Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator
In this study, the transient numerical simulation of the flow in a fluidic oscillator has been performed. The proposed device includes several geometrical modifications of a previously patented apparatus intended for the synthesis of ozone-rich bubbles in an oxygen plasma. Prior to the experimental...
- Autores:
-
Guzmán de la Rosa, Javier Felipe
Zimmermann, W.B.
Lozano Parada, Jaime Humberto
Laín Beatove, Santiago
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13928
- Acceso en línea:
- https://hdl.handle.net/10614/13928
https://red.uao.edu.co/
- Palabra clave:
- Dispositivos fluidicos
Fluidic devices
Mecánica
Mechanics
Unsteady analysis
Fluidic oscillator
Transition turbulence 24 model
CFD numerical simulation
- Rights
- openAccess
- License
- Derechos reservados - Springer Nature, 2021
id |
REPOUAO2_befff6c1c590de666ca73d220d017cbc |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13928 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator |
title |
Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator |
spellingShingle |
Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator Dispositivos fluidicos Fluidic devices Mecánica Mechanics Unsteady analysis Fluidic oscillator Transition turbulence 24 model CFD numerical simulation |
title_short |
Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator |
title_full |
Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator |
title_fullStr |
Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator |
title_full_unstemmed |
Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator |
title_sort |
Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillator |
dc.creator.fl_str_mv |
Guzmán de la Rosa, Javier Felipe Zimmermann, W.B. Lozano Parada, Jaime Humberto Laín Beatove, Santiago |
dc.contributor.author.none.fl_str_mv |
Guzmán de la Rosa, Javier Felipe Zimmermann, W.B. Lozano Parada, Jaime Humberto Laín Beatove, Santiago |
dc.subject.lemb.spa.fl_str_mv |
Dispositivos fluidicos |
topic |
Dispositivos fluidicos Fluidic devices Mecánica Mechanics Unsteady analysis Fluidic oscillator Transition turbulence 24 model CFD numerical simulation |
dc.subject.lemb.eng.fl_str_mv |
Fluidic devices |
dc.subject.armarc.spa.fl_str_mv |
Mecánica |
dc.subject.armarc.eng.fl_str_mv |
Mechanics |
dc.subject.proposal.eng.fl_str_mv |
Unsteady analysis Fluidic oscillator Transition turbulence 24 model CFD numerical simulation |
description |
In this study, the transient numerical simulation of the flow in a fluidic oscillator has been performed. The proposed device includes several geometrical modifications of a previously patented apparatus intended for the synthesis of ozone-rich bubbles in an oxygen plasma. Prior to the experimental construction of the proposed fluidic oscillator, the present work performs a numerical study of the internal flow in the proposed design, aimed to determine its feasibility. The unsteady simulations are based on the unsteady Reynolds averaged Navier–Stokes equations coupled to the transition Shear Stress Transport (transition SST) turbulence model due to the low Reynolds numbers considered (3500 and 5000 based on flow bulk velocity). The behavior of the complex fluid flow inside the device, where four main vertical structures develop and interact, along one cycle is described in detail including the turbulent kinetic energy and intermittency in the analysis. Moreover, the effect of increasing the Reynolds number on the pressure oscillation frequency and amplitude is analyzed. In particular, the frequency is increased around a 38% and the amplitude a 100% when switching from a Reynolds number of 3500–5000. The numerical results obtained are encouraging, and the evaluated fluidic oscillator design will be fabricated and analyzed in an upcoming experimental study |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-01 |
dc.date.accessioned.none.fl_str_mv |
2022-05-31T16:16:12Z |
dc.date.available.none.fl_str_mv |
2022-05-31T16:16:12Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
16785878 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13928 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
16785878 Universidad Autónoma de Occidente Repositorio Educativo Digital |
url |
https://hdl.handle.net/10614/13928 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
29 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
43 |
dc.relation.cites.eng.fl_str_mv |
Guzmán, J., Lozano-Parada, J.H., Zimmerman, W.B.J. et al. Numerical simulation of the transient behavior of the turbulent flow in a microfluidic oscillator. J Braz. Soc. Mech. Sci. Eng. 43, 29 (2021). https://doi.org/10.1007/s40430-020-02728-1 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of the Brazilian Society of Mechanical Sciences and Engineering |
dc.relation.references.none.fl_str_mv |
1. Yeaple, F. Fluid power design handbook. CRC Press 1995. 2. Tomac, M.N.; Gregory, J.W. Internal jet interactions in a fluidic oscillator at low flow rate. Experiments in Fluids 2014, 55, 1730. 3. Kirshner, J.M. Design theory of fluidic components. Academic Press 2012. 4. Tesar,̌ V. Taxonomic trees of fluidic oscillators. EPJ Web of Conferences 2017, 143, 02128. DOI:10.1051/epjconf/201714302128. 5. Warren, R.W. Fluidic oscillator. US patent No. 3016066. Filed in January 1960. 6. Warren, R.W. Negative feedback oscillator. US patent No. 3158166. Filed in August 1962. 7. Ghanami, S.; Farhadi, M. Fluidic Oscillators Applications, Structures and Mechanisms– Areview. Trans. Phenom. Nano Micro Scales 2019, 7, pp. 9-27. 8. Philips, E.; Wygnanski, I. Use of Sweeping Jets During Transient Deployment of a Control Surface. AIAA Journal 2013, 51, pp. 819-828. 9. Chalandes, C. Fluidic Flow Meter. Patent No: 4976155, Dec. 1, 1990. 10. Orbán M.; Kurin-Csörgei K.; Epstein I.R. pH-regulated chemical oscillators. Accounts Chem. Res. 2015, 48, pp. 593-601. 11. Zimmerman, W.B.J.; Zandi, M.; Bandulasena, H.C., Tesař , V.; Gilmour D.J.; Ying K. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Applied Energy 2011, 88, pp. 3357-3369. 12. Zimmerman, W.B.J.; Hewakandamby, B.N.; Tesař , V.; Bandulasena, H.C.; 391 Omotowa, O. On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food and Bioproducts Processing 2009, 87, pp. 215-227. 13. Tesar,̌ V. High frequency fluidic oscillator. Sensors and Actuators A 2015, 324, pp. 158-167. 14. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross Flow Water Turbines. J. Renewable and Sustainable Energy 2016, 8, paper 014501. 15. Laín, S.; García, M.; Quintero, B.; Orrego, S. CFD Numerical simulations of Francis turbines. Revista Facultad de Ingeniería Universidad de Antioquia, 2010, 51, pp. 24–33. 16. Riaño J. S.; Guevara M. A.; Belalcazar L. C. CFD modeling and evaluation of bi-stable micro-diverter valve. CT&F – Ciencia, Tecnologia y Futuro 2018, 8, pp. 77 – 84. 17. Gebhard, U.; Hein, H.; Schmidt, U. Numerical investigation of fluidic micro-oscillators. J. Micromech. Microeng. 1996, 6, pp. 115–117. 18. Tesar,̌ V.; Bandalusena, H.C.H. Bistable diverter valve in microfluidics. Experiment in Fluids 2011, 50, pp. 1225-1233. 19. Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.N.; Paschereit, C.O. Experimental study of the internal flow structures inside a fluidic oscillator. Experiment in Fluids 2013, 54, 1559. 20. Krüger, O.; Bobusch, B.C.; Woszidlo, R.; Paschereit, C.O. Numerical Modeling and Validation of the Flow in a Fluidic Oscillator. In 21st AIAA Computational Fluid Dynamics Conference. June 24-27, 2013, San Diego, CA (USA) 2013. 21. Baghaei, M.; Bergada, J.M.; del Campo, D.; del Campo, V. Research on Fluidic Amplifiers Dimensional Modifications via Computer Simulation (CFD). Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016. Paper ICCFD9-2016-256. 22. Comes, G.; Cravero, C. Theoretical Modeling, Design and Simulation of an Innovative Diverting Valve Based on Coanda Effect. Fluids 2018, 3, 103. 23. Zimmerman, W.B.J.; Lozano-Parada, J.H. Plasma microreactor apparatus, sterilisation unit and analyser. Patent No.: 8734727, 2014. 24. Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, pp. 2894 – 2906. 25. Langtry, R.B. A correlation based transition model using local variables for unstructured parallelized CFD codes. PhD Thesis, Univ. Stuttgart, Germany, 2006. 26. Qian, Z.; Li, W. Analysis of pressure oscillation characteristics in Francis hydraulic turbine with different runner cones. Journal of Hydroelectric Engineering 2012, 31, pp. 278-285+291. 27. Jizu Lv, P.W.; Bai, M.; Wang, Y.; Hu, C. Numerical investigation of the flow and heat behaviour of an impinging jet. International Journal of Computational Fluid Dynamics 2014, 28, pp. 301-315. 28. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies, 2018, 11, 297. 29. Karbasian, H.R.; Kim, K.C. Numerical investigations on flow structure and behavior of vórtices in the dynamic stall of an oscillating pitching hydrofoil. Ocean Engineering 2016, 127, pp. 200-211. 30. Hærvig, J.; Sørensen, K.; Condra, T.J. On the fully-developed heat transfer enhancing flow field in sinusoidally, spirally corrugated tubes using computational fluid dynamics. International Journal of Heat and Mass Transfer 2017, 106, pp. 1051-1062. 31. Contreras, L.T.; López, O.D.; Laín, S. Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine. Energies 2018, 11, 3151. 32. Tang, Z.; Li, H.; Zhang, F.; Min, X.; Cheng, J. Numerical study of liquid jet impingement flow and heat transfer of a cone heat sink. International Journal of Numerical Methods for Heat and Fluid Flow 2019, 29, pp. 4074-4092. 33. Rajnath, Y.K.K.; Paul, A.R.; Jain, A. Flow management in a double-offset, transitional twin air-intake at different inflow conditions. Recent Patents on Mechanical Engineering 2019, 12, pp. 168-179 34. Laín, S.; Cortés, P.; López, O.D. Numerical simulation of the flow around 443 a straight blade Darrieus water turbine. Energies 2020, 13, 1137. 35. Smirnov, P.E.; Menter, F.R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. Journal of Turbomachinery 2009, 131, 041010. |
dc.rights.eng.fl_str_mv |
Derechos reservados - Springer Nature, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Springer Nature, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Springer |
dc.source.eng.fl_str_mv |
https://link.springer.com/article/10.1007/s40430-020-02728-1 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/be39143f-bdd1-4e20-bf18-bc977f2229f8/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259886246068224 |
spelling |
Guzmán de la Rosa, Javier Felipe6f7a4a0b96a948be1c472ac9398daf86Zimmermann, W.B.08e969c7f7add934ed64cf628a3d93c6Lozano Parada, Jaime Humberto5e37d5ded4625c6929b3fb6a8753c350Laín Beatove, Santiagovirtual::2550-12022-05-31T16:16:12Z2022-05-31T16:16:12Z2021-0116785878https://hdl.handle.net/10614/13928Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/In this study, the transient numerical simulation of the flow in a fluidic oscillator has been performed. The proposed device includes several geometrical modifications of a previously patented apparatus intended for the synthesis of ozone-rich bubbles in an oxygen plasma. Prior to the experimental construction of the proposed fluidic oscillator, the present work performs a numerical study of the internal flow in the proposed design, aimed to determine its feasibility. The unsteady simulations are based on the unsteady Reynolds averaged Navier–Stokes equations coupled to the transition Shear Stress Transport (transition SST) turbulence model due to the low Reynolds numbers considered (3500 and 5000 based on flow bulk velocity). The behavior of the complex fluid flow inside the device, where four main vertical structures develop and interact, along one cycle is described in detail including the turbulent kinetic energy and intermittency in the analysis. Moreover, the effect of increasing the Reynolds number on the pressure oscillation frequency and amplitude is analyzed. In particular, the frequency is increased around a 38% and the amplitude a 100% when switching from a Reynolds number of 3500–5000. The numerical results obtained are encouraging, and the evaluated fluidic oscillator design will be fabricated and analyzed in an upcoming experimental study14 páginasapplication/pdfengSpringerDerechos reservados - Springer Nature, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://link.springer.com/article/10.1007/s40430-020-02728-1Numerical simulation of the transient behavior of the turbulent fow in a microfuidic oscillatorArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Dispositivos fluidicosFluidic devicesMecánicaMechanicsUnsteady analysisFluidic oscillatorTransition turbulence 24 modelCFD numerical simulation1129143Guzmán, J., Lozano-Parada, J.H., Zimmerman, W.B.J. et al. Numerical simulation of the transient behavior of the turbulent flow in a microfluidic oscillator. J Braz. Soc. Mech. Sci. Eng. 43, 29 (2021). https://doi.org/10.1007/s40430-020-02728-1Journal of the Brazilian Society of Mechanical Sciences and Engineering1. Yeaple, F. Fluid power design handbook. CRC Press 1995.2. Tomac, M.N.; Gregory, J.W. Internal jet interactions in a fluidic oscillator at low flow rate. Experiments in Fluids 2014, 55, 1730.3. Kirshner, J.M. Design theory of fluidic components. Academic Press 2012.4. Tesar,̌ V. Taxonomic trees of fluidic oscillators. EPJ Web of Conferences 2017, 143, 02128. DOI:10.1051/epjconf/201714302128.5. Warren, R.W. Fluidic oscillator. US patent No. 3016066. Filed in January 1960.6. Warren, R.W. Negative feedback oscillator. US patent No. 3158166. Filed in August 1962.7. Ghanami, S.; Farhadi, M. Fluidic Oscillators Applications, Structures and Mechanisms– Areview. Trans. Phenom. Nano Micro Scales 2019, 7, pp. 9-27.8. Philips, E.; Wygnanski, I. Use of Sweeping Jets During Transient Deployment of a Control Surface. AIAA Journal 2013, 51, pp. 819-828.9. Chalandes, C. Fluidic Flow Meter. Patent No: 4976155, Dec. 1, 1990.10. Orbán M.; Kurin-Csörgei K.; Epstein I.R. pH-regulated chemical oscillators. Accounts Chem. Res. 2015, 48, pp. 593-601.11. Zimmerman, W.B.J.; Zandi, M.; Bandulasena, H.C., Tesař , V.; Gilmour D.J.; Ying K. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Applied Energy 2011, 88, pp. 3357-3369.12. Zimmerman, W.B.J.; Hewakandamby, B.N.; Tesař , V.; Bandulasena, H.C.; 391 Omotowa, O. On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food and Bioproducts Processing 2009, 87, pp. 215-227.13. Tesar,̌ V. High frequency fluidic oscillator. Sensors and Actuators A 2015, 324, pp. 158-167.14. López, O.; Meneses, D.; Quintero, B.; Laín, S. Computational study of transient flow around Darrieus type Cross Flow Water Turbines. J. Renewable and Sustainable Energy 2016, 8, paper 014501.15. Laín, S.; García, M.; Quintero, B.; Orrego, S. CFD Numerical simulations of Francis turbines. Revista Facultad de Ingeniería Universidad de Antioquia, 2010, 51, pp. 24–33.16. Riaño J. S.; Guevara M. A.; Belalcazar L. C. CFD modeling and evaluation of bi-stable micro-diverter valve. CT&F – Ciencia, Tecnologia y Futuro 2018, 8, pp. 77 – 84.17. Gebhard, U.; Hein, H.; Schmidt, U. Numerical investigation of fluidic micro-oscillators. J. Micromech. Microeng. 1996, 6, pp. 115–117.18. Tesar,̌ V.; Bandalusena, H.C.H. Bistable diverter valve in microfluidics. Experiment in Fluids 2011, 50, pp. 1225-1233.19. Bobusch, B.C.; Woszidlo, R.; Bergada, J.M.; Nayeri, C.N.; Paschereit, C.O. Experimental study of the internal flow structures inside a fluidic oscillator. Experiment in Fluids 2013, 54, 1559.20. Krüger, O.; Bobusch, B.C.; Woszidlo, R.; Paschereit, C.O. Numerical Modeling and Validation of the Flow in a Fluidic Oscillator. In 21st AIAA Computational Fluid Dynamics Conference. June 24-27, 2013, San Diego, CA (USA) 2013.21. Baghaei, M.; Bergada, J.M.; del Campo, D.; del Campo, V. Research on Fluidic Amplifiers Dimensional Modifications via Computer Simulation (CFD). Ninth International Conference on Computational Fluid Dynamics (ICCFD9), Istanbul, Turkey, July 11-15, 2016. Paper ICCFD9-2016-256.22. Comes, G.; Cravero, C. Theoretical Modeling, Design and Simulation of an Innovative Diverting Valve Based on Coanda Effect. Fluids 2018, 3, 103.23. Zimmerman, W.B.J.; Lozano-Parada, J.H. Plasma microreactor apparatus, sterilisation unit and analyser. Patent No.: 8734727, 2014.24. Langtry, R.B.; Menter, F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 2009, 47, pp. 2894 – 2906.25. Langtry, R.B. A correlation based transition model using local variables for unstructured parallelized CFD codes. PhD Thesis, Univ. Stuttgart, Germany, 2006.26. Qian, Z.; Li, W. Analysis of pressure oscillation characteristics in Francis hydraulic turbine with different runner cones. Journal of Hydroelectric Engineering 2012, 31, pp. 278-285+291.27. Jizu Lv, P.W.; Bai, M.; Wang, Y.; Hu, C. Numerical investigation of the flow and heat behaviour of an impinging jet. International Journal of Computational Fluid Dynamics 2014, 28, pp. 301-315.28. Laín, S.; Taborda, M.A.; López, O.D. Numerical study of the effect of winglets on the performance of a straight blade Darrieus water turbine. Energies, 2018, 11, 297.29. Karbasian, H.R.; Kim, K.C. Numerical investigations on flow structure and behavior of vórtices in the dynamic stall of an oscillating pitching hydrofoil. Ocean Engineering 2016, 127, pp. 200-211.30. Hærvig, J.; Sørensen, K.; Condra, T.J. On the fully-developed heat transfer enhancing flow field in sinusoidally, spirally corrugated tubes using computational fluid dynamics. International Journal of Heat and Mass Transfer 2017, 106, pp. 1051-1062.31. Contreras, L.T.; López, O.D.; Laín, S. Computational fluid dynamics modelling and simulation of an inclined horizontal axis hydrokinetic turbine. Energies 2018, 11, 3151.32. Tang, Z.; Li, H.; Zhang, F.; Min, X.; Cheng, J. Numerical study of liquid jet impingement flow and heat transfer of a cone heat sink. International Journal of Numerical Methods for Heat and Fluid Flow 2019, 29, pp. 4074-4092.33. Rajnath, Y.K.K.; Paul, A.R.; Jain, A. Flow management in a double-offset, transitional twin air-intake at different inflow conditions. Recent Patents on Mechanical Engineering 2019, 12, pp. 168-17934. Laín, S.; Cortés, P.; López, O.D. Numerical simulation of the flow around 443 a straight blade Darrieus water turbine. Energies 2020, 13, 1137.35. Smirnov, P.E.; Menter, F.R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. Journal of Turbomachinery 2009, 131, 041010.Comunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2550-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2550-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2550-10000-0002-0269-2608virtual::2550-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2550-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/be39143f-bdd1-4e20-bf18-bc977f2229f8/download20b5ba22b1117f71589c7318baa2c560MD5210614/13928oai:red.uao.edu.co:10614/139282024-03-07 08:09:04.012https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer Nature, 2021metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |