Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine

This study deals with the three-dimensional unsteady numerical simulation of the flow around a cross-flow vertical-axis water turbine (CFWT) of the Darrieus type. The influence of turbine design on its hydrodynamic characteristics and performance is investigated by means of a time-accurate Reynolds...

Full description

Autores:
Laín Beatove, Santiago
López Mejía, Omar Darío
Taborda Ceballos, Manuel Alejandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11403
Acceso en línea:
http://hdl.handle.net/10614/11403
https://doi.org/10.3390/en11020297
Palabra clave:
Turbinas hidráulicas
Hydraulic turbines
CFD simulation
Transient analysis
Water turbine
Turbulence model
Winglets
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_bfb608a0f74243e1256764627a332001
oai_identifier_str oai:red.uao.edu.co:10614/11403
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
title Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
spellingShingle Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
Turbinas hidráulicas
Hydraulic turbines
CFD simulation
Transient analysis
Water turbine
Turbulence model
Winglets
title_short Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
title_full Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
title_fullStr Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
title_full_unstemmed Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
title_sort Numerical study of the effect of winglets on the performance of a straight blade darrieus water turbine
dc.creator.fl_str_mv Laín Beatove, Santiago
López Mejía, Omar Darío
Taborda Ceballos, Manuel Alejandro
dc.contributor.author.none.fl_str_mv Laín Beatove, Santiago
López Mejía, Omar Darío
Taborda Ceballos, Manuel Alejandro
dc.subject.lemb.spa.fl_str_mv Turbinas hidráulicas
topic Turbinas hidráulicas
Hydraulic turbines
CFD simulation
Transient analysis
Water turbine
Turbulence model
Winglets
dc.subject.lemb.eng.fl_str_mv Hydraulic turbines
dc.subject.proposal.eng.fl_str_mv CFD simulation
Transient analysis
Water turbine
Turbulence model
Winglets
description This study deals with the three-dimensional unsteady numerical simulation of the flow around a cross-flow vertical-axis water turbine (CFWT) of the Darrieus type. The influence of turbine design on its hydrodynamic characteristics and performance is investigated by means of a time-accurate Reynolds Averaged Navier Stokes (RANS) commercial solver. The flow unsteadiness is described using a transient rotor-stator model in connection with a sliding interface. A classical Darrieus straight blade turbine, based on the NACA0025 airfoil, has been modified adding winglets (symmetric and asymmetric designs) to the blades’ tips with the objective of reducing the strength of the detached trailing vortices. The turbulent features of the flow have been modelled by using different turbulence models (k-ε Renormalization Group, standard Shear Stress Transport, transition Shear Stress Transport and Reynolds Stress Model). As a result, the predicted hydrodynamic performance of the turbine including winglets increases, independently of the employed turbulence model, being the improvement higher when a symmetric winglet design is considered. Moreover, visualization of skin friction lines pattern and their connection with vorticity isosurfaces, illustrating the flow detachment in the three blade configurations, has been carried out. Finally, a short discussion about the intermittency behavior along a turbine revolution is presented
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-01-28
dc.date.accessioned.none.fl_str_mv 2019-11-05T20:56:36Z
dc.date.available.none.fl_str_mv 2019-11-05T20:56:36Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 1996-1073 (en línea)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11403
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/en11020297
identifier_str_mv 1996-1073 (en línea)
url http://hdl.handle.net/10614/11403
https://doi.org/10.3390/en11020297
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 2
dc.relation.citationvolume.none.fl_str_mv 11
dc.relation.cites.eng.fl_str_mv Laín, S., Taborda, M., & López, O. (2018). Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies, 11(2), 297. https://doi.org/10.3390/en11020297
dc.relation.ispartofjournal.eng.fl_str_mv Energies
dc.relation.references.none.fl_str_mv 1. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross FlowWater Turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef]
2. Trivedi, C.; Cervantes, M.J.; Dahlhaug, O.G. Experimental and numerical studies of a high-head Francis turbine: A review of the Francis-99 test case. Energies 2016, 9, 74. [CrossRef]
3. Trivedi, C.; Cervantes, M.J.; Gandhi, B.K. Investigation of a high head Francis turbine at runaway operating conditions. Energies 2016, 9, 149. [CrossRef]
4. Caballero, A.D.; Laín, S. A review on Computational Fluid Dynamics modelling in human thoracic aorta. Cardiovasc. Eng. Technol. 2013, 4, 103–130. [CrossRef]
5. Göz, M.F.; Laín, S.; Sommerfeld, M. Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 2004, 28, 2727–2733. [CrossRef]
6. Sommerfeld, M.; Laín, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Flow Technol. 2009, 21, 123–140. [CrossRef]
7. Jin, X.; Zhao, G.; Gao, K.; Ju, W. Darrieus vertical axis wind turbine: Basic research methods. Renew. Sustain. Energy Rev. 2015, 42, 212–225. [CrossRef]
8. Howell, R.; Qin, N.; Edwards, J.; Durrani, N. Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 2010, 35, 412–422. [CrossRef]
9. Untaroiu,A.;Wood,H.G.; Allaire, P.E.; Ribando, R.J. Investigation of Self-Sarting Capability ofVerticalAxisWind Turbines Using a Computational Fluid Dynamics Approach. J. Sol. Energy Eng. 2011, 133, 041010. [CrossRef]
10. Hill, N.; Dominy, R.; Ingram, G.; Dominy, J. Darrieus turbines: The physics of self-starting. Proc. Inst. Mech. Eng. Part A 2008, 223, 21–29. [CrossRef]
11. Castelli, M.R.; Benini, E. Effect of Blade Inclination Angle of a DarrieusWind Turbine. J. Turbomach. 2012, 134, 031016. [CrossRef]
12. Siddiqui, M.S.; Durrani, N.; Akhtar, I. Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine. Renew. Energy 2015, 74, 661–670. [CrossRef]
13. Laín, S.; Osorio, C. Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine. J. Sci. Ind. Res. 2010, 69, 906–912.
14. Dai, Y.M.; Lam,W. Numerical study of straight-bladed Darrieus-type tidal turbine. ICE-Energy 2009, 162, 67–76. [CrossRef]
15. Amet, E.; Maître, T.; Pellone, C.; Achard, J.L. 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. J. Fluids Eng. 2009, 131, 111103. [CrossRef]
16. Maître, T.; Amet, E.; Pellone, C. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 2013, 51, 497–512. [CrossRef]
17. Amet, E. Simulation Numérique D’une Hydrolienne à Axe Vertical de Type Darrieus. Ph.D. Thesis, Institut Polytechnique de Grenoble, Grenoble, France, 2009.
18. Hall, T.J. Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine. Master’s Thesis, University of Washington, Washington, DC, USA, 2012.
19. Pellone, C.; Maître, T.; Amet, E. 3D RANS modeling of a cross flow water turbine. In Advances in Hydroinformatics; Gourbesville, P., Cunge, J., Caignaert, G., Eds.; Springer: Singapore, 2014; pp. 405–418. ISBN 978-9-81-287615-7.
20. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. Numerical investigation of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew. Energy 2015, 81, 926–935. [CrossRef]
21. Ferreira, C.S. The Near Wake of the VAWT, 2D and 3D Views of the VAWT Aerodynamics. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2009.
22. Yao, J.; Wang, J.; Yuan, W.; Wang, H.; Cao, L. Analysis on the influence of turbulence model changes to aerodynamic performance of vertical axis wind turbine. Procedia Eng. 2012, 31, 274–281. [CrossRef]
23. McNaughton, J.; Billard, F.; Revell, A. Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios. J. Fluids Struct. 2017, 47, 124–138. [CrossRef]
24. Ghasemian, M.; Najafian Ashrafi, Z.; Sedaghat, A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Convers. Manag. 2017, 149, 87–100. [CrossRef]
25. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew. Energy 2017, 105, 106–116. [CrossRef]
26. Shamsoddin, S.; Porté-Agel, F. Large Eddy Simulation of Vertical Axis Wind Turbines wakes. Energies 2014, 7, 890–912. [CrossRef]
27. Shamsoddin, S.; Porté-Agel, F. A Large Eddy Simulation study of Vertical Axis Wind Turbines wakes in the Atmospheric Boundary Layer. Energies 2016, 9, 366. [CrossRef]
28. Hezaveh, S.H.; Bou-Zeid, E.; Lohry, M.W.; Martinelli, L. Simulation and wake analysis of a single vertical axis wind turbine. Wind Energy 2017, 20, 713–730. [CrossRef]
29. Johansen, J.; Sørensen, N.N. Numerical analysis of winglets on wind turbine blades using CFD. In Proceedings of the EuropeanWind Energy Conference and Exhibition, Milan, Italy, 7–10 May 2007; pp. 1184–1189.
30. Ferrer, E.; Munduate, X.Wind turbine blade tip comparison using CFD. J. Phys. Conf. Ser. 2007, 75, 012005. [CrossRef]
31. Liang, Y.; Zhang, L.; Li, E.; Liu, X.; Yang, Y. Design Considerations of Rotor Configuration for Straight-Bladed Vertical Axis Wind Turbines. Adv. Mech. Eng. 2014, 6, 534906. [CrossRef]
32. Zhu, B.; Sun, X.; Wang, Y.; Huang, D. Performance characteristics of a horizontal axis wind turbine with fusion winglet. Energy 2017, 120, 431–440. [CrossRef]
33. Islam, M.; Fartaj, A.; Carriveau, R. Analysis of the Design Parameters related to a Fixed-pitch Straight Bladed Vertical Axis Wind Turbine. Wind Eng. 2008, 32, 491–507. [CrossRef]
34. Sekiya, K.; Ueki, Y.; Nishizawa, Y.; Ushiyama, I.; Suzuki, M.; Taniguchi, H. A study on the improvement of the performance of straight bladed vertical axis wind turbine. In Proceedings of the Renewable Energy Conference 2010, Yokohama, Japan, 27 June–2 July 2010.
35. Ahmed, N.A.; Netto, K.J. Computer Aided Design and Manufacture of a Novel Vertical Axis Wind Turbine Rotor withWinglet. Appl. Mech. Mater. 2014, 607, 581–587. [CrossRef]
36. Amato, F.; Bedon, G.; Castelli, M.; Benini, E. Numerical Analysis of the Influence of Tip Devices on the Power Coefficient of a VAWT. Int. J. Aerosp. Mech. Eng. 2013, 7, 390–397.
37. Li, Y.; Calisal, S.M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew. Energy 2010, 35, 2325–2334. [CrossRef]
38. Heyson, H.H.; Riebe, G.D.; Fulton, C.L. Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions; NASA Technical Paper 1020; NASA Langley Research Center: Hampton, VA, USA, 1977.
39. Gupta, A.; Amano, R.S. CFD of wind turbine blade with winglets. In Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2012, Chicago, IL, USA, 12–15 August 2012.
40. Mc Cormick, B.W. Aerodynamics, Aeronautics and Flight Mechanics, 2nd ed.; JohnWiley & Sons: New York, NY, USA, 1994; ISBN 978-0-47-157506-1.
41. Masak, P.C. Design of Winglets for Sailplanes. Available online: http://soaringweb.org/Soaring_Index/1993/1993_issue.html (accessed on 10 September 2017).
42. Rajendran, S. Design of Parametric Winglets and Wing Tip Devices: A Conceptual Design Approach. Master’s Thesis, Linkoping University, Linkoping, Sweden, 2012.
43. Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [CrossRef]
44. Langtry, R.B. A Correlation Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes. Ph.D. Thesis, University Stuttgart, Stuttgart, Germany, 2006.
45. Dai, Y.M.; Gardiner, N.; Sutton, R.; Dyson, P.K. Hydrodynamic analysis models for the design of Darrieus-type vertical-axis marine current turbines. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 295–307. [CrossRef]
46. Balduzzi, F.; Bianchini, A.; Malece, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind Turbines. Renew. Energy 2016, 85, 419–435. [CrossRef]
47. Yakhot, Y.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 1992, 4, 1510–1520. [CrossRef]
48. Menter, F.J. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA. J. 1994, 32, 269–289. [CrossRef]
49. Launder, B.E.; Reece, G.J.; Rodi,W. Progress in the Development of a Reynolds-stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [CrossRef]
50. Tobak, M.; Peak, D.J. Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 1982, 14, 61–85. [CrossRef]
51. Dick, E.; Kubacki, S. Transition models for turbomachinery boundary layer flows: A review. Int. J. Turbomach. Propuls. Power 2017, 2, 4. [CrossRef]
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 24 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv MDPI
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/9663f579-edab-49b1-811d-10d87be4df48/download
https://red.uao.edu.co/bitstreams/d64ffae1-0119-4662-8187-6f542f350c5c/download
https://red.uao.edu.co/bitstreams/0ff6cedb-cadb-4072-b533-ec34ceaf4b7b/download
https://red.uao.edu.co/bitstreams/00f0ed22-99e6-4cd0-a161-4a39c67c8ed9/download
https://red.uao.edu.co/bitstreams/3c57b364-1adf-4ba9-8a3a-2e241814fc32/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
cb1000a8d29824eadf1600361dc9c76d
453b48f0b7099b35bcae710aff7ea0ce
89ec6e57135f7a66dd9ba22be11b7339
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259968313917440
spelling Laín Beatove, Santiagovirtual::2569-1López Mejía, Omar Darío9587264ae58bf04da9c0d781444c2710Taborda Ceballos, Manuel Alejandro4793472055177862e6f417d381c3b83cUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-05T20:56:36Z2019-11-05T20:56:36Z2018-01-281996-1073 (en línea)http://hdl.handle.net/10614/11403https://doi.org/10.3390/en11020297This study deals with the three-dimensional unsteady numerical simulation of the flow around a cross-flow vertical-axis water turbine (CFWT) of the Darrieus type. The influence of turbine design on its hydrodynamic characteristics and performance is investigated by means of a time-accurate Reynolds Averaged Navier Stokes (RANS) commercial solver. The flow unsteadiness is described using a transient rotor-stator model in connection with a sliding interface. A classical Darrieus straight blade turbine, based on the NACA0025 airfoil, has been modified adding winglets (symmetric and asymmetric designs) to the blades’ tips with the objective of reducing the strength of the detached trailing vortices. The turbulent features of the flow have been modelled by using different turbulence models (k-ε Renormalization Group, standard Shear Stress Transport, transition Shear Stress Transport and Reynolds Stress Model). As a result, the predicted hydrodynamic performance of the turbine including winglets increases, independently of the employed turbulence model, being the improvement higher when a symmetric winglet design is considered. Moreover, visualization of skin friction lines pattern and their connection with vorticity isosurfaces, illustrating the flow detachment in the three blade configurations, has been carried out. Finally, a short discussion about the intermittency behavior along a turbine revolution is presentedapplication/pdf24 páginasengMDPIDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2instname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAONumerical study of the effect of winglets on the performance of a straight blade darrieus water turbineArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Turbinas hidráulicasHydraulic turbinesCFD simulationTransient analysisWater turbineTurbulence modelWinglets211Laín, S., Taborda, M., & López, O. (2018). Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies, 11(2), 297. https://doi.org/10.3390/en11020297Energies1. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross FlowWater Turbines. J. Renew. Sustain. Energy 2016, 8, 014501. [CrossRef]2. Trivedi, C.; Cervantes, M.J.; Dahlhaug, O.G. Experimental and numerical studies of a high-head Francis turbine: A review of the Francis-99 test case. Energies 2016, 9, 74. [CrossRef]3. Trivedi, C.; Cervantes, M.J.; Gandhi, B.K. Investigation of a high head Francis turbine at runaway operating conditions. Energies 2016, 9, 149. [CrossRef]4. Caballero, A.D.; Laín, S. A review on Computational Fluid Dynamics modelling in human thoracic aorta. Cardiovasc. Eng. Technol. 2013, 4, 103–130. [CrossRef]5. Göz, M.F.; Laín, S.; Sommerfeld, M. Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Comput. Chem. Eng. 2004, 28, 2727–2733. [CrossRef]6. Sommerfeld, M.; Laín, S. From elementary processes to the numerical prediction of industrial particle-laden flows. Multiph. Flow Technol. 2009, 21, 123–140. [CrossRef]7. Jin, X.; Zhao, G.; Gao, K.; Ju, W. Darrieus vertical axis wind turbine: Basic research methods. Renew. Sustain. Energy Rev. 2015, 42, 212–225. [CrossRef]8. Howell, R.; Qin, N.; Edwards, J.; Durrani, N. Wind tunnel and numerical study of a small vertical axis wind turbine. Renew. Energy 2010, 35, 412–422. [CrossRef]9. Untaroiu,A.;Wood,H.G.; Allaire, P.E.; Ribando, R.J. Investigation of Self-Sarting Capability ofVerticalAxisWind Turbines Using a Computational Fluid Dynamics Approach. J. Sol. Energy Eng. 2011, 133, 041010. [CrossRef]10. Hill, N.; Dominy, R.; Ingram, G.; Dominy, J. Darrieus turbines: The physics of self-starting. Proc. Inst. Mech. Eng. Part A 2008, 223, 21–29. [CrossRef]11. Castelli, M.R.; Benini, E. Effect of Blade Inclination Angle of a DarrieusWind Turbine. J. Turbomach. 2012, 134, 031016. [CrossRef]12. Siddiqui, M.S.; Durrani, N.; Akhtar, I. Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine. Renew. Energy 2015, 74, 661–670. [CrossRef]13. Laín, S.; Osorio, C. Simulation and evaluation of a straight-bladed Darrieus-type cross flow marine turbine. J. Sci. Ind. Res. 2010, 69, 906–912.14. Dai, Y.M.; Lam,W. Numerical study of straight-bladed Darrieus-type tidal turbine. ICE-Energy 2009, 162, 67–76. [CrossRef]15. Amet, E.; Maître, T.; Pellone, C.; Achard, J.L. 2D numerical simulations of blade-vortex interaction in a Darrieus turbine. J. Fluids Eng. 2009, 131, 111103. [CrossRef]16. Maître, T.; Amet, E.; Pellone, C. Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renew. Energy 2013, 51, 497–512. [CrossRef]17. Amet, E. Simulation Numérique D’une Hydrolienne à Axe Vertical de Type Darrieus. Ph.D. Thesis, Institut Polytechnique de Grenoble, Grenoble, France, 2009.18. Hall, T.J. Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine. Master’s Thesis, University of Washington, Washington, DC, USA, 2012.19. Pellone, C.; Maître, T.; Amet, E. 3D RANS modeling of a cross flow water turbine. In Advances in Hydroinformatics; Gourbesville, P., Cunge, J., Caignaert, G., Eds.; Springer: Singapore, 2014; pp. 405–418. ISBN 978-9-81-287615-7.20. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. Numerical investigation of blade helicity on the performance characteristics of vertical axis tidal turbines. Renew. Energy 2015, 81, 926–935. [CrossRef]21. Ferreira, C.S. The Near Wake of the VAWT, 2D and 3D Views of the VAWT Aerodynamics. Ph.D. Thesis, TU Delft, Delft, The Netherlands, 2009.22. Yao, J.; Wang, J.; Yuan, W.; Wang, H.; Cao, L. Analysis on the influence of turbulence model changes to aerodynamic performance of vertical axis wind turbine. Procedia Eng. 2012, 31, 274–281. [CrossRef]23. McNaughton, J.; Billard, F.; Revell, A. Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios. J. Fluids Struct. 2017, 47, 124–138. [CrossRef]24. Ghasemian, M.; Najafian Ashrafi, Z.; Sedaghat, A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Convers. Manag. 2017, 149, 87–100. [CrossRef]25. Marsh, P.; Ranmuthugala, D.; Penesis, I.; Thomas, G. The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines. Renew. Energy 2017, 105, 106–116. [CrossRef]26. Shamsoddin, S.; Porté-Agel, F. Large Eddy Simulation of Vertical Axis Wind Turbines wakes. Energies 2014, 7, 890–912. [CrossRef]27. Shamsoddin, S.; Porté-Agel, F. A Large Eddy Simulation study of Vertical Axis Wind Turbines wakes in the Atmospheric Boundary Layer. Energies 2016, 9, 366. [CrossRef]28. Hezaveh, S.H.; Bou-Zeid, E.; Lohry, M.W.; Martinelli, L. Simulation and wake analysis of a single vertical axis wind turbine. Wind Energy 2017, 20, 713–730. [CrossRef]29. Johansen, J.; Sørensen, N.N. Numerical analysis of winglets on wind turbine blades using CFD. In Proceedings of the EuropeanWind Energy Conference and Exhibition, Milan, Italy, 7–10 May 2007; pp. 1184–1189.30. Ferrer, E.; Munduate, X.Wind turbine blade tip comparison using CFD. J. Phys. Conf. Ser. 2007, 75, 012005. [CrossRef]31. Liang, Y.; Zhang, L.; Li, E.; Liu, X.; Yang, Y. Design Considerations of Rotor Configuration for Straight-Bladed Vertical Axis Wind Turbines. Adv. Mech. Eng. 2014, 6, 534906. [CrossRef]32. Zhu, B.; Sun, X.; Wang, Y.; Huang, D. Performance characteristics of a horizontal axis wind turbine with fusion winglet. Energy 2017, 120, 431–440. [CrossRef]33. Islam, M.; Fartaj, A.; Carriveau, R. Analysis of the Design Parameters related to a Fixed-pitch Straight Bladed Vertical Axis Wind Turbine. Wind Eng. 2008, 32, 491–507. [CrossRef]34. Sekiya, K.; Ueki, Y.; Nishizawa, Y.; Ushiyama, I.; Suzuki, M.; Taniguchi, H. A study on the improvement of the performance of straight bladed vertical axis wind turbine. In Proceedings of the Renewable Energy Conference 2010, Yokohama, Japan, 27 June–2 July 2010.35. Ahmed, N.A.; Netto, K.J. Computer Aided Design and Manufacture of a Novel Vertical Axis Wind Turbine Rotor withWinglet. Appl. Mech. Mater. 2014, 607, 581–587. [CrossRef]36. Amato, F.; Bedon, G.; Castelli, M.; Benini, E. Numerical Analysis of the Influence of Tip Devices on the Power Coefficient of a VAWT. Int. J. Aerosp. Mech. Eng. 2013, 7, 390–397.37. Li, Y.; Calisal, S.M. Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine. Renew. Energy 2010, 35, 2325–2334. [CrossRef]38. Heyson, H.H.; Riebe, G.D.; Fulton, C.L. Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions; NASA Technical Paper 1020; NASA Langley Research Center: Hampton, VA, USA, 1977.39. Gupta, A.; Amano, R.S. CFD of wind turbine blade with winglets. In Proceedings of the ASME 2012 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2012, Chicago, IL, USA, 12–15 August 2012.40. Mc Cormick, B.W. Aerodynamics, Aeronautics and Flight Mechanics, 2nd ed.; JohnWiley & Sons: New York, NY, USA, 1994; ISBN 978-0-47-157506-1.41. Masak, P.C. Design of Winglets for Sailplanes. Available online: http://soaringweb.org/Soaring_Index/1993/1993_issue.html (accessed on 10 September 2017).42. Rajendran, S. Design of Parametric Winglets and Wing Tip Devices: A Conceptual Design Approach. Master’s Thesis, Linkoping University, Linkoping, Sweden, 2012.43. Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, 2894–2906. [CrossRef]44. Langtry, R.B. A Correlation Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes. Ph.D. Thesis, University Stuttgart, Stuttgart, Germany, 2006.45. Dai, Y.M.; Gardiner, N.; Sutton, R.; Dyson, P.K. Hydrodynamic analysis models for the design of Darrieus-type vertical-axis marine current turbines. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 295–307. [CrossRef]46. Balduzzi, F.; Bianchini, A.; Malece, R.; Ferrara, G.; Ferrari, L. Critical issues in the CFD simulation of Darrieus wind Turbines. Renew. Energy 2016, 85, 419–435. [CrossRef]47. Yakhot, Y.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 1992, 4, 1510–1520. [CrossRef]48. Menter, F.J. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA. J. 1994, 32, 269–289. [CrossRef]49. Launder, B.E.; Reece, G.J.; Rodi,W. Progress in the Development of a Reynolds-stress Turbulence Closure. J. Fluid Mech. 1975, 68, 537–566. [CrossRef]50. Tobak, M.; Peak, D.J. Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 1982, 14, 61–85. [CrossRef]51. Dick, E.; Kubacki, S. Transition models for turbomachinery boundary layer flows: A review. Int. J. Turbomach. Propuls. Power 2017, 2, 4. [CrossRef]Publication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2569-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2569-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2569-10000-0002-0269-2608virtual::2569-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2569-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/9663f579-edab-49b1-811d-10d87be4df48/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/d64ffae1-0119-4662-8187-6f542f350c5c/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALNumerical_Study_of_the_Effect_of_Winglets_on_the_P.pdfNumerical_Study_of_the_Effect_of_Winglets_on_the_P.pdfapplication/pdf5494859https://red.uao.edu.co/bitstreams/0ff6cedb-cadb-4072-b533-ec34ceaf4b7b/downloadcb1000a8d29824eadf1600361dc9c76dMD54TEXTNumerical_Study_of_the_Effect_of_Winglets_on_the_P.pdf.txtNumerical_Study_of_the_Effect_of_Winglets_on_the_P.pdf.txtExtracted texttext/plain108869https://red.uao.edu.co/bitstreams/00f0ed22-99e6-4cd0-a161-4a39c67c8ed9/download453b48f0b7099b35bcae710aff7ea0ceMD55THUMBNAILNumerical_Study_of_the_Effect_of_Winglets_on_the_P.pdf.jpgNumerical_Study_of_the_Effect_of_Winglets_on_the_P.pdf.jpgGenerated Thumbnailimage/jpeg14950https://red.uao.edu.co/bitstreams/3c57b364-1adf-4ba9-8a3a-2e241814fc32/download89ec6e57135f7a66dd9ba22be11b7339MD5610614/11403oai:red.uao.edu.co:10614/114032024-03-06 16:46:30.082https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K