polymer membranes based on PVA/TiO2 were prepared by a solution casting method. Glutaraldehyde solution (GA) was used as linking agent to improve the chemical, thermal and physical properties of the membranes. The degree of cross-linking was varied by changing the reaction time. The phase behavior of the membranes was examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). High resolution SEM micrographs show that the TiO2 nanoparticles are homogeneously dispersed, whilst the PVA crosslinks with the inorganic phase and fill in the gap between the nanoparticles. The ionic conductivity measurements were studied by impedance spectroscopy in the radio frequency range between 5 kHz to 5 MHz. Proton conductivity increases by several orders of magnitude with increasing cross-linking reaction time, reaching a maximum of 0.016 Scm−1 at 130 °C for the PVA/TiO2 composition of 1:12%, which was cross-linked for 42 h and then immersed in a 32 wt% KOH solution for 24 h. The ionic activation energy of the prepared membranes ranged from 0.038 KeV to 0.121 KeV. This result was carried out to obtain an estimation of the desorption time of water in the range from room temperature to the decomposition temperature around 500 °C.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-20T21:54:13Z
dc.date.available.none.fl_str_mv 2019-11-20T21:54:13Z
dc.date.issued.none.fl_str_mv 2019-10-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 00223093
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11558
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jnoncrysol.2019.119520
identifier_str_mv 00223093
url http://hdl.handle.net/10614/11558
https://doi.org/10.1016/j.jnoncrysol.2019.119520
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationvolume.none.fl_str_mv 522
dc.relation.cites.eng.fl_str_mv Aparicio, G. M., Vargas, R. A., & Bueno, P. R. (2019). Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. Journal of Non-Crystalline Solids, 522, 119520
dc.relation.ispartofjournal.eng.fl_str_mv Journal of Non-Crystalline Solids
dc.relation.references.none.fl_str_mv [1] E. Ortiz, R.A. Vargas, B.E. Mellender, On the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transition, J. Phys. Chem. Solids 59 (3) (March 1998) 305–310.
[2] G.M. Aparicio, G. González-Montero, R.A. Vargas, Análisis de las Transiciones de Fase en Sales Iónicas LiMSO4 (M= K, NH4, K1-X(NH4)X) a Altas Temperaturas, Revista Colombiana de Física 33 (N2) (2001) 122–126.
[3] E. Ortiz, R.A. Vargas, B.E. Mellender, On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J. Chem. Phys. 110 (10) (March 1999) 4847–4853.
[4] P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and tech-nology from the 1960s to the year 2000: part I. Fundamental scientific aspects, J. Power Sour. 102 (1–2) (2001) 242–252.
[5] J.A. Trujillo, H. Correa, J.F. Jurado, R.A. Vargas, The thermoelectric power of chromel at low temperatures, Phys. Status Solidi B 220 (July 2000) 467–469.
[6] I. Delgado, J. Castillo, M. Chacón, R.A. Vargas, Ionic conductivity in the polymer electrolytes PEO/CF3COONa, Phys. Status Solidi B 220 (2000) 625–629.
[7] J.E. Diosa, G.M. Aparicio, R.A. Vargas, J.F. Jurado, The phase transitions in LiNH4SO4 between and above room temperature, Physica Status Solidi. Editorial Office. 120 (July 2000) 651–654.
[8] E. Matallana, A. Garcia, R.A. Vargas, New phase boundaries in Kx(NH4)1-x I at low-temperatures, Phys. Status Solidi B 220 (2000) 655–657.
[9] Diaz-Ortiz Jolman Stiven, Delgado-Rosero Miguel Iban, Jurado-Meneses Nori Magali, Aparicio-Rojas Gladis Miriam, Thermal analysis and mass spectrometry in protonic conductors (PVDF/H3PO2) for implementation in fuel cells, DYNA 85 (204) (2018) 143–149 ISSN 0012-7353.
[10] J.F. Fauvarque, S. Guinot, N. Bouzir, E. Salmon, J.F. Penneau, Alkaline poly (ethylene oxide) solid polymer electrolyte, Electrochim. Acta 40 (1995) 2449.
[11] S. Guinot, E. Slmon, J.F. Penneau, F. Fauvarque, A new class of PEO – based SPEs: structure, conductivity and application to alkaline secondary batteries, Electrochim. Acta 43 (1998) 1163.
[12] N. Vassal, E. Salmon, F. Fauvarque, Electrochemical properties o fan alkaline solid polymer electrolyte base don P (ECH-co-EO), Electrochim. Acta 45 (2000) 1527.
[13] N. Vassal, E. Salmon, J.F. Fauvarque, Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte, J. Electrochem. Soc. 146 (1999) 20.
[14] C.C. Yang, Polymer Ni-MH battery base on PEO-PVA-KOH polymer lectrolyte, J. Power Sources 109 (2002) 22.
[15] C.C. Yang, S.J. Lin, Alkaline composite PEO-PVA-glass-fibre-mat polymer electro-lyte for Zn-air battery, J. Power Sources 112 (2002) 497.
[16] A. Lewandowski, M. Zajder, E. Frackowiak, F. Beguin, Supercapacitor base on ac-tivated carbon and polyethylene oxide-KOH-H2O polymer electrolyte, Electrochim. Acta 46 (2001) 2777.
[17] C.C. Yang, S.J. Lin, Preparation of composite alkaline polymer electrolyte, Mater. Lett. 57 (2002) 873.
[18] C.C. Yang, S.J. Lin, Preparation of alkaline PVA-based polymer electrolytes for Ni- Fig. 11. Effect of the concentration of TiO2 on the conductivity values of the polymer composition with PVA base. G.M. Aparicio, et al. Journal of Non-Crystalline Solids 522 (2019) 119520 Fig. 63437382424Fig. 1124 MH and Zn-air batteries, J. Appl. Electrochem. 33 (2003) 777.
[19] E. Agel, J. Bouet, J.F. Fauvarque, H. Yassir, utilisation d electrolyute solide polimere Dans les piles a combustibles alcalines, Ann. Chim. Sci. Mater. 26 (2001) 59.
[20] C.W. Lin, R. Thangamuthu, C.J. Yang, Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly (vinyl alcohol) for DMFC appli-cations, J. Membr. Sci. 253 (2005) 23.
[21] C.C. Yang, S.T. Hsu, W.C. Chien, M.C. Shih, S.J. Chiu, K.T. Lee, C.L. Wang, Electrochemical properties o fair electrodes base on MnO2 catalysts supported on binary carbons, Int. J. Hydrog. Energy 31 (2006) 2076.
[22] N. Chand, N. Rai, S.L. Agrawal, S.K. Patel, Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol compo-site gel electrolyte, Bull. Mater. Sci. 34 (7) (2011) 1297–1304.
[23] G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes, Mater. Chem. Phys. 92 (2005) 251.
[24] C. Yang, Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC, J. Membr. Sci. 288 (1-2) (2007) 51–60.
[25] C.-C. Yang, Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH, Mater. Sci. Eng. B 131 (2006) 256–262.
[26] Jatindranath Maiti, Nitul Kakati, Seok Hee Lee, Seung Hyun Jee, Young Soo Yoon, PVA nano composite membrane for DMFC application, Solid State Ionics 201 (1) (2011) 21–26.
[27] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer elec-trolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy 88 (4) (2011) 981–1007.
[28] M.A. Vargas, R.A. Vargas, B.-E. Mellander, Phase behavior of a PVA-based polymer proton conductor, Phys. Status Solidi A 220 (2000) 615–624.
[29] M.A. Vargas, R.A. Vargas, B.-E. Mellander, More studies on the PVA+H3PO2+H2O, Electrochim. Acta 45 (2000) 1399–1403.
[30] F. Bedoya, R.A. Vargas, Thermomechanical characterization of polimeric ionic conductor membranes based on PVA-H3PO-ZrO2, J. Nanostruct. Polymers Nanocomp. 9 (1) (2013) 5–11.
[31] Chiam-Wen Liew, S. Ramesh, A.K. Arof, Investigation of ionic liquid-based poly (vinyl alcohol) proton conductor for electrochemical double-layer capacitor, High Performance Polym. (September 1, 2014) 632–636 26 issue: 6, page(s.
[32] S. Abarna, G. Hirankumar, Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity, Ionics 23 (17 February 2017) 1733–1743.
[33] Omed Gh. Abdullah, Shujahadeen B. Aziz, Mariwan A. Rasheed, Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte film, 24 (2018), pp. 777–785.
[34] Panel Maykel dos SantosKlemRogério MirandaMoraisRafael Jesus GonçalvesRubiraNeriAlves, Paper-Based Supercapacitor with Screen-Printed Poly (3, 4-Ethylene Dioxythiophene)-Poly (Styrene Sulfonate)/Multiwall Carbon Nanotube Films Actuating both as Electrodes and Current Collectors, vol. 669, (2019), pp. 96–102.
[35] C.S. Sunandana, P. Senthil Kumar, Theoretical approaches to superionic con-ductivity, Bull. Mater. Sci. 27 (1) (February 2004) 1–17.
[36] C. Moynihan, D. Gavin, R. Syed, Pre-exponential term in the Arrhenius equation for electrical conductivity of glass, Journal de Physique Colloques 43 (C9) (1982) C9-395–C9-398, https://doi.org/10.1051/jphyscol:1982975ff. ffjpa-00222504.
[37] M. Nori, I. Delgado Jurado, R.A. Vargas, Conductividad iónica en nuevos compo-sitos (PEO)10(CF3COONa)-X% Al2O3, Univ. Sci. 18 (2) (2013) 173–180, https://doi.org/10.11144/Javeriana.SC18-2.cinc.
[38] E.A. Villegas, J.H. Castillo, P.R. Bueno, Propiedades eléctricas en membranas de complejos electrolitos poliméricos PVA-OH/LI2SO4/PEG400, Polímeros 24 (2) (2014)
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Elsevier
dc.source.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0022309319303916
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/4973b204-ffee-45f5-855c-3e54f453b084/download
https://red.uao.edu.co/bitstreams/70ac5800-97c1-4a88-94fb-fc992ba1834e/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260099691053056
spelling Aparicio Rojas, Gladis Miriam5cfba808641898ab3187ee7be4f6ec47Bueno, Paulo Robertob280dc09b7b11a3b4b7c121fb01051ffVargas, Rubén Antonio409fce9f537e171a0ba189173ee386c8Aparicio Rojas, Gladis Miriamvirtual::305-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-20T21:54:13Z2019-11-20T21:54:13Z2019-10-1500223093http://hdl.handle.net/10614/11558https://doi.org/10.1016/j.jnoncrysol.2019.119520Nanocomposite polymer membranes based on PVA/TiO2 were prepared by a solution casting method. Glutaraldehyde solution (GA) was used as linking agent to improve the chemical, thermal and physical properties of the membranes. The degree of cross-linking was varied by changing the reaction time. The phase behavior of the membranes was examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). High resolution SEM micrographs show that the TiO2 nanoparticles are homogeneously dispersed, whilst the PVA crosslinks with the inorganic phase and fill in the gap between the nanoparticles. The ionic conductivity measurements were studied by impedance spectroscopy in the radio frequency range between 5 kHz to 5 MHz. Proton conductivity increases by several orders of magnitude with increasing cross-linking reaction time, reaching a maximum of 0.016 Scm−1 at 130 °C for the PVA/TiO2 composition of 1:12%, which was cross-linked for 42 h and then immersed in a 32 wt% KOH solution for 24 h. The ionic activation energy of the prepared membranes ranged from 0.038 KeV to 0.121 KeV. This result was carried out to obtain an estimation of the desorption time of water in the range from room temperature to the decomposition temperature around 500 °C.application/pdfengElsevierDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0022309319303916Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Compuestos poliméricosPolymeric compositesMateriales nanocompuestosNanocomposites (Materials)Polymer membranePVATiO2Ionic conductivity, thermogravimetricDifferential scanning calorimetry, lifetime522Aparicio, G. M., Vargas, R. A., & Bueno, P. R. (2019). Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. Journal of Non-Crystalline Solids, 522, 119520Journal of Non-Crystalline Solids[1] E. Ortiz, R.A. Vargas, B.E. Mellender, On the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transition, J. Phys. Chem. Solids 59 (3) (March 1998) 305–310.[2] G.M. Aparicio, G. González-Montero, R.A. Vargas, Análisis de las Transiciones de Fase en Sales Iónicas LiMSO4 (M= K, NH4, K1-X(NH4)X) a Altas Temperaturas, Revista Colombiana de Física 33 (N2) (2001) 122–126.[3] E. Ortiz, R.A. Vargas, B.E. Mellender, On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J. Chem. Phys. 110 (10) (March 1999) 4847–4853.[4] P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and tech-nology from the 1960s to the year 2000: part I. Fundamental scientific aspects, J. Power Sour. 102 (1–2) (2001) 242–252.[5] J.A. Trujillo, H. Correa, J.F. Jurado, R.A. Vargas, The thermoelectric power of chromel at low temperatures, Phys. Status Solidi B 220 (July 2000) 467–469.[6] I. Delgado, J. Castillo, M. Chacón, R.A. Vargas, Ionic conductivity in the polymer electrolytes PEO/CF3COONa, Phys. Status Solidi B 220 (2000) 625–629.[7] J.E. Diosa, G.M. Aparicio, R.A. Vargas, J.F. Jurado, The phase transitions in LiNH4SO4 between and above room temperature, Physica Status Solidi. Editorial Office. 120 (July 2000) 651–654.[8] E. Matallana, A. Garcia, R.A. Vargas, New phase boundaries in Kx(NH4)1-x I at low-temperatures, Phys. Status Solidi B 220 (2000) 655–657.[9] Diaz-Ortiz Jolman Stiven, Delgado-Rosero Miguel Iban, Jurado-Meneses Nori Magali, Aparicio-Rojas Gladis Miriam, Thermal analysis and mass spectrometry in protonic conductors (PVDF/H3PO2) for implementation in fuel cells, DYNA 85 (204) (2018) 143–149 ISSN 0012-7353.[10] J.F. Fauvarque, S. Guinot, N. Bouzir, E. Salmon, J.F. Penneau, Alkaline poly (ethylene oxide) solid polymer electrolyte, Electrochim. Acta 40 (1995) 2449.[11] S. Guinot, E. Slmon, J.F. Penneau, F. Fauvarque, A new class of PEO – based SPEs: structure, conductivity and application to alkaline secondary batteries, Electrochim. Acta 43 (1998) 1163.[12] N. Vassal, E. Salmon, F. Fauvarque, Electrochemical properties o fan alkaline solid polymer electrolyte base don P (ECH-co-EO), Electrochim. Acta 45 (2000) 1527.[13] N. Vassal, E. Salmon, J.F. Fauvarque, Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte, J. Electrochem. Soc. 146 (1999) 20.[14] C.C. Yang, Polymer Ni-MH battery base on PEO-PVA-KOH polymer lectrolyte, J. Power Sources 109 (2002) 22.[15] C.C. Yang, S.J. Lin, Alkaline composite PEO-PVA-glass-fibre-mat polymer electro-lyte for Zn-air battery, J. Power Sources 112 (2002) 497.[16] A. Lewandowski, M. Zajder, E. Frackowiak, F. Beguin, Supercapacitor base on ac-tivated carbon and polyethylene oxide-KOH-H2O polymer electrolyte, Electrochim. Acta 46 (2001) 2777.[17] C.C. Yang, S.J. Lin, Preparation of composite alkaline polymer electrolyte, Mater. Lett. 57 (2002) 873.[18] C.C. Yang, S.J. Lin, Preparation of alkaline PVA-based polymer electrolytes for Ni- Fig. 11. Effect of the concentration of TiO2 on the conductivity values of the polymer composition with PVA base. G.M. Aparicio, et al. Journal of Non-Crystalline Solids 522 (2019) 119520 Fig. 63437382424Fig. 1124 MH and Zn-air batteries, J. Appl. Electrochem. 33 (2003) 777.[19] E. Agel, J. Bouet, J.F. Fauvarque, H. Yassir, utilisation d electrolyute solide polimere Dans les piles a combustibles alcalines, Ann. Chim. Sci. Mater. 26 (2001) 59.[20] C.W. Lin, R. Thangamuthu, C.J. Yang, Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly (vinyl alcohol) for DMFC appli-cations, J. Membr. Sci. 253 (2005) 23.[21] C.C. Yang, S.T. Hsu, W.C. Chien, M.C. Shih, S.J. Chiu, K.T. Lee, C.L. Wang, Electrochemical properties o fair electrodes base on MnO2 catalysts supported on binary carbons, Int. J. Hydrog. Energy 31 (2006) 2076.[22] N. Chand, N. Rai, S.L. Agrawal, S.K. Patel, Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol compo-site gel electrolyte, Bull. Mater. Sci. 34 (7) (2011) 1297–1304.[23] G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes, Mater. Chem. Phys. 92 (2005) 251.[24] C. Yang, Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC, J. Membr. Sci. 288 (1-2) (2007) 51–60.[25] C.-C. Yang, Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH, Mater. Sci. Eng. B 131 (2006) 256–262.[26] Jatindranath Maiti, Nitul Kakati, Seok Hee Lee, Seung Hyun Jee, Young Soo Yoon, PVA nano composite membrane for DMFC application, Solid State Ionics 201 (1) (2011) 21–26.[27] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer elec-trolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy 88 (4) (2011) 981–1007.[28] M.A. Vargas, R.A. Vargas, B.-E. Mellander, Phase behavior of a PVA-based polymer proton conductor, Phys. Status Solidi A 220 (2000) 615–624.[29] M.A. Vargas, R.A. Vargas, B.-E. Mellander, More studies on the PVA+H3PO2+H2O, Electrochim. Acta 45 (2000) 1399–1403.[30] F. Bedoya, R.A. Vargas, Thermomechanical characterization of polimeric ionic conductor membranes based on PVA-H3PO-ZrO2, J. Nanostruct. Polymers Nanocomp. 9 (1) (2013) 5–11.[31] Chiam-Wen Liew, S. Ramesh, A.K. Arof, Investigation of ionic liquid-based poly (vinyl alcohol) proton conductor for electrochemical double-layer capacitor, High Performance Polym. (September 1, 2014) 632–636 26 issue: 6, page(s.[32] S. Abarna, G. Hirankumar, Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity, Ionics 23 (17 February 2017) 1733–1743.[33] Omed Gh. Abdullah, Shujahadeen B. Aziz, Mariwan A. Rasheed, Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte film, 24 (2018), pp. 777–785.[34] Panel Maykel dos SantosKlemRogério MirandaMoraisRafael Jesus GonçalvesRubiraNeriAlves, Paper-Based Supercapacitor with Screen-Printed Poly (3, 4-Ethylene Dioxythiophene)-Poly (Styrene Sulfonate)/Multiwall Carbon Nanotube Films Actuating both as Electrodes and Current Collectors, vol. 669, (2019), pp. 96–102.[35] C.S. Sunandana, P. Senthil Kumar, Theoretical approaches to superionic con-ductivity, Bull. Mater. Sci. 27 (1) (February 2004) 1–17.[36] C. Moynihan, D. Gavin, R. Syed, Pre-exponential term in the Arrhenius equation for electrical conductivity of glass, Journal de Physique Colloques 43 (C9) (1982) C9-395–C9-398, https://doi.org/10.1051/jphyscol:1982975ff. ffjpa-00222504.[37] M. Nori, I. Delgado Jurado, R.A. Vargas, Conductividad iónica en nuevos compo-sitos (PEO)10(CF3COONa)-X% Al2O3, Univ. Sci. 18 (2) (2013) 173–180, https://doi.org/10.11144/Javeriana.SC18-2.cinc.[38] E.A. Villegas, J.H. Castillo, P.R. Bueno, Propiedades eléctricas en membranas de complejos electrolitos poliméricos PVA-OH/LI2SO4/PEG400, Polímeros 24 (2) (2014)Publicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::305-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::305-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::305-10000-0002-7158-1223virtual::305-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::305-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/4973b204-ffee-45f5-855c-3e54f453b084/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/70ac5800-97c1-4a88-94fb-fc992ba1834e/download20b5ba22b1117f71589c7318baa2c560MD5310614/11558oai:red.uao.edu.co:10614/115582024-02-26 16:31:13.194https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K