Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes
Nanocomposite polymer membranes based on PVA/TiO2 were prepared by a solution casting method. Glutaraldehyde solution (GA) was used as linking agent to improve the chemical, thermal and physical properties of the membranes. The degree of cross-linking was varied by changing the reaction time. The ph...
- Autores:
-
Aparicio Rojas, Gladis Miriam
Bueno, Paulo Roberto
Vargas, Rubén Antonio
Aparicio Rojas, Gladis Miriam
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11558
- Palabra clave:
- Compuestos poliméricos
Polymeric composites
Materiales nanocompuestos
Nanocomposites (Materials)
Polymer membrane
PVA
TiO2
Ionic conductivity, thermogravimetric
Differential scanning calorimetry, lifetime
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_c26edb7543d93a908e4ebbeb1a233383 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11558 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes |
title |
Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes |
spellingShingle |
Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes Compuestos poliméricos Polymeric composites Materiales nanocompuestos Nanocomposites (Materials) Polymer membrane PVA TiO2 Ionic conductivity, thermogravimetric Differential scanning calorimetry, lifetime |
title_short |
Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes |
title_full |
Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes |
title_fullStr |
Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes |
title_full_unstemmed |
Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes |
title_sort |
Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes |
dc.creator.fl_str_mv |
Aparicio Rojas, Gladis Miriam Bueno, Paulo Roberto Vargas, Rubén Antonio Aparicio Rojas, Gladis Miriam |
dc.contributor.author.none.fl_str_mv |
Aparicio Rojas, Gladis Miriam Bueno, Paulo Roberto Vargas, Rubén Antonio Aparicio Rojas, Gladis Miriam |
dc.subject.lemb.spa.fl_str_mv |
Compuestos poliméricos |
topic |
Compuestos poliméricos Polymeric composites Materiales nanocompuestos Nanocomposites (Materials) Polymer membrane PVA TiO2 Ionic conductivity, thermogravimetric Differential scanning calorimetry, lifetime |
dc.subject.lemb.eng.fl_str_mv |
Polymeric composites |
dc.subject.armarc.spa.fl_str_mv |
Materiales nanocompuestos |
dc.subject.armarc.eng.fl_str_mv |
Nanocomposites (Materials) |
dc.subject.proposal.eng.fl_str_mv |
Polymer membrane PVA TiO2 Ionic conductivity, thermogravimetric Differential scanning calorimetry, lifetime |
description |
Nanocomposite polymer membranes based on PVA/TiO2 were prepared by a solution casting method. Glutaraldehyde solution (GA) was used as linking agent to improve the chemical, thermal and physical properties of the membranes. The degree of cross-linking was varied by changing the reaction time. The phase behavior of the membranes was examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). High resolution SEM micrographs show that the TiO2 nanoparticles are homogeneously dispersed, whilst the PVA crosslinks with the inorganic phase and fill in the gap between the nanoparticles. The ionic conductivity measurements were studied by impedance spectroscopy in the radio frequency range between 5 kHz to 5 MHz. Proton conductivity increases by several orders of magnitude with increasing cross-linking reaction time, reaching a maximum of 0.016 Scm−1 at 130 °C for the PVA/TiO2 composition of 1:12%, which was cross-linked for 42 h and then immersed in a 32 wt% KOH solution for 24 h. The ionic activation energy of the prepared membranes ranged from 0.038 KeV to 0.121 KeV. This result was carried out to obtain an estimation of the desorption time of water in the range from room temperature to the decomposition temperature around 500 °C. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-20T21:54:13Z |
dc.date.available.none.fl_str_mv |
2019-11-20T21:54:13Z |
dc.date.issued.none.fl_str_mv |
2019-10-15 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
00223093 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11558 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jnoncrysol.2019.119520 |
identifier_str_mv |
00223093 |
url |
http://hdl.handle.net/10614/11558 https://doi.org/10.1016/j.jnoncrysol.2019.119520 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationvolume.none.fl_str_mv |
522 |
dc.relation.cites.eng.fl_str_mv |
Aparicio, G. M., Vargas, R. A., & Bueno, P. R. (2019). Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. Journal of Non-Crystalline Solids, 522, 119520 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of Non-Crystalline Solids |
dc.relation.references.none.fl_str_mv |
[1] E. Ortiz, R.A. Vargas, B.E. Mellender, On the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transition, J. Phys. Chem. Solids 59 (3) (March 1998) 305–310. [2] G.M. Aparicio, G. González-Montero, R.A. Vargas, Análisis de las Transiciones de Fase en Sales Iónicas LiMSO4 (M= K, NH4, K1-X(NH4)X) a Altas Temperaturas, Revista Colombiana de Física 33 (N2) (2001) 122–126. [3] E. Ortiz, R.A. Vargas, B.E. Mellender, On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J. Chem. Phys. 110 (10) (March 1999) 4847–4853. [4] P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and tech-nology from the 1960s to the year 2000: part I. Fundamental scientific aspects, J. Power Sour. 102 (1–2) (2001) 242–252. [5] J.A. Trujillo, H. Correa, J.F. Jurado, R.A. Vargas, The thermoelectric power of chromel at low temperatures, Phys. Status Solidi B 220 (July 2000) 467–469. [6] I. Delgado, J. Castillo, M. Chacón, R.A. Vargas, Ionic conductivity in the polymer electrolytes PEO/CF3COONa, Phys. Status Solidi B 220 (2000) 625–629. [7] J.E. Diosa, G.M. Aparicio, R.A. Vargas, J.F. Jurado, The phase transitions in LiNH4SO4 between and above room temperature, Physica Status Solidi. Editorial Office. 120 (July 2000) 651–654. [8] E. Matallana, A. Garcia, R.A. Vargas, New phase boundaries in Kx(NH4)1-x I at low-temperatures, Phys. Status Solidi B 220 (2000) 655–657. [9] Diaz-Ortiz Jolman Stiven, Delgado-Rosero Miguel Iban, Jurado-Meneses Nori Magali, Aparicio-Rojas Gladis Miriam, Thermal analysis and mass spectrometry in protonic conductors (PVDF/H3PO2) for implementation in fuel cells, DYNA 85 (204) (2018) 143–149 ISSN 0012-7353. [10] J.F. Fauvarque, S. Guinot, N. Bouzir, E. Salmon, J.F. Penneau, Alkaline poly (ethylene oxide) solid polymer electrolyte, Electrochim. Acta 40 (1995) 2449. [11] S. Guinot, E. Slmon, J.F. Penneau, F. Fauvarque, A new class of PEO – based SPEs: structure, conductivity and application to alkaline secondary batteries, Electrochim. Acta 43 (1998) 1163. [12] N. Vassal, E. Salmon, F. Fauvarque, Electrochemical properties o fan alkaline solid polymer electrolyte base don P (ECH-co-EO), Electrochim. Acta 45 (2000) 1527. [13] N. Vassal, E. Salmon, J.F. Fauvarque, Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte, J. Electrochem. Soc. 146 (1999) 20. [14] C.C. Yang, Polymer Ni-MH battery base on PEO-PVA-KOH polymer lectrolyte, J. Power Sources 109 (2002) 22. [15] C.C. Yang, S.J. Lin, Alkaline composite PEO-PVA-glass-fibre-mat polymer electro-lyte for Zn-air battery, J. Power Sources 112 (2002) 497. [16] A. Lewandowski, M. Zajder, E. Frackowiak, F. Beguin, Supercapacitor base on ac-tivated carbon and polyethylene oxide-KOH-H2O polymer electrolyte, Electrochim. Acta 46 (2001) 2777. [17] C.C. Yang, S.J. Lin, Preparation of composite alkaline polymer electrolyte, Mater. Lett. 57 (2002) 873. [18] C.C. Yang, S.J. Lin, Preparation of alkaline PVA-based polymer electrolytes for Ni- Fig. 11. Effect of the concentration of TiO2 on the conductivity values of the polymer composition with PVA base. G.M. Aparicio, et al. Journal of Non-Crystalline Solids 522 (2019) 119520 Fig. 63437382424Fig. 1124 MH and Zn-air batteries, J. Appl. Electrochem. 33 (2003) 777. [19] E. Agel, J. Bouet, J.F. Fauvarque, H. Yassir, utilisation d electrolyute solide polimere Dans les piles a combustibles alcalines, Ann. Chim. Sci. Mater. 26 (2001) 59. [20] C.W. Lin, R. Thangamuthu, C.J. Yang, Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly (vinyl alcohol) for DMFC appli-cations, J. Membr. Sci. 253 (2005) 23. [21] C.C. Yang, S.T. Hsu, W.C. Chien, M.C. Shih, S.J. Chiu, K.T. Lee, C.L. Wang, Electrochemical properties o fair electrodes base on MnO2 catalysts supported on binary carbons, Int. J. Hydrog. Energy 31 (2006) 2076. [22] N. Chand, N. Rai, S.L. Agrawal, S.K. Patel, Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol compo-site gel electrolyte, Bull. Mater. Sci. 34 (7) (2011) 1297–1304. [23] G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes, Mater. Chem. Phys. 92 (2005) 251. [24] C. Yang, Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC, J. Membr. Sci. 288 (1-2) (2007) 51–60. [25] C.-C. Yang, Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH, Mater. Sci. Eng. B 131 (2006) 256–262. [26] Jatindranath Maiti, Nitul Kakati, Seok Hee Lee, Seung Hyun Jee, Young Soo Yoon, PVA nano composite membrane for DMFC application, Solid State Ionics 201 (1) (2011) 21–26. [27] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer elec-trolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy 88 (4) (2011) 981–1007. [28] M.A. Vargas, R.A. Vargas, B.-E. Mellander, Phase behavior of a PVA-based polymer proton conductor, Phys. Status Solidi A 220 (2000) 615–624. [29] M.A. Vargas, R.A. Vargas, B.-E. Mellander, More studies on the PVA+H3PO2+H2O, Electrochim. Acta 45 (2000) 1399–1403. [30] F. Bedoya, R.A. Vargas, Thermomechanical characterization of polimeric ionic conductor membranes based on PVA-H3PO-ZrO2, J. Nanostruct. Polymers Nanocomp. 9 (1) (2013) 5–11. [31] Chiam-Wen Liew, S. Ramesh, A.K. Arof, Investigation of ionic liquid-based poly (vinyl alcohol) proton conductor for electrochemical double-layer capacitor, High Performance Polym. (September 1, 2014) 632–636 26 issue: 6, page(s. [32] S. Abarna, G. Hirankumar, Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity, Ionics 23 (17 February 2017) 1733–1743. [33] Omed Gh. Abdullah, Shujahadeen B. Aziz, Mariwan A. Rasheed, Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte film, 24 (2018), pp. 777–785. [34] Panel Maykel dos SantosKlemRogério MirandaMoraisRafael Jesus GonçalvesRubiraNeriAlves, Paper-Based Supercapacitor with Screen-Printed Poly (3, 4-Ethylene Dioxythiophene)-Poly (Styrene Sulfonate)/Multiwall Carbon Nanotube Films Actuating both as Electrodes and Current Collectors, vol. 669, (2019), pp. 96–102. [35] C.S. Sunandana, P. Senthil Kumar, Theoretical approaches to superionic con-ductivity, Bull. Mater. Sci. 27 (1) (February 2004) 1–17. [36] C. Moynihan, D. Gavin, R. Syed, Pre-exponential term in the Arrhenius equation for electrical conductivity of glass, Journal de Physique Colloques 43 (C9) (1982) C9-395–C9-398, https://doi.org/10.1051/jphyscol:1982975ff. ffjpa-00222504. [37] M. Nori, I. Delgado Jurado, R.A. Vargas, Conductividad iónica en nuevos compo-sitos (PEO)10(CF3COONa)-X% Al2O3, Univ. Sci. 18 (2) (2013) 173–180, https://doi.org/10.11144/Javeriana.SC18-2.cinc. [38] E.A. Villegas, J.H. Castillo, P.R. Bueno, Propiedades eléctricas en membranas de complejos electrolitos poliméricos PVA-OH/LI2SO4/PEG400, Polímeros 24 (2) (2014) |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0022309319303916 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/4973b204-ffee-45f5-855c-3e54f453b084/download https://red.uao.edu.co/bitstreams/70ac5800-97c1-4a88-94fb-fc992ba1834e/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260099691053056 |
spelling |
Aparicio Rojas, Gladis Miriam5cfba808641898ab3187ee7be4f6ec47Bueno, Paulo Robertob280dc09b7b11a3b4b7c121fb01051ffVargas, Rubén Antonio409fce9f537e171a0ba189173ee386c8Aparicio Rojas, Gladis Miriamvirtual::305-1Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-20T21:54:13Z2019-11-20T21:54:13Z2019-10-1500223093http://hdl.handle.net/10614/11558https://doi.org/10.1016/j.jnoncrysol.2019.119520Nanocomposite polymer membranes based on PVA/TiO2 were prepared by a solution casting method. Glutaraldehyde solution (GA) was used as linking agent to improve the chemical, thermal and physical properties of the membranes. The degree of cross-linking was varied by changing the reaction time. The phase behavior of the membranes was examined by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). High resolution SEM micrographs show that the TiO2 nanoparticles are homogeneously dispersed, whilst the PVA crosslinks with the inorganic phase and fill in the gap between the nanoparticles. The ionic conductivity measurements were studied by impedance spectroscopy in the radio frequency range between 5 kHz to 5 MHz. Proton conductivity increases by several orders of magnitude with increasing cross-linking reaction time, reaching a maximum of 0.016 Scm−1 at 130 °C for the PVA/TiO2 composition of 1:12%, which was cross-linked for 42 h and then immersed in a 32 wt% KOH solution for 24 h. The ionic activation energy of the prepared membranes ranged from 0.038 KeV to 0.121 KeV. This result was carried out to obtain an estimation of the desorption time of water in the range from room temperature to the decomposition temperature around 500 °C.application/pdfengElsevierDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S0022309319303916Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Compuestos poliméricosPolymeric compositesMateriales nanocompuestosNanocomposites (Materials)Polymer membranePVATiO2Ionic conductivity, thermogravimetricDifferential scanning calorimetry, lifetime522Aparicio, G. M., Vargas, R. A., & Bueno, P. R. (2019). Protonic conductivity and thermal properties of cross-linked PVA/TiO2 nanocomposite polymer membranes. Journal of Non-Crystalline Solids, 522, 119520Journal of Non-Crystalline Solids[1] E. Ortiz, R.A. Vargas, B.E. Mellender, On the reported high-temperature phase transition in KH2PO4—strong evidence of partial polymerization instead of a structural phase transition, J. Phys. Chem. Solids 59 (3) (March 1998) 305–310.[2] G.M. Aparicio, G. González-Montero, R.A. Vargas, Análisis de las Transiciones de Fase en Sales Iónicas LiMSO4 (M= K, NH4, K1-X(NH4)X) a Altas Temperaturas, Revista Colombiana de Física 33 (N2) (2001) 122–126.[3] E. Ortiz, R.A. Vargas, B.E. Mellender, On the high-temperature phase transitions of CsH2PO4: a polymorphic transition? A transition to a superprotonic conducting phase? J. Chem. Phys. 110 (10) (March 1999) 4847–4853.[4] P. Costamagna, S. Supramaniam, Quantum jumps in the PEMFC science and tech-nology from the 1960s to the year 2000: part I. Fundamental scientific aspects, J. Power Sour. 102 (1–2) (2001) 242–252.[5] J.A. Trujillo, H. Correa, J.F. Jurado, R.A. Vargas, The thermoelectric power of chromel at low temperatures, Phys. Status Solidi B 220 (July 2000) 467–469.[6] I. Delgado, J. Castillo, M. Chacón, R.A. Vargas, Ionic conductivity in the polymer electrolytes PEO/CF3COONa, Phys. Status Solidi B 220 (2000) 625–629.[7] J.E. Diosa, G.M. Aparicio, R.A. Vargas, J.F. Jurado, The phase transitions in LiNH4SO4 between and above room temperature, Physica Status Solidi. Editorial Office. 120 (July 2000) 651–654.[8] E. Matallana, A. Garcia, R.A. Vargas, New phase boundaries in Kx(NH4)1-x I at low-temperatures, Phys. Status Solidi B 220 (2000) 655–657.[9] Diaz-Ortiz Jolman Stiven, Delgado-Rosero Miguel Iban, Jurado-Meneses Nori Magali, Aparicio-Rojas Gladis Miriam, Thermal analysis and mass spectrometry in protonic conductors (PVDF/H3PO2) for implementation in fuel cells, DYNA 85 (204) (2018) 143–149 ISSN 0012-7353.[10] J.F. Fauvarque, S. Guinot, N. Bouzir, E. Salmon, J.F. Penneau, Alkaline poly (ethylene oxide) solid polymer electrolyte, Electrochim. Acta 40 (1995) 2449.[11] S. Guinot, E. Slmon, J.F. Penneau, F. Fauvarque, A new class of PEO – based SPEs: structure, conductivity and application to alkaline secondary batteries, Electrochim. Acta 43 (1998) 1163.[12] N. Vassal, E. Salmon, F. Fauvarque, Electrochemical properties o fan alkaline solid polymer electrolyte base don P (ECH-co-EO), Electrochim. Acta 45 (2000) 1527.[13] N. Vassal, E. Salmon, J.F. Fauvarque, Nickel/metal hydride secondary batteries using an alkaline solid polymer electrolyte, J. Electrochem. Soc. 146 (1999) 20.[14] C.C. Yang, Polymer Ni-MH battery base on PEO-PVA-KOH polymer lectrolyte, J. Power Sources 109 (2002) 22.[15] C.C. Yang, S.J. Lin, Alkaline composite PEO-PVA-glass-fibre-mat polymer electro-lyte for Zn-air battery, J. Power Sources 112 (2002) 497.[16] A. Lewandowski, M. Zajder, E. Frackowiak, F. Beguin, Supercapacitor base on ac-tivated carbon and polyethylene oxide-KOH-H2O polymer electrolyte, Electrochim. Acta 46 (2001) 2777.[17] C.C. Yang, S.J. Lin, Preparation of composite alkaline polymer electrolyte, Mater. Lett. 57 (2002) 873.[18] C.C. Yang, S.J. Lin, Preparation of alkaline PVA-based polymer electrolytes for Ni- Fig. 11. Effect of the concentration of TiO2 on the conductivity values of the polymer composition with PVA base. G.M. Aparicio, et al. Journal of Non-Crystalline Solids 522 (2019) 119520 Fig. 63437382424Fig. 1124 MH and Zn-air batteries, J. Appl. Electrochem. 33 (2003) 777.[19] E. Agel, J. Bouet, J.F. Fauvarque, H. Yassir, utilisation d electrolyute solide polimere Dans les piles a combustibles alcalines, Ann. Chim. Sci. Mater. 26 (2001) 59.[20] C.W. Lin, R. Thangamuthu, C.J. Yang, Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly (vinyl alcohol) for DMFC appli-cations, J. Membr. Sci. 253 (2005) 23.[21] C.C. Yang, S.T. Hsu, W.C. Chien, M.C. Shih, S.J. Chiu, K.T. Lee, C.L. Wang, Electrochemical properties o fair electrodes base on MnO2 catalysts supported on binary carbons, Int. J. Hydrog. Energy 31 (2006) 2076.[22] N. Chand, N. Rai, S.L. Agrawal, S.K. Patel, Morphology, thermal, electrical and electrochemical stability of nano aluminium-oxide-filled polyvinyl alcohol compo-site gel electrolyte, Bull. Mater. Sci. 34 (7) (2011) 1297–1304.[23] G.M. Wu, S.J. Lin, C.C. Yang, Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes, Mater. Chem. Phys. 92 (2005) 251.[24] C. Yang, Synthesis and characterization of the cross-linked PVA/TiO2 composite polymer membrane for alkaline DMFC, J. Membr. Sci. 288 (1-2) (2007) 51–60.[25] C.-C. Yang, Study of alkaline nanocomposite polymer electrolytes based on PVA–ZrO2–KOH, Mater. Sci. Eng. B 131 (2006) 256–262.[26] Jatindranath Maiti, Nitul Kakati, Seok Hee Lee, Seung Hyun Jee, Young Soo Yoon, PVA nano composite membrane for DMFC application, Solid State Ionics 201 (1) (2011) 21–26.[27] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer elec-trolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy 88 (4) (2011) 981–1007.[28] M.A. Vargas, R.A. Vargas, B.-E. Mellander, Phase behavior of a PVA-based polymer proton conductor, Phys. Status Solidi A 220 (2000) 615–624.[29] M.A. Vargas, R.A. Vargas, B.-E. Mellander, More studies on the PVA+H3PO2+H2O, Electrochim. Acta 45 (2000) 1399–1403.[30] F. Bedoya, R.A. Vargas, Thermomechanical characterization of polimeric ionic conductor membranes based on PVA-H3PO-ZrO2, J. Nanostruct. Polymers Nanocomp. 9 (1) (2013) 5–11.[31] Chiam-Wen Liew, S. Ramesh, A.K. Arof, Investigation of ionic liquid-based poly (vinyl alcohol) proton conductor for electrochemical double-layer capacitor, High Performance Polym. (September 1, 2014) 632–636 26 issue: 6, page(s.[32] S. Abarna, G. Hirankumar, Vibrational, electrical, and ion transport properties of PVA-LiClO4-sulfolane electrolyte with high cationic conductivity, Ionics 23 (17 February 2017) 1733–1743.[33] Omed Gh. Abdullah, Shujahadeen B. Aziz, Mariwan A. Rasheed, Incorporation of NH4NO3 into MC-PVA blend-based polymer to prepare proton-conducting polymer electrolyte film, 24 (2018), pp. 777–785.[34] Panel Maykel dos SantosKlemRogério MirandaMoraisRafael Jesus GonçalvesRubiraNeriAlves, Paper-Based Supercapacitor with Screen-Printed Poly (3, 4-Ethylene Dioxythiophene)-Poly (Styrene Sulfonate)/Multiwall Carbon Nanotube Films Actuating both as Electrodes and Current Collectors, vol. 669, (2019), pp. 96–102.[35] C.S. Sunandana, P. Senthil Kumar, Theoretical approaches to superionic con-ductivity, Bull. Mater. Sci. 27 (1) (February 2004) 1–17.[36] C. Moynihan, D. Gavin, R. Syed, Pre-exponential term in the Arrhenius equation for electrical conductivity of glass, Journal de Physique Colloques 43 (C9) (1982) C9-395–C9-398, https://doi.org/10.1051/jphyscol:1982975ff. ffjpa-00222504.[37] M. Nori, I. Delgado Jurado, R.A. Vargas, Conductividad iónica en nuevos compo-sitos (PEO)10(CF3COONa)-X% Al2O3, Univ. Sci. 18 (2) (2013) 173–180, https://doi.org/10.11144/Javeriana.SC18-2.cinc.[38] E.A. Villegas, J.H. Castillo, P.R. Bueno, Propiedades eléctricas en membranas de complejos electrolitos poliméricos PVA-OH/LI2SO4/PEG400, Polímeros 24 (2) (2014)Publicationb4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::305-1b4461b68-2d8c-4ca0-b6fe-cd2e043a2c53virtual::305-1https://scholar.google.com/citations?user=WtTqM8IAAAAJ&hl=esvirtual::305-10000-0002-7158-1223virtual::305-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000112399virtual::305-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/4973b204-ffee-45f5-855c-3e54f453b084/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/70ac5800-97c1-4a88-94fb-fc992ba1834e/download20b5ba22b1117f71589c7318baa2c560MD5310614/11558oai:red.uao.edu.co:10614/115582024-02-26 16:31:13.194https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |