Computational study of transient flow around Darrieus type cross flow water turbines

This study presents full transient numerical simulations of a cross-flow vertical-axis marine current turbine (straight-bladed Darrieus type) with particular emphasis on the analysis of hydrodynamic characteristics. Turbine design and performance are studied using a time-accurate Reynolds-averaged N...

Full description

Autores:
Laín Beatove, Santiago
Quintero Arboleda, Brian
López Mejía, Omar Darío
Meneses, Diana
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11062
Acceso en línea:
http://hdl.handle.net/10614/11062
https://aip.scitation.org/doi/abs/10.1063/1.4940023
https://doi.org/10.1063/1.4940023
Palabra clave:
Dinámica de fluidos computacional
Aerodinámica
Hidroturbinas
Turbinas de viento
Simulaciones de turbulencia
Dinámica de fluidos
Ecuaciones de Navier-stokes
Arrastre (Aerodinámica)
Fluid dynamics
Navier-stokes equations
Drag (aerodynamics)
Turbinas hidráulicas
Números de Reynolds
Hydraulic turbines
Reynolds number
Cross flow water turbine
Unsteady CFD flow simulation
Turbulence model
Rights
restrictedAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_bcb32ca7042da22cbedb40d203b7110d
oai_identifier_str oai:red.uao.edu.co:10614/11062
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Computational study of transient flow around Darrieus type cross flow water turbines
title Computational study of transient flow around Darrieus type cross flow water turbines
spellingShingle Computational study of transient flow around Darrieus type cross flow water turbines
Dinámica de fluidos computacional
Aerodinámica
Hidroturbinas
Turbinas de viento
Simulaciones de turbulencia
Dinámica de fluidos
Ecuaciones de Navier-stokes
Arrastre (Aerodinámica)
Fluid dynamics
Navier-stokes equations
Drag (aerodynamics)
Turbinas hidráulicas
Números de Reynolds
Hydraulic turbines
Reynolds number
Cross flow water turbine
Unsteady CFD flow simulation
Turbulence model
title_short Computational study of transient flow around Darrieus type cross flow water turbines
title_full Computational study of transient flow around Darrieus type cross flow water turbines
title_fullStr Computational study of transient flow around Darrieus type cross flow water turbines
title_full_unstemmed Computational study of transient flow around Darrieus type cross flow water turbines
title_sort Computational study of transient flow around Darrieus type cross flow water turbines
dc.creator.fl_str_mv Laín Beatove, Santiago
Quintero Arboleda, Brian
López Mejía, Omar Darío
Meneses, Diana
dc.contributor.author.none.fl_str_mv Laín Beatove, Santiago
Quintero Arboleda, Brian
López Mejía, Omar Darío
Meneses, Diana
dc.subject.spa.fl_str_mv Dinámica de fluidos computacional
Aerodinámica
Hidroturbinas
Turbinas de viento
Simulaciones de turbulencia
topic Dinámica de fluidos computacional
Aerodinámica
Hidroturbinas
Turbinas de viento
Simulaciones de turbulencia
Dinámica de fluidos
Ecuaciones de Navier-stokes
Arrastre (Aerodinámica)
Fluid dynamics
Navier-stokes equations
Drag (aerodynamics)
Turbinas hidráulicas
Números de Reynolds
Hydraulic turbines
Reynolds number
Cross flow water turbine
Unsteady CFD flow simulation
Turbulence model
dc.subject.lemb.spa.fl_str_mv Dinámica de fluidos
Ecuaciones de Navier-stokes
Arrastre (Aerodinámica)
dc.subject.lemb.eng.fl_str_mv Fluid dynamics
Navier-stokes equations
Drag (aerodynamics)
dc.subject.armarc.spa.fl_str_mv Turbinas hidráulicas
Números de Reynolds
dc.subject.armarc.eng.fl_str_mv Hydraulic turbines
Reynolds number
dc.subject.proposal.eng.fl_str_mv Cross flow water turbine
Unsteady CFD flow simulation
Turbulence model
description This study presents full transient numerical simulations of a cross-flow vertical-axis marine current turbine (straight-bladed Darrieus type) with particular emphasis on the analysis of hydrodynamic characteristics. Turbine design and performance are studied using a time-accurate Reynolds-averaged Navier–Stokes commercial solver. A physical transient rotor-stator model with a sliding mesh technique is used to capture changes in flow field at a particular time step. A shear stress transport k-ω turbulence model was initially employed to model turbulent features of the flow. Two dimensional simulations are used to parametrically study the influence of selected geometrical parameters of the airfoil (camber, thickness, and symmetry-asymmetry) on the performance prediction (torque and force coefficients) of the turbine. As a result, torque increases with blade thickness-to-chord ratio up to 15% and camber reduces the average load in the turbine shaft. Additionally, the influence of blockage ratio, profile trailing edge geometry, and selected turbulence models on the turbine performance prediction is investigated
publishDate 2016
dc.date.issued.none.fl_str_mv 2016-01-13
dc.date.accessioned.none.fl_str_mv 2019-09-06T22:21:23Z
dc.date.available.none.fl_str_mv 2019-09-06T22:21:23Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv López, O., Meneses, D., Quintero, B., & Laín, S. (2016). Computational study of transient flow around Darrieus type cross flow water turbines. Journal of Renewable and Sustainable Energy, 8(1), 014501
dc.identifier.issn.spa.fl_str_mv 1941-7012 (en línea)
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11062
https://aip.scitation.org/doi/abs/10.1063/1.4940023
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1063/1.4940023
identifier_str_mv López, O., Meneses, D., Quintero, B., & Laín, S. (2016). Computational study of transient flow around Darrieus type cross flow water turbines. Journal of Renewable and Sustainable Energy, 8(1), 014501
1941-7012 (en línea)
url http://hdl.handle.net/10614/11062
https://aip.scitation.org/doi/abs/10.1063/1.4940023
https://doi.org/10.1063/1.4940023
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 8, número 1 (enero, 2016)
dc.relation.citationissue.spa.fl_str_mv número 1
dc.relation.citationvolume.spa.fl_str_mv Volumen 8
dc.relation.ispartofjournal.eng.fl_str_mv Journal of renewable and sustainable energy
dc.relation.references.spa.fl_str_mv Black and Veatch Consulting Ltd., UK, Europe and Global Tidal Stream Energy Resource Assessment ( Carbon Trust, London, 2004
D. Kerr, Mar. Energy Philos. Trans. R. Soc. A 365, 971–992 (2007). https://doi.org/10.1098/rsta.2006.1959
IRENA, See http://www.irena.org/DocumentDownloads/Publications/Tidal_Energy_V4_WEB.pdf for Tidal Energy, Technology Brief, 2014
J. Dabiri, “ Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays,” J. Renewable Sustainable Energy 3, 043104 (2011). https://doi.org/10.1063/1.3608170
K. Duraisamy and V. Lakshminarayan, “ Flow physics and performance of vertical axis wind turbine arrays,” AIAA Paper No. 2014-3139
D. P. Coiro, A. De Marco, F. Nicolosi, S. Melone, and F. Montella, “ Dynamic behaviour of the patented kobold tidal current turbine: Numerical and experimental aspects,” Acta Polytech. 45, 77–84 (2005
S. Laín, M. García, B. Quintero, and S. Orrego, “ CFD numerical simulation of Francis turbines,” Rev. Fac. Ing. Univ. Antioquia 51, 21–33 (2010)
S. Laín and R. Aliod, “ Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments,” Int. J. Heat Fluid Flow 21, 374–380 (2000). https://doi.org/10.1016/S0142-727X(00)00023-0
M. F. Göz, S. Laín, and M. Sommerfeld, “ Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow,” Comput. Chem. Eng. 28, 2727–2733 (2004). https://doi.org/10.1016/j.compchemeng.2004.07.035
C. J. S. Ferreira, “ The near wake of the VAWT. 2D and 3D views of the VAWT aerodynamics,” Ph.D. thesis ( Delft University of Technology, 2009)
T. Maître, J. L. Achard, L. Guitet, and C. Ploesteanu, “ Marine turbine development: Numerical and experimental investigations,” Sci. Bull. 50, 59–66 (2005)
A. Laneville and P. Vittecoq, “ Dynamic stall: The case of the vertical axis wind turbine,” J. Sol. Energy Eng. 108, 140–145 (1986). https://doi.org/10.1115/1.3268081
R. Howell, N. Qin, J. Edwards, and N. Durrani, “ Wind tunnel and numerical study of a small vertical axis wind turbine,” Renewable Energy 35, 412–422 (2010). https://doi.org/10.1016/j.renene.2009.07.025
Y. Nabavi, “ Numerical study of the duct shape effect on the performance of a ducted vertical axis tidal turbine,” M.Sc. thesis ( British Columbia University, 2008)
Y. M. Dai and W. Lam, “ Numerical study of straight-bladed Darrieus-type tidal turbine,” ICE-Energy 162, 67–76 (2009). https://doi.org/10.1680/ener.2009.162.2.67
E. Amet, T. Maître, C. Pellone, and J. L. Achard, “ 2D numerical simulations of blade-vortex interaction in a Darrieus turbine,” J. Fluids Eng. 131, 111103 (2009). https://doi.org/10.1115/1.4000258
P. Fraunie, C. Beguier, I. Paraschivoiu, and G. Brochier, , “ Water channel experiments of dynamic stall on Darrieus wind turbine blades,” J. Propul. Power 2(5), 445–449 (1986). https://doi.org/10.2514/3.22927
N. Fujisawa and S. Shibuya, “ Observations of dynamic stall on Darrieus wind turbine blades,” J. Wind Eng. Ind. Aerodyn. 89, 201–214 (2001). https://doi.org/10.1016/S0167-6105(00)00062-3
Y. Li and S. M. Calisal, “ Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine,” Renewable Energy 35, 2325–2334 (2010). https://doi.org/10.1016/j.renene.2010.03.002
D. P. Coiro, F. Nicolosi, A. De Marco, S. Melone, and F. Montella, “ Dynamic behavior of novel vertical axis tidal current turbine: Numerical and experimental investigations,” in Proceedings of the International Offshore and Polar Engineering Conference (2005), pp. 469–476
T. Maître, E. Amet, and C. Pellone, “ Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments,” Renewable Energy 51, 497–512 (2013). https://doi.org/10.1016/j.renene.2012.09.030
E. Amet, “ Simulation Numérique d'une Hydrolienne à Axe Vertical de Type Darrieus,” Ph.D. thesis ( Institut Polytechnique de Grenoble, 2009)
X. Jin, G. Zhao, K. Gao, and W. Ju, “ Darrieus vertical axis wind turbine: Basic research methods,” Renewable Sustainable Energy Rev. 42, 212–225 (2015). https://doi.org/10.1016/j.rser.2014.10.021
C. Song, Y. Zheng, Z. Zhao, Y. Zhang, C. Li, and H. Jiang, “ Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines,” J. Renewable Sustainable Energy 7, 033111 (2015). https://doi.org/10.1063/1.4921578
R. Lanzafame, S. Mauro, and M. Messina, “ 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model,” Energy Procedia 45, 131–140 (2014)
Y. Chen and Y. Lian, “ Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine,” Eng. Appl. Comput. Fluid Mech. 9, 21–32 (2015). https://doi.org/10.1080/19942060.2015.1004790
F. Trivellato and M. Raciti Castelli, “ On the courant-Friedrichs-Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis,” Renewable Energy 62, 53–62 (2014). https://doi.org/10.1016/j.renene.2013.06.022
B. Paillard, J. Astolfi, and F. Hauville, “ URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: Sinusoidal pitch function investigation,” Int. J. Mar. Energy 11, 9–26 (2015). https://doi.org/10.1016/j.ijome.2015.03.001
J. Larsen, S. Nielsen, and S. Krenk, “ Dynamic stall model for wind turbine airfoils,” J. Fluids Struct. 23, 959–982 (2007). https://doi.org/10.1016/j.jfluidstructs.2007.02.005
R. Nobile, M. Vahdati, J. Barlow, and A. Mewburn-Crook, “ Dynamic stall for a vertical axis wind turbine in a two-dimensional study,” in World Renewable Energy Congress 2011, Lindköping, Sweden, 8–13 May (2011), pp. 4225–4232
F. R. Menter, “ Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149
P. J. Roache, Verification and Validation in Computational Science and Engineering ( Hermosa Publishers, Albuquerque, 1998)
B. E. Launder, G. J. Reece, and W. Rodi, “ Progress in the development of a Reynolds-stress turbulence closure,” J. Fluid Mech., 68, 537–566 (1975). https://doi.org/10.1017/S0022112075001814
T. H. Shih, W. W. Liou, A. Shabbir, and J. Zhu, “ A new k-ε eddy-viscosity model for high Reynolds number turbulent flows—Model development and validation,” Comput. Fluids 24(3), 227–238 (1995). https://doi.org/10.1016/0045-7930(94)00032-T
P. R. Spalart and M. Shur, “ On the sensitization of turbulence models to rotation and curvature,” Aerosp. Sci. Technol. 1, 297–302 (1997). https://doi.org/10.1016/S1270-9638(97)90051-1
H. Abbott and A. von Doenhoff, Theory of Wing Sections: Including a Summary of Airfoil Data ( Dover Publications, New York, 1959
D. Montgomery, Design and Analysis of Experiments ( Wiley, New York, 2000
J. P. Baker, E. A. Mayda, and C. P. van Dam, “ Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils,” J. Sol. Energy Eng. 128, 422–431 (2006). https://doi.org/10.1115/1.2346701
P. Moin, A. Leonard, and J. Kim, “ Evolution of a curved vortex filament into a vortex ring,” Phys. Fluids 29, 955–963 (1986). https://doi.org/10.1063/1.865690
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/restrictedAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 27 páginas
dc.coverage.spatial.spa.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv American Institute of Physics Inc.
dc.source.spa.fl_str_mv instname:Universidad Autónoma de Occidente
reponame:Repositorio Institucional UAO
instname_str Universidad Autónoma de Occidente
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/d3233ac0-f195-4fc8-9e85-3479cfa121f1/download
https://red.uao.edu.co/bitstreams/480db8ae-f5e7-4a10-996e-ba7bc5fba31e/download
https://red.uao.edu.co/bitstreams/b11e319e-8fe0-4ed0-ad57-d6bf4f9d1955/download
https://red.uao.edu.co/bitstreams/c26fa702-58d3-429b-a9e2-faa6e3206fc0/download
https://red.uao.edu.co/bitstreams/4951f2f0-164c-4e3b-a44f-227364ee056e/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
d3622cf3d162b5e3fd23a803d4512832
f149a6fb4f367450d22d97db19a6eb8f
fcd5a521cb27b5c801e1497500a61f89
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260131418865664
spelling Laín Beatove, Santiagovirtual::2570-1Quintero Arboleda, Brian261ad405bab61f0b7db09569ca969474López Mejía, Omar Darío9587264ae58bf04da9c0d781444c2710Meneses, Dianab8902b1661a0613320e0dba35c46c8a5Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-09-06T22:21:23Z2019-09-06T22:21:23Z2016-01-13López, O., Meneses, D., Quintero, B., & Laín, S. (2016). Computational study of transient flow around Darrieus type cross flow water turbines. Journal of Renewable and Sustainable Energy, 8(1), 0145011941-7012 (en línea)http://hdl.handle.net/10614/11062https://aip.scitation.org/doi/abs/10.1063/1.4940023https://doi.org/10.1063/1.4940023This study presents full transient numerical simulations of a cross-flow vertical-axis marine current turbine (straight-bladed Darrieus type) with particular emphasis on the analysis of hydrodynamic characteristics. Turbine design and performance are studied using a time-accurate Reynolds-averaged Navier–Stokes commercial solver. A physical transient rotor-stator model with a sliding mesh technique is used to capture changes in flow field at a particular time step. A shear stress transport k-ω turbulence model was initially employed to model turbulent features of the flow. Two dimensional simulations are used to parametrically study the influence of selected geometrical parameters of the airfoil (camber, thickness, and symmetry-asymmetry) on the performance prediction (torque and force coefficients) of the turbine. As a result, torque increases with blade thickness-to-chord ratio up to 15% and camber reduces the average load in the turbine shaft. Additionally, the influence of blockage ratio, profile trailing edge geometry, and selected turbulence models on the turbine performance prediction is investigatedapplication/pdf27 páginasengAmerican Institute of Physics Inc.Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_16ecinstname:Universidad Autónoma de Occidentereponame:Repositorio Institucional UAODinámica de fluidos computacionalAerodinámicaHidroturbinasTurbinas de vientoSimulaciones de turbulenciaDinámica de fluidosEcuaciones de Navier-stokesArrastre (Aerodinámica)Fluid dynamicsNavier-stokes equationsDrag (aerodynamics)Turbinas hidráulicasNúmeros de ReynoldsHydraulic turbinesReynolds numberCross flow water turbineUnsteady CFD flow simulationTurbulence modelComputational study of transient flow around Darrieus type cross flow water turbinesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Volumen 8, número 1 (enero, 2016)número 1Volumen 8Journal of renewable and sustainable energyBlack and Veatch Consulting Ltd., UK, Europe and Global Tidal Stream Energy Resource Assessment ( Carbon Trust, London, 2004D. Kerr, Mar. Energy Philos. Trans. R. Soc. A 365, 971–992 (2007). https://doi.org/10.1098/rsta.2006.1959IRENA, See http://www.irena.org/DocumentDownloads/Publications/Tidal_Energy_V4_WEB.pdf for Tidal Energy, Technology Brief, 2014J. Dabiri, “ Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays,” J. Renewable Sustainable Energy 3, 043104 (2011). https://doi.org/10.1063/1.3608170K. Duraisamy and V. Lakshminarayan, “ Flow physics and performance of vertical axis wind turbine arrays,” AIAA Paper No. 2014-3139D. P. Coiro, A. De Marco, F. Nicolosi, S. Melone, and F. Montella, “ Dynamic behaviour of the patented kobold tidal current turbine: Numerical and experimental aspects,” Acta Polytech. 45, 77–84 (2005S. Laín, M. García, B. Quintero, and S. Orrego, “ CFD numerical simulation of Francis turbines,” Rev. Fac. Ing. Univ. Antioquia 51, 21–33 (2010)S. Laín and R. Aliod, “ Study of the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments,” Int. J. Heat Fluid Flow 21, 374–380 (2000). https://doi.org/10.1016/S0142-727X(00)00023-0M. F. Göz, S. Laín, and M. Sommerfeld, “ Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow,” Comput. Chem. Eng. 28, 2727–2733 (2004). https://doi.org/10.1016/j.compchemeng.2004.07.035C. J. S. Ferreira, “ The near wake of the VAWT. 2D and 3D views of the VAWT aerodynamics,” Ph.D. thesis ( Delft University of Technology, 2009)T. Maître, J. L. Achard, L. Guitet, and C. Ploesteanu, “ Marine turbine development: Numerical and experimental investigations,” Sci. Bull. 50, 59–66 (2005)A. Laneville and P. Vittecoq, “ Dynamic stall: The case of the vertical axis wind turbine,” J. Sol. Energy Eng. 108, 140–145 (1986). https://doi.org/10.1115/1.3268081R. Howell, N. Qin, J. Edwards, and N. Durrani, “ Wind tunnel and numerical study of a small vertical axis wind turbine,” Renewable Energy 35, 412–422 (2010). https://doi.org/10.1016/j.renene.2009.07.025Y. Nabavi, “ Numerical study of the duct shape effect on the performance of a ducted vertical axis tidal turbine,” M.Sc. thesis ( British Columbia University, 2008)Y. M. Dai and W. Lam, “ Numerical study of straight-bladed Darrieus-type tidal turbine,” ICE-Energy 162, 67–76 (2009). https://doi.org/10.1680/ener.2009.162.2.67E. Amet, T. Maître, C. Pellone, and J. L. Achard, “ 2D numerical simulations of blade-vortex interaction in a Darrieus turbine,” J. Fluids Eng. 131, 111103 (2009). https://doi.org/10.1115/1.4000258P. Fraunie, C. Beguier, I. Paraschivoiu, and G. Brochier, , “ Water channel experiments of dynamic stall on Darrieus wind turbine blades,” J. Propul. Power 2(5), 445–449 (1986). https://doi.org/10.2514/3.22927N. Fujisawa and S. Shibuya, “ Observations of dynamic stall on Darrieus wind turbine blades,” J. Wind Eng. Ind. Aerodyn. 89, 201–214 (2001). https://doi.org/10.1016/S0167-6105(00)00062-3Y. Li and S. M. Calisal, “ Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine,” Renewable Energy 35, 2325–2334 (2010). https://doi.org/10.1016/j.renene.2010.03.002D. P. Coiro, F. Nicolosi, A. De Marco, S. Melone, and F. Montella, “ Dynamic behavior of novel vertical axis tidal current turbine: Numerical and experimental investigations,” in Proceedings of the International Offshore and Polar Engineering Conference (2005), pp. 469–476T. Maître, E. Amet, and C. Pellone, “ Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments,” Renewable Energy 51, 497–512 (2013). https://doi.org/10.1016/j.renene.2012.09.030E. Amet, “ Simulation Numérique d'une Hydrolienne à Axe Vertical de Type Darrieus,” Ph.D. thesis ( Institut Polytechnique de Grenoble, 2009)X. Jin, G. Zhao, K. Gao, and W. Ju, “ Darrieus vertical axis wind turbine: Basic research methods,” Renewable Sustainable Energy Rev. 42, 212–225 (2015). https://doi.org/10.1016/j.rser.2014.10.021C. Song, Y. Zheng, Z. Zhao, Y. Zhang, C. Li, and H. Jiang, “ Investigation of meshing strategies and turbulence models of computational fluid dynamics simulations of vertical axis wind turbines,” J. Renewable Sustainable Energy 7, 033111 (2015). https://doi.org/10.1063/1.4921578R. Lanzafame, S. Mauro, and M. Messina, “ 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model,” Energy Procedia 45, 131–140 (2014)Y. Chen and Y. Lian, “ Numerical investigation of vortex dynamics in an H-rotor vertical axis wind turbine,” Eng. Appl. Comput. Fluid Mech. 9, 21–32 (2015). https://doi.org/10.1080/19942060.2015.1004790F. Trivellato and M. Raciti Castelli, “ On the courant-Friedrichs-Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis,” Renewable Energy 62, 53–62 (2014). https://doi.org/10.1016/j.renene.2013.06.022B. Paillard, J. Astolfi, and F. Hauville, “ URANSE simulation of an active variable-pitch cross-flow Darrieus tidal turbine: Sinusoidal pitch function investigation,” Int. J. Mar. Energy 11, 9–26 (2015). https://doi.org/10.1016/j.ijome.2015.03.001J. Larsen, S. Nielsen, and S. Krenk, “ Dynamic stall model for wind turbine airfoils,” J. Fluids Struct. 23, 959–982 (2007). https://doi.org/10.1016/j.jfluidstructs.2007.02.005R. Nobile, M. Vahdati, J. Barlow, and A. Mewburn-Crook, “ Dynamic stall for a vertical axis wind turbine in a two-dimensional study,” in World Renewable Energy Congress 2011, Lindköping, Sweden, 8–13 May (2011), pp. 4225–4232F. R. Menter, “ Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149P. J. Roache, Verification and Validation in Computational Science and Engineering ( Hermosa Publishers, Albuquerque, 1998)B. E. Launder, G. J. Reece, and W. Rodi, “ Progress in the development of a Reynolds-stress turbulence closure,” J. Fluid Mech., 68, 537–566 (1975). https://doi.org/10.1017/S0022112075001814T. H. Shih, W. W. Liou, A. Shabbir, and J. Zhu, “ A new k-ε eddy-viscosity model for high Reynolds number turbulent flows—Model development and validation,” Comput. Fluids 24(3), 227–238 (1995). https://doi.org/10.1016/0045-7930(94)00032-TP. R. Spalart and M. Shur, “ On the sensitization of turbulence models to rotation and curvature,” Aerosp. Sci. Technol. 1, 297–302 (1997). https://doi.org/10.1016/S1270-9638(97)90051-1H. Abbott and A. von Doenhoff, Theory of Wing Sections: Including a Summary of Airfoil Data ( Dover Publications, New York, 1959D. Montgomery, Design and Analysis of Experiments ( Wiley, New York, 2000J. P. Baker, E. A. Mayda, and C. P. van Dam, “ Experimental Analysis of Thick Blunt Trailing-Edge Wind Turbine Airfoils,” J. Sol. Energy Eng. 128, 422–431 (2006). https://doi.org/10.1115/1.2346701P. Moin, A. Leonard, and J. Kim, “ Evolution of a curved vortex filament into a vortex ring,” Phys. Fluids 29, 955–963 (1986). https://doi.org/10.1063/1.865690Publication082b0926-3385-4188-9c6a-bbbed7484a95virtual::2570-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::2570-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::2570-10000-0002-0269-2608virtual::2570-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::2570-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/d3233ac0-f195-4fc8-9e85-3479cfa121f1/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/480db8ae-f5e7-4a10-996e-ba7bc5fba31e/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALA0312_Computational study of transient flow around Darrieus type cross flow water turbines.pdfA0312_Computational study of transient flow around Darrieus type cross flow water turbines.pdfArchivo texto completo del artículoapplication/pdf1932969https://red.uao.edu.co/bitstreams/b11e319e-8fe0-4ed0-ad57-d6bf4f9d1955/downloadd3622cf3d162b5e3fd23a803d4512832MD54TEXTA0312_Computational study of transient flow around Darrieus type cross flow water turbines.pdf.txtA0312_Computational study of transient flow around Darrieus type cross flow water turbines.pdf.txtExtracted texttext/plain71349https://red.uao.edu.co/bitstreams/c26fa702-58d3-429b-a9e2-faa6e3206fc0/downloadf149a6fb4f367450d22d97db19a6eb8fMD55THUMBNAILA0312_Computational study of transient flow around Darrieus type cross flow water turbines.pdf.jpgA0312_Computational study of transient flow around Darrieus type cross flow water turbines.pdf.jpgGenerated Thumbnailimage/jpeg16220https://red.uao.edu.co/bitstreams/4951f2f0-164c-4e3b-a44f-227364ee056e/downloadfcd5a521cb27b5c801e1497500a61f89MD5610614/11062oai:red.uao.edu.co:10614/110622024-03-06 16:47:29.031https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K