Saccharide biomass for biofuels, biomaterials, and chemicals

This chapter is a description of the main applications of saccharides in industry for obtaining energetic and nonenergetic products by means of the biorefinery concept allied to green chemistry principles. A biorefinery seeks to use the entire biomass completely, exploiting polysaccharides, proteins...

Full description

Autores:
Flórez Pardo, Luz Marina
López Galán, Jorge Enrique
Lozano Ramírez, Tatiana
Tipo de recurso:
Part of book
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13508
Acceso en línea:
https://hdl.handle.net/10614/13508
Palabra clave:
Bioquimica
Bioplastics
Biochemical
Biorefinery
Rights
openAccess
License
Derechos reservados - Springer International Publishing, 2018
id REPOUAO2_bc750076ed945c9ab3f7dedc636fe8a5
oai_identifier_str oai:red.uao.edu.co:10614/13508
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Saccharide biomass for biofuels, biomaterials, and chemicals
title Saccharide biomass for biofuels, biomaterials, and chemicals
spellingShingle Saccharide biomass for biofuels, biomaterials, and chemicals
Bioquimica
Bioplastics
Biochemical
Biorefinery
title_short Saccharide biomass for biofuels, biomaterials, and chemicals
title_full Saccharide biomass for biofuels, biomaterials, and chemicals
title_fullStr Saccharide biomass for biofuels, biomaterials, and chemicals
title_full_unstemmed Saccharide biomass for biofuels, biomaterials, and chemicals
title_sort Saccharide biomass for biofuels, biomaterials, and chemicals
dc.creator.fl_str_mv Flórez Pardo, Luz Marina
López Galán, Jorge Enrique
Lozano Ramírez, Tatiana
dc.contributor.author.none.fl_str_mv Flórez Pardo, Luz Marina
dc.contributor.author.spa.fl_str_mv López Galán, Jorge Enrique
Lozano Ramírez, Tatiana
dc.contributor.corporatename.spa.fl_str_mv Springer International Publishing
dc.subject.armarc.spa.fl_str_mv Bioquimica
topic Bioquimica
Bioplastics
Biochemical
Biorefinery
dc.subject.proposal.eng.fl_str_mv Bioplastics
Biochemical
Biorefinery
description This chapter is a description of the main applications of saccharides in industry for obtaining energetic and nonenergetic products by means of the biorefinery concept allied to green chemistry principles. A biorefinery seeks to use the entire biomass completely, exploiting polysaccharides, proteins, and lignin in various manufacturing processes, to obtain food, pharmaceutical products, biomaterials, bioproducts, and biopolymers, in addition to energetic products, in a sustainable manner. After analyzing demand aspects, costs, transformation technology to be used, and possibilities for the molecule to be a source for many technological applications, the most promising saccharide applications are succinic acid, bioethanol, and 3-HP (3-hydroxypropionic acid).
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2021-12-02T16:12:49Z
dc.date.available.none.fl_str_mv 2021-12-02T16:12:49Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.eng.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_3248
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 9783319667355
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13508
dc.identifier.doi.none.fl_str_mv 10.1007/978-3-319-66736-2
identifier_str_mv 9783319667355
10.1007/978-3-319-66736-2
url https://hdl.handle.net/10614/13508
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 30
dc.relation.citationstartpage.spa.fl_str_mv 11
dc.relation.cites.spa.fl_str_mv Flórez Pardo, L.M., López Galán, J.E., Lozano Ramírez, T. (2018). Saccharide biomass for biofuels, biomaterials, and chemicals. Vaz Jr., S. (ed.) Biomass and green chemistry. Building a renewable pathway. Springer International. (Capítulo 2, pp. 11-30). https://link.springer.com/content/pdf/10.1007%2F978-3-319-66736-2.pdf
dc.relation.ispartofbook.eng.fl_str_mv Biomass and green chemistry. Building a renewable pathway
dc.relation.references.none.fl_str_mv Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulosederived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301
Aeschelmann F, Carus M (2015) Markets. Available at: http://www.bio-based.eu/market_study/ media/files/15-11-12-Bio-based-Building-Blocks-and-Polymers-in-the-World-short-version. pdf. Accessed July 2017
Alexandri M, Papapostolou H, Stragier L, Verstraete W, Papanikolaou S, Koutinas AA (2017) Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresour Technol 238:214–222
Asocaña (2015) Sector azucarero colombiano. Available at: http://www.observatoriovalle.org.co/ wp-content/uploads/2014/12/presentaci%C3%B3n-sector-azucarero-colombiano-feb-15.pdf. Accessed July 2017
BCC Research (2014) Global market for bioproducts to reach $700.7 billion in 2018; non-energetic products moving at 14.9% CAGR. Available at: http://www.bccresearch.com/pressroom/egy/ global-market-for-bioproducts-to-reach-$700.7-billion-2018. Accessed July 2017
Carvajal medios B2B (2017) Estados Unidos y China liderarán capacidad mundial de etileno para 2017. Available on: http://www.plastico.com/temas/Estados-Unidos-y-China-liderarancapacidad-mundial-de-etileno-para-2017+102577. Accessed July 2017
Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239
Díaz AB, Marzo C, Caro I, de Ory I, Blandino A (2017) Valorization of exhausted sugar beet cossettes by successive hydrolysis and two fermentations for the production of bio-products. Bioresour Technol 225:225–233
Evans J (2011) Market research. Available on: https://www.bccresearch.com/market-research/biotechnology/commercial-amino-acids-bio007j.html. Accessed July 2017
Food and Agriculture Organization of the United Nations (FAO) (2017) Faostat. http://www.fao. org/faostat/en/#data/QC. Accessed July 2017
Gerssen-Gondelach SJ, Saygin D, Wicke B, Patel MK, Faaij APC (2014) Competing uses of biomass: assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew Sust Energ Rev 40:964–998
Haro P, Ollero P, Trippe F (2013) Technoeconomic assessment of potential processes for bioethylene production. Fuel Process Technol 114:35–48
International Energy Agency (IEA) (2009) Biorefineries: adding value to the sustainable utilisation of biomass. Available on: http://www.ieabioenergy.com/publications/biorefineries-addingvalue-to-the-sustainable-utilisation-of-biomass/. Accessed July 2017
Moussa HI, Elkamel A, Young SB (2016) Assessing energy performance of bio-based succinic acid production using LCA. J Clean Prod 139:761–769
Murillo B, Zornoza B, de la Iglesia O, Téllez C, Coronas J (2016) Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks. J Catal 334:60–67
PlasticsEurope (2014) Plastics—the facts 2014/2015. Available on: http://www.plasticseurope. org/documents/document/20150227150049-final_plastics_the_facts_2014_2015_260215.pdf. Accessed July 2017
Procaña (2015) Revistas. Available on: https://issuu.com/procana.org/docs/procana111_baja. Accessed July 2017
Statistica (2016) Top sugar beet producers worldwide by volume (in 1,000 metric tons). Available on: https://www.statista.com/statistics/264670/top-sugar-beet-producers-worldwide-by-volume/. Accessed July 2017
U.S. Department of Agriculture (2017) Sugar. Available on: https://apps.fas.usda.gov/psdonline/ circulars/Sugar.pdf. Accessed July 2017
Werpy T, Petersen G (eds) (2004) Top value added chemicals from biomass, vol 1. Results of screening for potential candidates from sugars and synthesis gas. Washington, DC: US-DOE
Xu Y, Hanna MA, Isom L (2008) Green chemicals from renewable agricultural biomass. Open Agric J 2:54–61
dc.rights.spa.fl_str_mv Derechos reservados - Springer International Publishing, 2018
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Springer International Publishing, 2018
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 20 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Springer International Publishing AG
dc.publisher.place.eng.fl_str_mv Switzerland
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/3c69b8df-908c-4041-95e3-d31262068ab4/download
https://red.uao.edu.co/bitstreams/3948010e-0f5a-4805-a94d-26ee86fa563d/download
https://red.uao.edu.co/bitstreams/7a7879cc-f8b8-4c9d-83ac-0b7bf9935ed5/download
https://red.uao.edu.co/bitstreams/52ac1e73-009f-4b10-84a6-60617c0541e6/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
1ad7467c5f8329701cdbcea4d53f7630
74dd623d22205bce9b447e3227b5c414
81bedf68a5ff4d0c5c4aa2169ca5cf9b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260209629003776
spelling Flórez Pardo, Luz Marinavirtual::1698-1López Galán, Jorge Enriquec28f842fdc151536a90f2149d7bd6b1fLozano Ramírez, Tatiana750e297e14044884994a66b582210bb7Springer International Publishing2021-12-02T16:12:49Z2021-12-02T16:12:49Z20189783319667355https://hdl.handle.net/10614/1350810.1007/978-3-319-66736-2This chapter is a description of the main applications of saccharides in industry for obtaining energetic and nonenergetic products by means of the biorefinery concept allied to green chemistry principles. A biorefinery seeks to use the entire biomass completely, exploiting polysaccharides, proteins, and lignin in various manufacturing processes, to obtain food, pharmaceutical products, biomaterials, bioproducts, and biopolymers, in addition to energetic products, in a sustainable manner. After analyzing demand aspects, costs, transformation technology to be used, and possibilities for the molecule to be a source for many technological applications, the most promising saccharide applications are succinic acid, bioethanol, and 3-HP (3-hydroxypropionic acid).20 páginasapplication/pdfengSpringer International Publishing AGSwitzerlandDerechos reservados - Springer International Publishing, 2018https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Saccharide biomass for biofuels, biomaterials, and chemicalsCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BioquimicaBioplasticsBiochemicalBiorefinery3011Flórez Pardo, L.M., López Galán, J.E., Lozano Ramírez, T. (2018). Saccharide biomass for biofuels, biomaterials, and chemicals. Vaz Jr., S. (ed.) Biomass and green chemistry. Building a renewable pathway. Springer International. (Capítulo 2, pp. 11-30). https://link.springer.com/content/pdf/10.1007%2F978-3-319-66736-2.pdfBiomass and green chemistry. Building a renewable pathwayAbdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulosederived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301Aeschelmann F, Carus M (2015) Markets. Available at: http://www.bio-based.eu/market_study/ media/files/15-11-12-Bio-based-Building-Blocks-and-Polymers-in-the-World-short-version. pdf. Accessed July 2017Alexandri M, Papapostolou H, Stragier L, Verstraete W, Papanikolaou S, Koutinas AA (2017) Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresour Technol 238:214–222Asocaña (2015) Sector azucarero colombiano. Available at: http://www.observatoriovalle.org.co/ wp-content/uploads/2014/12/presentaci%C3%B3n-sector-azucarero-colombiano-feb-15.pdf. Accessed July 2017BCC Research (2014) Global market for bioproducts to reach $700.7 billion in 2018; non-energetic products moving at 14.9% CAGR. Available at: http://www.bccresearch.com/pressroom/egy/ global-market-for-bioproducts-to-reach-$700.7-billion-2018. Accessed July 2017Carvajal medios B2B (2017) Estados Unidos y China liderarán capacidad mundial de etileno para 2017. Available on: http://www.plastico.com/temas/Estados-Unidos-y-China-liderarancapacidad-mundial-de-etileno-para-2017+102577. Accessed July 2017Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239Díaz AB, Marzo C, Caro I, de Ory I, Blandino A (2017) Valorization of exhausted sugar beet cossettes by successive hydrolysis and two fermentations for the production of bio-products. Bioresour Technol 225:225–233Evans J (2011) Market research. Available on: https://www.bccresearch.com/market-research/biotechnology/commercial-amino-acids-bio007j.html. Accessed July 2017Food and Agriculture Organization of the United Nations (FAO) (2017) Faostat. http://www.fao. org/faostat/en/#data/QC. Accessed July 2017Gerssen-Gondelach SJ, Saygin D, Wicke B, Patel MK, Faaij APC (2014) Competing uses of biomass: assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew Sust Energ Rev 40:964–998Haro P, Ollero P, Trippe F (2013) Technoeconomic assessment of potential processes for bioethylene production. Fuel Process Technol 114:35–48International Energy Agency (IEA) (2009) Biorefineries: adding value to the sustainable utilisation of biomass. Available on: http://www.ieabioenergy.com/publications/biorefineries-addingvalue-to-the-sustainable-utilisation-of-biomass/. Accessed July 2017Moussa HI, Elkamel A, Young SB (2016) Assessing energy performance of bio-based succinic acid production using LCA. J Clean Prod 139:761–769Murillo B, Zornoza B, de la Iglesia O, Téllez C, Coronas J (2016) Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks. J Catal 334:60–67PlasticsEurope (2014) Plastics—the facts 2014/2015. Available on: http://www.plasticseurope. org/documents/document/20150227150049-final_plastics_the_facts_2014_2015_260215.pdf. Accessed July 2017Procaña (2015) Revistas. Available on: https://issuu.com/procana.org/docs/procana111_baja. Accessed July 2017Statistica (2016) Top sugar beet producers worldwide by volume (in 1,000 metric tons). Available on: https://www.statista.com/statistics/264670/top-sugar-beet-producers-worldwide-by-volume/. Accessed July 2017U.S. Department of Agriculture (2017) Sugar. Available on: https://apps.fas.usda.gov/psdonline/ circulars/Sugar.pdf. Accessed July 2017Werpy T, Petersen G (eds) (2004) Top value added chemicals from biomass, vol 1. Results of screening for potential candidates from sugars and synthesis gas. Washington, DC: US-DOEXu Y, Hanna MA, Isom L (2008) Green chemicals from renewable agricultural biomass. Open Agric J 2:54–61GeneralPublicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1698-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1698-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1698-10000-0001-8779-8120virtual::1698-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1698-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/3c69b8df-908c-4041-95e3-d31262068ab4/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALSaccharide biomass for biofuels, biomaterials, and chemicals.pdfSaccharide biomass for biofuels, biomaterials, and chemicals.pdfTexto archivo completo del capítulo del libro, PDFapplication/pdf708548https://red.uao.edu.co/bitstreams/3948010e-0f5a-4805-a94d-26ee86fa563d/download1ad7467c5f8329701cdbcea4d53f7630MD53TEXTSaccharide biomass for biofuels, biomaterials, and chemicals.pdf.txtSaccharide biomass for biofuels, biomaterials, and chemicals.pdf.txtExtracted texttext/plain51064https://red.uao.edu.co/bitstreams/7a7879cc-f8b8-4c9d-83ac-0b7bf9935ed5/download74dd623d22205bce9b447e3227b5c414MD54THUMBNAILSaccharide biomass for biofuels, biomaterials, and chemicals.pdf.jpgSaccharide biomass for biofuels, biomaterials, and chemicals.pdf.jpgGenerated Thumbnailimage/jpeg10125https://red.uao.edu.co/bitstreams/52ac1e73-009f-4b10-84a6-60617c0541e6/download81bedf68a5ff4d0c5c4aa2169ca5cf9bMD5510614/13508oai:red.uao.edu.co:10614/135082024-03-05 09:52:17.069https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer International Publishing, 2018open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K