Saccharide biomass for biofuels, biomaterials, and chemicals
This chapter is a description of the main applications of saccharides in industry for obtaining energetic and nonenergetic products by means of the biorefinery concept allied to green chemistry principles. A biorefinery seeks to use the entire biomass completely, exploiting polysaccharides, proteins...
- Autores:
-
Flórez Pardo, Luz Marina
López Galán, Jorge Enrique
Lozano Ramírez, Tatiana
- Tipo de recurso:
- Part of book
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/13508
- Acceso en línea:
- https://hdl.handle.net/10614/13508
- Palabra clave:
- Bioquimica
Bioplastics
Biochemical
Biorefinery
- Rights
- openAccess
- License
- Derechos reservados - Springer International Publishing, 2018
id |
REPOUAO2_bc750076ed945c9ab3f7dedc636fe8a5 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13508 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Saccharide biomass for biofuels, biomaterials, and chemicals |
title |
Saccharide biomass for biofuels, biomaterials, and chemicals |
spellingShingle |
Saccharide biomass for biofuels, biomaterials, and chemicals Bioquimica Bioplastics Biochemical Biorefinery |
title_short |
Saccharide biomass for biofuels, biomaterials, and chemicals |
title_full |
Saccharide biomass for biofuels, biomaterials, and chemicals |
title_fullStr |
Saccharide biomass for biofuels, biomaterials, and chemicals |
title_full_unstemmed |
Saccharide biomass for biofuels, biomaterials, and chemicals |
title_sort |
Saccharide biomass for biofuels, biomaterials, and chemicals |
dc.creator.fl_str_mv |
Flórez Pardo, Luz Marina López Galán, Jorge Enrique Lozano Ramírez, Tatiana |
dc.contributor.author.none.fl_str_mv |
Flórez Pardo, Luz Marina |
dc.contributor.author.spa.fl_str_mv |
López Galán, Jorge Enrique Lozano Ramírez, Tatiana |
dc.contributor.corporatename.spa.fl_str_mv |
Springer International Publishing |
dc.subject.armarc.spa.fl_str_mv |
Bioquimica |
topic |
Bioquimica Bioplastics Biochemical Biorefinery |
dc.subject.proposal.eng.fl_str_mv |
Bioplastics Biochemical Biorefinery |
description |
This chapter is a description of the main applications of saccharides in industry for obtaining energetic and nonenergetic products by means of the biorefinery concept allied to green chemistry principles. A biorefinery seeks to use the entire biomass completely, exploiting polysaccharides, proteins, and lignin in various manufacturing processes, to obtain food, pharmaceutical products, biomaterials, bioproducts, and biopolymers, in addition to energetic products, in a sustainable manner. After analyzing demand aspects, costs, transformation technology to be used, and possibilities for the molecule to be a source for many technological applications, the most promising saccharide applications are succinic acid, bioethanol, and 3-HP (3-hydroxypropionic acid). |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2021-12-02T16:12:49Z |
dc.date.available.none.fl_str_mv |
2021-12-02T16:12:49Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.redcol.eng.fl_str_mv |
https://purl.org/redcol/resource_type/CAP_LIB |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_3248 |
status_str |
publishedVersion |
dc.identifier.isbn.none.fl_str_mv |
9783319667355 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13508 |
dc.identifier.doi.none.fl_str_mv |
10.1007/978-3-319-66736-2 |
identifier_str_mv |
9783319667355 10.1007/978-3-319-66736-2 |
url |
https://hdl.handle.net/10614/13508 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
30 |
dc.relation.citationstartpage.spa.fl_str_mv |
11 |
dc.relation.cites.spa.fl_str_mv |
Flórez Pardo, L.M., López Galán, J.E., Lozano Ramírez, T. (2018). Saccharide biomass for biofuels, biomaterials, and chemicals. Vaz Jr., S. (ed.) Biomass and green chemistry. Building a renewable pathway. Springer International. (Capítulo 2, pp. 11-30). https://link.springer.com/content/pdf/10.1007%2F978-3-319-66736-2.pdf |
dc.relation.ispartofbook.eng.fl_str_mv |
Biomass and green chemistry. Building a renewable pathway |
dc.relation.references.none.fl_str_mv |
Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulosederived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301 Aeschelmann F, Carus M (2015) Markets. Available at: http://www.bio-based.eu/market_study/ media/files/15-11-12-Bio-based-Building-Blocks-and-Polymers-in-the-World-short-version. pdf. Accessed July 2017 Alexandri M, Papapostolou H, Stragier L, Verstraete W, Papanikolaou S, Koutinas AA (2017) Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresour Technol 238:214–222 Asocaña (2015) Sector azucarero colombiano. Available at: http://www.observatoriovalle.org.co/ wp-content/uploads/2014/12/presentaci%C3%B3n-sector-azucarero-colombiano-feb-15.pdf. Accessed July 2017 BCC Research (2014) Global market for bioproducts to reach $700.7 billion in 2018; non-energetic products moving at 14.9% CAGR. Available at: http://www.bccresearch.com/pressroom/egy/ global-market-for-bioproducts-to-reach-$700.7-billion-2018. Accessed July 2017 Carvajal medios B2B (2017) Estados Unidos y China liderarán capacidad mundial de etileno para 2017. Available on: http://www.plastico.com/temas/Estados-Unidos-y-China-liderarancapacidad-mundial-de-etileno-para-2017+102577. Accessed July 2017 Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239 Díaz AB, Marzo C, Caro I, de Ory I, Blandino A (2017) Valorization of exhausted sugar beet cossettes by successive hydrolysis and two fermentations for the production of bio-products. Bioresour Technol 225:225–233 Evans J (2011) Market research. Available on: https://www.bccresearch.com/market-research/biotechnology/commercial-amino-acids-bio007j.html. Accessed July 2017 Food and Agriculture Organization of the United Nations (FAO) (2017) Faostat. http://www.fao. org/faostat/en/#data/QC. Accessed July 2017 Gerssen-Gondelach SJ, Saygin D, Wicke B, Patel MK, Faaij APC (2014) Competing uses of biomass: assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew Sust Energ Rev 40:964–998 Haro P, Ollero P, Trippe F (2013) Technoeconomic assessment of potential processes for bioethylene production. Fuel Process Technol 114:35–48 International Energy Agency (IEA) (2009) Biorefineries: adding value to the sustainable utilisation of biomass. Available on: http://www.ieabioenergy.com/publications/biorefineries-addingvalue-to-the-sustainable-utilisation-of-biomass/. Accessed July 2017 Moussa HI, Elkamel A, Young SB (2016) Assessing energy performance of bio-based succinic acid production using LCA. J Clean Prod 139:761–769 Murillo B, Zornoza B, de la Iglesia O, Téllez C, Coronas J (2016) Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks. J Catal 334:60–67 PlasticsEurope (2014) Plastics—the facts 2014/2015. Available on: http://www.plasticseurope. org/documents/document/20150227150049-final_plastics_the_facts_2014_2015_260215.pdf. Accessed July 2017 Procaña (2015) Revistas. Available on: https://issuu.com/procana.org/docs/procana111_baja. Accessed July 2017 Statistica (2016) Top sugar beet producers worldwide by volume (in 1,000 metric tons). Available on: https://www.statista.com/statistics/264670/top-sugar-beet-producers-worldwide-by-volume/. Accessed July 2017 U.S. Department of Agriculture (2017) Sugar. Available on: https://apps.fas.usda.gov/psdonline/ circulars/Sugar.pdf. Accessed July 2017 Werpy T, Petersen G (eds) (2004) Top value added chemicals from biomass, vol 1. Results of screening for potential candidates from sugars and synthesis gas. Washington, DC: US-DOE Xu Y, Hanna MA, Isom L (2008) Green chemicals from renewable agricultural biomass. Open Agric J 2:54–61 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Springer International Publishing, 2018 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Springer International Publishing, 2018 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
20 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Springer International Publishing AG |
dc.publisher.place.eng.fl_str_mv |
Switzerland |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/3c69b8df-908c-4041-95e3-d31262068ab4/download https://red.uao.edu.co/bitstreams/3948010e-0f5a-4805-a94d-26ee86fa563d/download https://red.uao.edu.co/bitstreams/7a7879cc-f8b8-4c9d-83ac-0b7bf9935ed5/download https://red.uao.edu.co/bitstreams/52ac1e73-009f-4b10-84a6-60617c0541e6/download |
bitstream.checksum.fl_str_mv |
20b5ba22b1117f71589c7318baa2c560 1ad7467c5f8329701cdbcea4d53f7630 74dd623d22205bce9b447e3227b5c414 81bedf68a5ff4d0c5c4aa2169ca5cf9b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260209629003776 |
spelling |
Flórez Pardo, Luz Marinavirtual::1698-1López Galán, Jorge Enriquec28f842fdc151536a90f2149d7bd6b1fLozano Ramírez, Tatiana750e297e14044884994a66b582210bb7Springer International Publishing2021-12-02T16:12:49Z2021-12-02T16:12:49Z20189783319667355https://hdl.handle.net/10614/1350810.1007/978-3-319-66736-2This chapter is a description of the main applications of saccharides in industry for obtaining energetic and nonenergetic products by means of the biorefinery concept allied to green chemistry principles. A biorefinery seeks to use the entire biomass completely, exploiting polysaccharides, proteins, and lignin in various manufacturing processes, to obtain food, pharmaceutical products, biomaterials, bioproducts, and biopolymers, in addition to energetic products, in a sustainable manner. After analyzing demand aspects, costs, transformation technology to be used, and possibilities for the molecule to be a source for many technological applications, the most promising saccharide applications are succinic acid, bioethanol, and 3-HP (3-hydroxypropionic acid).20 páginasapplication/pdfengSpringer International Publishing AGSwitzerlandDerechos reservados - Springer International Publishing, 2018https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Saccharide biomass for biofuels, biomaterials, and chemicalsCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85BioquimicaBioplasticsBiochemicalBiorefinery3011Flórez Pardo, L.M., López Galán, J.E., Lozano Ramírez, T. (2018). Saccharide biomass for biofuels, biomaterials, and chemicals. Vaz Jr., S. (ed.) Biomass and green chemistry. Building a renewable pathway. Springer International. (Capítulo 2, pp. 11-30). https://link.springer.com/content/pdf/10.1007%2F978-3-319-66736-2.pdfBiomass and green chemistry. Building a renewable pathwayAbdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulosederived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301Aeschelmann F, Carus M (2015) Markets. Available at: http://www.bio-based.eu/market_study/ media/files/15-11-12-Bio-based-Building-Blocks-and-Polymers-in-the-World-short-version. pdf. Accessed July 2017Alexandri M, Papapostolou H, Stragier L, Verstraete W, Papanikolaou S, Koutinas AA (2017) Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresour Technol 238:214–222Asocaña (2015) Sector azucarero colombiano. Available at: http://www.observatoriovalle.org.co/ wp-content/uploads/2014/12/presentaci%C3%B3n-sector-azucarero-colombiano-feb-15.pdf. Accessed July 2017BCC Research (2014) Global market for bioproducts to reach $700.7 billion in 2018; non-energetic products moving at 14.9% CAGR. Available at: http://www.bccresearch.com/pressroom/egy/ global-market-for-bioproducts-to-reach-$700.7-billion-2018. Accessed July 2017Carvajal medios B2B (2017) Estados Unidos y China liderarán capacidad mundial de etileno para 2017. Available on: http://www.plastico.com/temas/Estados-Unidos-y-China-liderarancapacidad-mundial-de-etileno-para-2017+102577. Accessed July 2017Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239Díaz AB, Marzo C, Caro I, de Ory I, Blandino A (2017) Valorization of exhausted sugar beet cossettes by successive hydrolysis and two fermentations for the production of bio-products. Bioresour Technol 225:225–233Evans J (2011) Market research. Available on: https://www.bccresearch.com/market-research/biotechnology/commercial-amino-acids-bio007j.html. Accessed July 2017Food and Agriculture Organization of the United Nations (FAO) (2017) Faostat. http://www.fao. org/faostat/en/#data/QC. Accessed July 2017Gerssen-Gondelach SJ, Saygin D, Wicke B, Patel MK, Faaij APC (2014) Competing uses of biomass: assessment and comparison of the performance of bio-based heat, power, fuels and materials. Renew Sust Energ Rev 40:964–998Haro P, Ollero P, Trippe F (2013) Technoeconomic assessment of potential processes for bioethylene production. Fuel Process Technol 114:35–48International Energy Agency (IEA) (2009) Biorefineries: adding value to the sustainable utilisation of biomass. Available on: http://www.ieabioenergy.com/publications/biorefineries-addingvalue-to-the-sustainable-utilisation-of-biomass/. Accessed July 2017Moussa HI, Elkamel A, Young SB (2016) Assessing energy performance of bio-based succinic acid production using LCA. J Clean Prod 139:761–769Murillo B, Zornoza B, de la Iglesia O, Téllez C, Coronas J (2016) Chemocatalysis of sugars to produce lactic acid derivatives on zeolitic imidazolate frameworks. J Catal 334:60–67PlasticsEurope (2014) Plastics—the facts 2014/2015. Available on: http://www.plasticseurope. org/documents/document/20150227150049-final_plastics_the_facts_2014_2015_260215.pdf. Accessed July 2017Procaña (2015) Revistas. Available on: https://issuu.com/procana.org/docs/procana111_baja. Accessed July 2017Statistica (2016) Top sugar beet producers worldwide by volume (in 1,000 metric tons). Available on: https://www.statista.com/statistics/264670/top-sugar-beet-producers-worldwide-by-volume/. Accessed July 2017U.S. Department of Agriculture (2017) Sugar. Available on: https://apps.fas.usda.gov/psdonline/ circulars/Sugar.pdf. Accessed July 2017Werpy T, Petersen G (eds) (2004) Top value added chemicals from biomass, vol 1. Results of screening for potential candidates from sugars and synthesis gas. Washington, DC: US-DOEXu Y, Hanna MA, Isom L (2008) Green chemicals from renewable agricultural biomass. Open Agric J 2:54–61GeneralPublicationcc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1698-1cc4b057a-0ef8-456a-bec2-3d4e0f299a5cvirtual::1698-1https://scholar.google.com/citations?user=88OyeaAAAAAJ&hl=es&oi=aovirtual::1698-10000-0001-8779-8120virtual::1698-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000002410virtual::1698-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/3c69b8df-908c-4041-95e3-d31262068ab4/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALSaccharide biomass for biofuels, biomaterials, and chemicals.pdfSaccharide biomass for biofuels, biomaterials, and chemicals.pdfTexto archivo completo del capítulo del libro, PDFapplication/pdf708548https://red.uao.edu.co/bitstreams/3948010e-0f5a-4805-a94d-26ee86fa563d/download1ad7467c5f8329701cdbcea4d53f7630MD53TEXTSaccharide biomass for biofuels, biomaterials, and chemicals.pdf.txtSaccharide biomass for biofuels, biomaterials, and chemicals.pdf.txtExtracted texttext/plain51064https://red.uao.edu.co/bitstreams/7a7879cc-f8b8-4c9d-83ac-0b7bf9935ed5/download74dd623d22205bce9b447e3227b5c414MD54THUMBNAILSaccharide biomass for biofuels, biomaterials, and chemicals.pdf.jpgSaccharide biomass for biofuels, biomaterials, and chemicals.pdf.jpgGenerated Thumbnailimage/jpeg10125https://red.uao.edu.co/bitstreams/52ac1e73-009f-4b10-84a6-60617c0541e6/download81bedf68a5ff4d0c5c4aa2169ca5cf9bMD5510614/13508oai:red.uao.edu.co:10614/135082024-03-05 09:52:17.069https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Springer International Publishing, 2018open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |