Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications

We report on the synthesis of Bi0.4Sr0.6FeO3 powder with cubic structure by solid state reaction (mechanical milling and calcination) from Bi2O3, SrCO3 and Fe2O3 stoichiometric ratios. Milled powder mixtures were heat treated between 775∘C and 825∘C for 30 and 60 min in oxygen atmosphere and charact...

Full description

Autores:
Rico Castro, Mónica María
Rodríguez Jacobo, Ruby Rocío
Medina Barreto, Milton Humberto
Giraldo Betancur, A. L.
Cruz Munoz, Beatriz
Tabares Giraldo, Jesús Anselmo
Munoz Saldana, J.
Benitez Castro, A. M.
Zapata, V. H.
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11224
Acceso en línea:
http://hdl.handle.net/10614/11224
https://doi.org/10.1007/s10751-017-1427-5
Palabra clave:
Celdas de combustible
Espectroscopía de Mossbauer
Mossbauer spectroscopy
Fuel cells
Solid oxide fuel cells
Cathode
Ceramics
Bismuth strontium ferrite
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_c1344e52676b71b0627f5c8774332cfe
oai_identifier_str oai:red.uao.edu.co:10614/11224
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications
title Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications
spellingShingle Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications
Celdas de combustible
Espectroscopía de Mossbauer
Mossbauer spectroscopy
Fuel cells
Solid oxide fuel cells
Cathode
Ceramics
Bismuth strontium ferrite
title_short Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications
title_full Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications
title_fullStr Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications
title_full_unstemmed Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications
title_sort Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications
dc.creator.fl_str_mv Rico Castro, Mónica María
Rodríguez Jacobo, Ruby Rocío
Medina Barreto, Milton Humberto
Giraldo Betancur, A. L.
Cruz Munoz, Beatriz
Tabares Giraldo, Jesús Anselmo
Munoz Saldana, J.
Benitez Castro, A. M.
Zapata, V. H.
dc.contributor.author.none.fl_str_mv Rico Castro, Mónica María
Rodríguez Jacobo, Ruby Rocío
Medina Barreto, Milton Humberto
Giraldo Betancur, A. L.
Cruz Munoz, Beatriz
Tabares Giraldo, Jesús Anselmo
Munoz Saldana, J.
Benitez Castro, A. M.
Zapata, V. H.
dc.subject.armarc.spa.fl_str_mv Celdas de combustible
Espectroscopía de Mossbauer
topic Celdas de combustible
Espectroscopía de Mossbauer
Mossbauer spectroscopy
Fuel cells
Solid oxide fuel cells
Cathode
Ceramics
Bismuth strontium ferrite
dc.subject.armarc.eng.fl_str_mv Mossbauer spectroscopy
Fuel cells
dc.subject.proposal.eng.fl_str_mv Solid oxide fuel cells
Cathode
Ceramics
Bismuth strontium ferrite
description We report on the synthesis of Bi0.4Sr0.6FeO3 powder with cubic structure by solid state reaction (mechanical milling and calcination) from Bi2O3, SrCO3 and Fe2O3 stoichiometric ratios. Milled powder mixtures were heat treated between 775∘C and 825∘C for 30 and 60 min in oxygen atmosphere and characterized by X-ray diffraction (XRD), impedance as well as Mössbauer spectroscopy. The cubic phase of Bi0.4Sr0.6FeO3 was successfully obtained in samples milled for only 2 h and a subsequent calcination at 800∘C. Irrespective of milling time, heat treatments at lower temperatures (775∘C) still show spurious phases such as Sr0.23Bi0.76O1.1 (30 min) and Sr0.53Bi1.72O3 (60 min). Impedance spectroscopy show high values (105–109) Ω indicating strong structural bond between the atoms of the system and activation energies for the strontium ion around 04 eV. These results show a single dynamic behavior in a range from 1 to 2*105 Hz enabling data adjustment and analysis to a RC circuit. Conductivity results normally show a behavior that obeys the universal law of Jonscher’s relaxation (σ = σ Dc + α ω n) with values for the exponent n (0.8 < n < 1) typical in these structures. Mössbauer spectrometry measurements reveal that the hyperfine magnetic field of the precursors and milled powders corresponds to hematite 512 T. After the thermal treatment of the samples, the mean hyperfine field decreases to 489 ± 0.5 T showing the Bi and Sr atoms diffusion, (non- magnetic) in Fe2O3. While the result of isomer shift corresponds to a Fe+3 oxidation state irrespective of the heat treatment
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-05-18
dc.date.accessioned.none.fl_str_mv 2019-10-17T13:19:43Z
dc.date.available.none.fl_str_mv 2019-10-17T13:19:43Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1572-9540 (en línea)
0304-3843 (impresa)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11224
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/s10751-017-1427-5
identifier_str_mv 1572-9540 (en línea)
0304-3843 (impresa)
url http://hdl.handle.net/10614/11224
https://doi.org/10.1007/s10751-017-1427-5
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationvolume.none.fl_str_mv 238
dc.relation.cites.eng.fl_str_mv Rico, M., Rodriguez, R., Zapata, V. H., Medina-Barreto, M. H., Tabares, J. A., Benitez-Castro, A. M., y Muñoz-Saldaña, J. (2017). Solid state synthesis of Bi 0. 4 Sr 0. 6 FeO 3− δ powder for SOFC applications. Hyperfine Interactions, 238(1), 57
dc.relation.ispartofjournal.eng.fl_str_mv Hyperfine Interactions
dc.relation.references.none.fl_str_mv 1. Singhal, S.C., Kenda, K.: High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Amsterdam (2003)
2. Cortes-Escobedo, C.A., Munoz-Saldana, J., Bolarin-Miro, A.M., Sanchez de Jesus, F.: Determination of strontium and lanthanum zirconates in YPSZ—LSM mixtures for SOFC. J. Power Sources 180, 209–214 (2008). doi:10.1016/j.jpowsour.2008.01.067
3. Brinkman, K., Iijima, T., Takamura, H.: The oxygen permeation characteristics of Bi1-xSrxFeO3 mixed ionic and electronic conducting ceramics. Solid State Ionics 181, 5–58 (2010). doi:10.1016/j.ssi.2009.11.016
4. Teraoka, Y., Zhang, H.M., Furukawa, S., Yamazoe, N.: Oxygen permeation through perovskite-type oxides. Chem. Lett. 174–1746 (1985). doi:10.1246/cl.1985.174
5. Jiang, Q., Faraji, S., Slade, D.A., Stagg-Williams, S.M.: A review of mixed ionic and electronic conducting ceramic membranes as oxygen sources for high-temperature reactors. In: Membrane Science and Technology, vol. 14, pp. 235–273. Elsevier B.V. (2011)
6. Niu, Y., Sunarso, J., Zhou,W., Liang, F., Ge, L., Zhu, Z.: Evaluation and optimization of Bi1-xSrxFeO3- d perovskites as cathodes of solid oxide fuel cells. Int. J. Hydrogen Energy 36, 3179–3186 (2011). doi:10.1016/j.ijhydene.2010.11.10
7. Baek, D., Kamegawa, A., Takamura, H.: Preparation and electrode properties of composite cathodes based on Bi 1 − x Sr x FeO 3 −δ with Perovskite-type structure. Solid State Ionics 262, 691–695 (2014). doi:10.1016/j.ssi.2014.01.00
8. Folcke, E., Breton, J.M., Le Br´eard, Y., Maignan, A.: M¨ossbauer spectroscopic analysis of Bi1- xSrxFeO3-d perovskites. Solid State Sci. 12, 138–1392 (2010). doi:10.1016/j.solidstatesciences.2010.05.01
9. Li, J., Duan, Y., He, H., Song, D.: Crystal structure, electronic structure, and magnetic properties of bismuth-strontium ferrites. J. Alloys Compd. 315, 25–264 (2001). doi:10.1016/S0925-8388(00)01313-X
10. Moure, C., Pe˜na, O.: Recent advances in perovskites: processing and properties. Prog. Solid State Chem. 43, 12–148 (2015). doi:10.1016/j.progsolidstchem.2015.09.00
11. Larson, A.C., Dreele, R.B., Von Alamos, L.: GSAS (2000)
12. Telliet, J., Varret, F.: MOSFIT (1976)
13. Lemine, O.M., Sajieddine, M., Bououdina, M., Msalam, R., Mufti, S., Alyamani, A.: Rietveld analysis and M¨ossbauer spectroscopy studies of nanocrystalline. J. Alloys Compd. 502, 279–282 (2010). doi:10.1016/j.jallcom.2010.04.17
14. Jonscher, A.K.: Dielectric relaxation in solids. J. Phys. D. Appl. Phys. 32, R57–R70 (1999). doi:10.1088/0022-3727/32/14/20
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 10 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Springer International Publishing
dc.source.spa.fl_str_mv https://link.springer.com/article/10.1007/s10751-017-1427-5
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/cc0348f6-ea48-4eae-bea6-86a05fca6453/download
https://red.uao.edu.co/bitstreams/b11e40af-1b6f-4ae7-a403-566dba775bd8/download
https://red.uao.edu.co/bitstreams/c7df1906-c78f-487f-b51f-d3a02751476d/download
https://red.uao.edu.co/bitstreams/ac32c3cf-0f73-4be5-a306-39b00a7f992d/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
8d576fe2118e51e8a491c45728ba917e
d71c28539b0c2cb6aa6bf2966d81b027
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259877742116864
spelling Rico Castro, Mónica María1e7cbc12a4946fdb6c083653811c4c9fRodríguez Jacobo, Ruby Rocíovirtual::4409-1Medina Barreto, Milton Humbertocd4b970bb330b51191167372e3db1b97Giraldo Betancur, A. L.aac07157325618839000c8d79a9eedc6Cruz Munoz, Beatriz10d0b3744072e27f422143dec88378c2Tabares Giraldo, Jesús Anselmof917bc5616d20e0066691121d50ad500Munoz Saldana, J.4f7defcc00f9cdc7238e57952f486ddfBenitez Castro, A. M.09f9b050bddcef7ca02555f59a0dca9eZapata, V. H.d119298c76eb988b9e9c994322fe5879Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-17T13:19:43Z2019-10-17T13:19:43Z2017-05-181572-9540 (en línea)0304-3843 (impresa)http://hdl.handle.net/10614/11224https://doi.org/10.1007/s10751-017-1427-5We report on the synthesis of Bi0.4Sr0.6FeO3 powder with cubic structure by solid state reaction (mechanical milling and calcination) from Bi2O3, SrCO3 and Fe2O3 stoichiometric ratios. Milled powder mixtures were heat treated between 775∘C and 825∘C for 30 and 60 min in oxygen atmosphere and characterized by X-ray diffraction (XRD), impedance as well as Mössbauer spectroscopy. The cubic phase of Bi0.4Sr0.6FeO3 was successfully obtained in samples milled for only 2 h and a subsequent calcination at 800∘C. Irrespective of milling time, heat treatments at lower temperatures (775∘C) still show spurious phases such as Sr0.23Bi0.76O1.1 (30 min) and Sr0.53Bi1.72O3 (60 min). Impedance spectroscopy show high values (105–109) Ω indicating strong structural bond between the atoms of the system and activation energies for the strontium ion around 04 eV. These results show a single dynamic behavior in a range from 1 to 2*105 Hz enabling data adjustment and analysis to a RC circuit. Conductivity results normally show a behavior that obeys the universal law of Jonscher’s relaxation (σ = σ Dc + α ω n) with values for the exponent n (0.8 < n < 1) typical in these structures. Mössbauer spectrometry measurements reveal that the hyperfine magnetic field of the precursors and milled powders corresponds to hematite 512 T. After the thermal treatment of the samples, the mean hyperfine field decreases to 489 ± 0.5 T showing the Bi and Sr atoms diffusion, (non- magnetic) in Fe2O3. While the result of isomer shift corresponds to a Fe+3 oxidation state irrespective of the heat treatmentapplication/pdf10 páginasengSpringer International PublishingDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://link.springer.com/article/10.1007/s10751-017-1427-5Solid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applicationsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Celdas de combustibleEspectroscopía de MossbauerMossbauer spectroscopyFuel cellsSolid oxide fuel cellsCathodeCeramicsBismuth strontium ferrite238Rico, M., Rodriguez, R., Zapata, V. H., Medina-Barreto, M. H., Tabares, J. A., Benitez-Castro, A. M., y Muñoz-Saldaña, J. (2017). Solid state synthesis of Bi 0. 4 Sr 0. 6 FeO 3− δ powder for SOFC applications. Hyperfine Interactions, 238(1), 57Hyperfine Interactions1. Singhal, S.C., Kenda, K.: High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Amsterdam (2003)2. Cortes-Escobedo, C.A., Munoz-Saldana, J., Bolarin-Miro, A.M., Sanchez de Jesus, F.: Determination of strontium and lanthanum zirconates in YPSZ—LSM mixtures for SOFC. J. Power Sources 180, 209–214 (2008). doi:10.1016/j.jpowsour.2008.01.0673. Brinkman, K., Iijima, T., Takamura, H.: The oxygen permeation characteristics of Bi1-xSrxFeO3 mixed ionic and electronic conducting ceramics. Solid State Ionics 181, 5–58 (2010). doi:10.1016/j.ssi.2009.11.0164. Teraoka, Y., Zhang, H.M., Furukawa, S., Yamazoe, N.: Oxygen permeation through perovskite-type oxides. Chem. Lett. 174–1746 (1985). doi:10.1246/cl.1985.1745. Jiang, Q., Faraji, S., Slade, D.A., Stagg-Williams, S.M.: A review of mixed ionic and electronic conducting ceramic membranes as oxygen sources for high-temperature reactors. In: Membrane Science and Technology, vol. 14, pp. 235–273. Elsevier B.V. (2011)6. Niu, Y., Sunarso, J., Zhou,W., Liang, F., Ge, L., Zhu, Z.: Evaluation and optimization of Bi1-xSrxFeO3- d perovskites as cathodes of solid oxide fuel cells. Int. J. Hydrogen Energy 36, 3179–3186 (2011). doi:10.1016/j.ijhydene.2010.11.107. Baek, D., Kamegawa, A., Takamura, H.: Preparation and electrode properties of composite cathodes based on Bi 1 − x Sr x FeO 3 −δ with Perovskite-type structure. Solid State Ionics 262, 691–695 (2014). doi:10.1016/j.ssi.2014.01.008. Folcke, E., Breton, J.M., Le Br´eard, Y., Maignan, A.: M¨ossbauer spectroscopic analysis of Bi1- xSrxFeO3-d perovskites. Solid State Sci. 12, 138–1392 (2010). doi:10.1016/j.solidstatesciences.2010.05.019. Li, J., Duan, Y., He, H., Song, D.: Crystal structure, electronic structure, and magnetic properties of bismuth-strontium ferrites. J. Alloys Compd. 315, 25–264 (2001). doi:10.1016/S0925-8388(00)01313-X10. Moure, C., Pe˜na, O.: Recent advances in perovskites: processing and properties. Prog. Solid State Chem. 43, 12–148 (2015). doi:10.1016/j.progsolidstchem.2015.09.0011. Larson, A.C., Dreele, R.B., Von Alamos, L.: GSAS (2000)12. Telliet, J., Varret, F.: MOSFIT (1976)13. Lemine, O.M., Sajieddine, M., Bououdina, M., Msalam, R., Mufti, S., Alyamani, A.: Rietveld analysis and M¨ossbauer spectroscopy studies of nanocrystalline. J. Alloys Compd. 502, 279–282 (2010). doi:10.1016/j.jallcom.2010.04.1714. Jonscher, A.K.: Dielectric relaxation in solids. J. Phys. D. Appl. Phys. 32, R57–R70 (1999). doi:10.1088/0022-3727/32/14/20Publicationd9acf1a6-b118-4f80-95fd-f8f897ba2e35virtual::4409-1d9acf1a6-b118-4f80-95fd-f8f897ba2e35virtual::4409-1https://scholar.google.com/citations?view_op=list_works&hl=es&user=VFcKgCkAAAAJvirtual::4409-10000-0002-7520-6703virtual::4409-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000253790virtual::4409-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/cc0348f6-ea48-4eae-bea6-86a05fca6453/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/b11e40af-1b6f-4ae7-a403-566dba775bd8/download20b5ba22b1117f71589c7318baa2c560MD53TEXTSolid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications.pdf.txtSolid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications.pdf.txtExtracted texttext/plain25716https://red.uao.edu.co/bitstreams/c7df1906-c78f-487f-b51f-d3a02751476d/download8d576fe2118e51e8a491c45728ba917eMD55THUMBNAILSolid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications.pdf.jpgSolid state synthesis of Bi0.4Sr0.6FeO3 powder for SOFC applications.pdf.jpgGenerated Thumbnailimage/jpeg11089https://red.uao.edu.co/bitstreams/ac32c3cf-0f73-4be5-a306-39b00a7f992d/downloadd71c28539b0c2cb6aa6bf2966d81b027MD5610614/11224oai:red.uao.edu.co:10614/112242024-03-14 08:48:36.284https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidentemetadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K