Computational study of transient flow around Darrieus type cross flow water turbines

This study presents full transient numerical simulations of a cross-flow vertical-axis marine current turbine (straight-bladed Darrieus type) with particular emphasis on the analysis of hydrodynamic characteristics. Turbine design and performance are studied using a time-accurate Reynolds-averaged N...

Full description

Autores:
Laín Beatove, Santiago
Quintero Arboleda, Brian
López Mejía, Omar Darío
Meneses, Diana
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11062
Acceso en línea:
http://hdl.handle.net/10614/11062
https://aip.scitation.org/doi/abs/10.1063/1.4940023
https://doi.org/10.1063/1.4940023
Palabra clave:
Dinámica de fluidos computacional
Aerodinámica
Hidroturbinas
Turbinas de viento
Simulaciones de turbulencia
Dinámica de fluidos
Ecuaciones de Navier-stokes
Arrastre (Aerodinámica)
Fluid dynamics
Navier-stokes equations
Drag (aerodynamics)
Turbinas hidráulicas
Números de Reynolds
Hydraulic turbines
Reynolds number
Cross flow water turbine
Unsteady CFD flow simulation
Turbulence model
Rights
restrictedAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
Description
Summary:This study presents full transient numerical simulations of a cross-flow vertical-axis marine current turbine (straight-bladed Darrieus type) with particular emphasis on the analysis of hydrodynamic characteristics. Turbine design and performance are studied using a time-accurate Reynolds-averaged Navier–Stokes commercial solver. A physical transient rotor-stator model with a sliding mesh technique is used to capture changes in flow field at a particular time step. A shear stress transport k-ω turbulence model was initially employed to model turbulent features of the flow. Two dimensional simulations are used to parametrically study the influence of selected geometrical parameters of the airfoil (camber, thickness, and symmetry-asymmetry) on the performance prediction (torque and force coefficients) of the turbine. As a result, torque increases with blade thickness-to-chord ratio up to 15% and camber reduces the average load in the turbine shaft. Additionally, the influence of blockage ratio, profile trailing edge geometry, and selected turbulence models on the turbine performance prediction is investigated