Desequilibrio de tensiones en motores de inducción

Los sistemas de motores eléctricos son los principales usuarios finales de la energía eléctrica, y según el informe de la International Energy Agency (IEA) les corresponde aproximadamente el 53 % de la demanda global de electricidad [1], es decir, 10 700 TWh, lo cual representa emisiones de 5,5 Gton...

Full description

Autores:
Quispe Oqueña, Enrique Ciro
Gómez Sarduy, Julio Rafael
Tipo de recurso:
Part of book
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/13368
Acceso en línea:
https://hdl.handle.net/10614/13368
Palabra clave:
Motores eléctricos de inducción
Motores eléctricos
Electric motors
Electric motors, Induction
Rights
openAccess
License
Derechos reservados - Universidad Autónoma de Occidente, 2020
id REPOUAO2_b89738b80879a1d280a3193087a0ab62
oai_identifier_str oai:red.uao.edu.co:10614/13368
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.spa.fl_str_mv Desequilibrio de tensiones en motores de inducción
title Desequilibrio de tensiones en motores de inducción
spellingShingle Desequilibrio de tensiones en motores de inducción
Motores eléctricos de inducción
Motores eléctricos
Electric motors
Electric motors, Induction
title_short Desequilibrio de tensiones en motores de inducción
title_full Desequilibrio de tensiones en motores de inducción
title_fullStr Desequilibrio de tensiones en motores de inducción
title_full_unstemmed Desequilibrio de tensiones en motores de inducción
title_sort Desequilibrio de tensiones en motores de inducción
dc.creator.fl_str_mv Quispe Oqueña, Enrique Ciro
Gómez Sarduy, Julio Rafael
dc.contributor.author.none.fl_str_mv Quispe Oqueña, Enrique Ciro
dc.contributor.author.spa.fl_str_mv Gómez Sarduy, Julio Rafael
dc.contributor.corporatename.spa.fl_str_mv Universidad Autónoma de Occidente
dc.subject.armarc.spa.fl_str_mv Motores eléctricos de inducción
Motores eléctricos
topic Motores eléctricos de inducción
Motores eléctricos
Electric motors
Electric motors, Induction
dc.subject.armarc.eng.fl_str_mv Electric motors
Electric motors, Induction
description Los sistemas de motores eléctricos son los principales usuarios finales de la energía eléctrica, y según el informe de la International Energy Agency (IEA) les corresponde aproximadamente el 53 % de la demanda global de electricidad [1], es decir, 10 700 TWh, lo cual representa emisiones de 5,5 Gton CO2eq, de los cuales más del 60 % es usado en los sistemas industriales accionados con motores eléctricos [2], como se muestra en la figura 1.1. Además, si se suma a esta situación que el 65 % de la energía eléctrica mundial se produce mediante combustibles fósiles [3], que generan emisiones de gases efecto invernadero (sobre todo dióxido de carbono [CO2]), se puede observar cuán importante son las acciones encaminadas al uso eficiente de los motores eléctricos, a fin de reducir su impacto en el medio ambiente.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-10-22T19:41:00Z
dc.date.available.none.fl_str_mv 2021-10-22T19:41:00Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.eng.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_3248
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 9789586190572
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13368
identifier_str_mv 9789586190572
url https://hdl.handle.net/10614/13368
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationedition.spa.fl_str_mv 1
dc.relation.citationendpage.spa.fl_str_mv 51
dc.relation.citationstartpage.spa.fl_str_mv 27
dc.relation.cites.spa.fl_str_mv Quispe Oqueña, E.C., Gómez Sarduy, J. R. (2020). Desequilibrio de tensiones en motores de inducción. Universidad Autónoma de Occidente. Desequilibrio de tensiones en motores de inducción. Modelado, impacto en el desempeño energético, determinación de la eficiencia (Capítulo 1, pp.27-51). Programa editorial Universidad Autónoma de Occidente.
dc.relation.ispartofbook.spa.fl_str_mv Desequilibrio de tensiones en motores de inducción. Modelado, impacto en el desempeño energético, determinación de la eficiencia
dc.relation.references.none.fl_str_mv [1] International Energy Agency (IEA), World Energy Outlook 2016. November 2016. [En línea]. Disponible en: https://webstore. iea.org/world-energy-outlook-2016. Consultado: 18 de febrero de 2019.
[2] A. de Almeida, J. Fong, C. U. Brunner, R. Werle y M. V. Werkhoven, “New technology trends and policy needs in energy efficient motor systems - A major opportunity for energy and carbon savings”, Renewable and Sustainable Energy Reviews, vol. 115, pp. 1-12, 2019.
[3] International Energy Agency (IEA), Key World Energy Statistics 2019. [En línea]. Disponible en: http://www.iea.org/statistics/. Consultado: 20 de enero de 2020.
[4] UN Environment, EnergyEfficient Electric Motors and Motor Systems, 2017. [En línea]. Disponible en: https://united4efficiency. org/wp-content/uploads/2017/09/U4E-MotorGuide- 201709-Final.pdf. Consultado: 21 de febrero de 2019.
[5] International Electrotechnical Commission (IEC), IEC 600341: 2017, Rotating Electrical Machines. Part 1: Rating and performance. Geneva, Switzerland: IEC, 2017.
[6] National Electrical Manufacturers Association (NEMA), Standard Publication NEMA MG12016, Motors and Generators. Rosslyn, USA: NEMA, 2016.
[7] Electric Power Research Institute (EPRI), “Voltage Unbalance: Power Quality Issues, Related Standards and Mitigation Techniques. Effect on Unbalanced Voltage on End Use Equipment Performance”. Final Report. EPRI Distribution Center, California, USA, June 2000.
[8] A. Jouanne, y B. Banerjee, “Assessment of voltage unbalance”, IEEE Transaction on Power Delivery, vol. 16, n.º 4, pp. 782-790, 2001.
[9] R. C. Dugan, M. F. McGranaghan, S. Santoso, H. W. Beaty, Electric Power System Quality, 3rd edition. New York: McGraw Hill, 2012.
[10] International Electrotehnical Commission (IEC), International Standard IEC 61000427, Electromagnetic Compatibility (EMC). Part 4.27: Testing and Measurement Techniques – Unbalance, Immunity Test. Geneva, Switzerland: IEC, 2000.
[11] Institute of Electrical Electronics Engineers (IEEE), IEEE Std. 1411993, IEEE Recommended Practice for Electric Power Distribution for Industrial Plan, USA, 1994.
[12] Instituto Colombiano de Normas Técnicas (Icontec), Norma Técnica Colombiana NTC 5001, calidad de la potencia eléctrica: Límites y metodología de evaluación en punto de conexión común. Bogotá, 2008.
[13] S. E. M. de Oliveira, “Operation of three-phase induction connected to one-phase supply”, IEEE Transaction on Energy Conversion, vol. 5, n.º 4, pp. 713-718, 1990.
[14] C. L. Fortescue, “Method of symmetrical coordinates applied to the solution of poliphase networks”, AIEE Transaction, vol. 37, Part II, pp. 1027-1140,1918.
[15] C. F. Wagner y R. D. Evans, Symmetrical Components: As Applied to the Analysis of Unbalanced Electrical Circuits. New York: McGraw-Hill, 1933.
[16] W. B. Lyon, Application of the Method of Symmetrical Components. New York: McGraw Hill, 1937.
[17] E. Clarke, Circuit Analysis of AC Power Systems. Volume I: Symmetrical and Related Components. New York: John Wiley & Sons, 1943.
[18] P. K. Kovács e I. Racz, Transiente Vorgange in Wechselstrommaschinen. Budapest: Akademiai Kiado, 1959.
[19] Y. H. Ku, “Transient analysis of rotating machines and stationary networks by means of rotating reference frames”, Transactions of the American Institute of Electrical Engineers AIEE, vol. 70, n.º 1, pp. 943-957, 1951.
[20] W. H. Kerstin y W. H. Phillips, “Phase frame analysis effects of voltage unbalance on induction Machines”, IEEE Transaction on Industry Applications, vol. 33, n.º 2, pp. 415-420, 1997.
[21] H. Weyl, Simetría. Madrid: McGraw Hill/Interamericana, 1990.
[22] A. Eltom y M. A. Aziz, “The economics of energy efficient motors during unbalanced voltage condition”, Proceedings of the Inagural IEEE Power Engeneering Society PES Conference and Exposition in Africa, July 11-15, pp. 378-384, 2005.
[23] International Electrotechnical Commission (IEC), International Standard IEC 6003430, Rotating Electrical Machines. Part 30: Efficiency Classes of SingleSpeed, ThreePhase, Cage Induction Motors (IECode). Geneva, Switzerland, 2008.
[24] B. N. Gafford, W. C. Duesterhoef y C. C. Mosher, “Heating of induction motors on unbalanced voltages”, AIEE Transaction on Power Apparatus and Systems Pt.IIIA, vol. PAS-78, pp. 282-297, 1959.
[25] O. C. N. Souto, J. C. de Oliveira y L. M. Neto, “Induction motor thermal behaviour and life expectancy under non-ideal supply conditions”, Proceedings of Ninth International Conference on Harmonics and Quality of Power, 2000, vol. 3, 1-4 Oct., pp. 899-904, 2000.
[26] J. P. G. de Abreu y A. E. Emanuel, “Induction motor thermal aging caused by voltage distortion and imbalance: loss of useful life and its estimated cost”, IEEE Transaction on Industry Application, vol. 38, n.º 1, pp.12-20, 2002.
[27] H. Orae y A. Quantative, “Approach to estimate the life expectancy of motor insulation system”, IEEE Transactions on Dielectrics and Electrical Insulation, vol.7, n.º 6, pp. 790-796, 2000.
[28] P. Donolo, G. Bossio, C. de Angelo, G. Garcia y M. Donolo, “Voltage unbalance and harmonic distortion effects on induction motor power, torque and vibrations”, Electric Power Systems Research, vol. 140, pp. 866-873, 2016.
[29] International Electrotehnical Commission (IEC), International Standard IEC 6003426, Rotating Electrical Machines. Part 26: Effects on Unbalanced Voltages on the Performance of Induction Motors Geneva, Switzerland, 2006.
[30] C. L. Fortescue, “Polyphase power representation by means of symmetrical coordinates”, AIEE Transaction, vol. 39, part II, pp. 1481-1484, 1920.
[31] D. R. Evans y Pierce R. T., “Unbalanced factor meter”, Estados Unidos, patente número 1.567.582, 1925.
[32] Y. J. Wang, “Analysis of effects of three-phase voltage unbalance on induction motors with emphasis on the angle of the complex voltage unbalance factor”, IEEE Transaction on Energy Conversion, vol. 16, n.º 3, pp. 270-275, 2001.
[33] Ch. Lee, B. Cheng; W. Lee e Y. Hsu, “Effects of various unbalanced voltages on the operation performance of an induction motor under the same voltage unbalance factor condition”, Electric Power Systems Research, vol. 47, n.º 3, pp.153-163, 1998.
[34] J. Faiz, H. Ebrahimpour y P. Pillay, “Influence of unbalanced voltage on the steady-state performance of a three-phase squirrel- cage induction motor”, IEEE Transaction on Energy Conversion, vol. 19, n.º 4, pp. 657-662, 2004.
[35] A. Siddique, G. S. Yadava, y B. Singh, “Effect of voltage unbalance on induction motors”, Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, Indianapolis, in USA, 19-22 September 2004, pp. 26-29.
[36] J. Faiz y H. Ebrahimpour, “Precise derating of three-phase induction motor with unbalanced voltages”, Proceeding of IEEE Industry Applications Conference 2005. Fourtieth IAS Annual Meeting, Conference Record of the 2005, vol. 1, 2-6 Oct 2005, pp. 481-491.
[37] L. F. Mantilla, “Analysis of the voltage phasors characteristics for motor unbalanced supplies under constant voltage level”, Electrical Engineering, vol. 90, n.º 6, pp. 395-406, 2008.
[38] E. C. Quispe, X. M. López-Fernández, A. M. S. Mendes, A. J. Marques Cardoso, y J. A. Palacios, “Experimental study of the effect of positive sequence voltage on the derating of induction motors under voltage unbalance”, Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC 2011), 15-18 de mayo de 2011, Niagara Falls, Canadá, pp. 908-911.
[39] E. C. Quispe, “Efectos del desequilibrio de tensiones sobre la operación del motor de inducción trifásico: Énfasis en la caracterización del desequilibrio de tensiones y el efecto sobre la potencia nominal”, tesis doctoral, Universidad del Valle, Cali, Colombia, 2012.
[40] J. M. Aller Castro, “Métodos para el análisis y control dinámico de la máquina de inducción”, trabajo para ascender a la categoría de profesor titular, Universidad Simón Bolívar, Venezuela, 1997 [en línea]. Disponible en: http://prof.usb.ve/jaller/investigacion. html
[41] G. J. Retter, Matrix and SpacePhasor Theory of Electrical Machines. Budapest: Muszaki Konyvkiado, 1987.
[42] J. E. Williams, “Operation of three-phase induction motors on unbalanced voltages”, AIEE Transaction on Power Apparatus and Systems Pt. IIIA, vol. 73, pp. 125-133, April 1954.
[43] A. M. S. Mendes, E. C. Quispe, X. M. López-Fernández y A. J. Marquez Cardoso, “Influence of the positive sequence voltage on the temperature of three-phase induction”, Proceedings of the XIX International Conference on Electrical Machines (ICEM 2010). Sept 6-8, 2010, Rome, Italy.
[44] P. B. Cummings, J. R. Dunki-Jacobs y R. H. Kerr, “Protection of induction motors against unbalanced voltage operation”, IEEE Transaction on Industry Applications, vol. IA-21, pp. 778-792, May/June 1985.
[45] M. M. Berndt y N. L. Schmitz, “Derating of polyphase induction motors operated with unbalanced line voltages”, AIEE Transaction on Power Apparatus and Systems, vol. 81, pp. 680-686, February 1963.
[46] N. Rama Rao and P. A. D. Jyothi Rao, “Rerating factors of polyphase induction motors under unbalanced line voltage conditions”, IEEE Transaction on Power Apparatus and Systems, vol. PAS-87, n.º 1, pp. 240-249, January 1968.
[47] E. C. Quispe, X. M. López-Fernández, A. M. S. Mendes, A. J. Marques Cardoso, y J. A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance”, Electric Machines & Drives Conference (IEMDC), 2013.
[48] E. C. Quispe, I. D. López, F. J. T. E. Ferreira, V. Sousa, “Unbalanced voltages impacts on the energy performance of induction motors”, International Journal of Electrical and Computer Engineering (IJECE), vol. 8, n.º 3, pp. 1412-1422, 2018.
[49] A. Khan, “Torque pulsations and currents in induction motors with unbalanced voltages”, tesis de maestría, Concordia University, Montreal, Québec, Canadá, 1987 [en línea]. Disponible en: https://spectrum.library.concordia.ca/5433/
[50] V. Sousa, J. J. Cabello, A. Sagastume, M. J. Cabello, “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring”, Measurement, n.º 136, pp. 237-247, 2019.
[51] J. R. Gómez, E. C. Quispe, M. A. de Armas, P. R. Viego, “Estimation of induction motor efficiency in-situ under unbalanced voltages using genetic algorithms”, Proceedings ICEM 2008, Vilamoura, pp. 1–4, 2008.
[52] V. Sousa, P. R. Viego, J. R. Gómez, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages”, Measurement, vol. 46, n.º 7, pp. 2232- 2237, 2013.
[53] V. Sousa, P. R. Viego, J. R. Gómez, N. Lemozy, A. Jurado, E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages”, IEEE Transaction on Energy Conversion, vol. 30, n.º 1, pp. 331-339, 2015.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Autónoma de Occidente, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Universidad Autónoma de Occidente, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 25 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Programa editorial Universidad Autónoma de Occidente
dc.publisher.place.spa.fl_str_mv Cali
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/b3aa94ba-c0ab-4985-82e7-7733525ec31e/download
https://red.uao.edu.co/bitstreams/65913d30-e6c9-4ec7-9ec3-08a257f43e73/download
https://red.uao.edu.co/bitstreams/2ca0be72-e841-47d4-bedc-d19369f196cd/download
https://red.uao.edu.co/bitstreams/b4488f75-c176-4b48-b519-24c9267765d3/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
c4b29ccc7d6f4bd853b9f1ae3f1715af
5826dd5ac5f964b950bf8048277edd55
1b50f13c29860368c5b251a52a8ae501
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478741318336512
spelling Quispe Oqueña, Enrique Cirovirtual::6-1Gómez Sarduy, Julio Rafael77a5057c8e70b9722f27cf7e3c088d69Universidad Autónoma de Occidente2021-10-22T19:41:00Z2021-10-22T19:41:00Z20209789586190572https://hdl.handle.net/10614/13368Los sistemas de motores eléctricos son los principales usuarios finales de la energía eléctrica, y según el informe de la International Energy Agency (IEA) les corresponde aproximadamente el 53 % de la demanda global de electricidad [1], es decir, 10 700 TWh, lo cual representa emisiones de 5,5 Gton CO2eq, de los cuales más del 60 % es usado en los sistemas industriales accionados con motores eléctricos [2], como se muestra en la figura 1.1. Además, si se suma a esta situación que el 65 % de la energía eléctrica mundial se produce mediante combustibles fósiles [3], que generan emisiones de gases efecto invernadero (sobre todo dióxido de carbono [CO2]), se puede observar cuán importante son las acciones encaminadas al uso eficiente de los motores eléctricos, a fin de reducir su impacto en el medio ambiente.Primera edición25 páginasapplication/pdfspaPrograma editorial Universidad Autónoma de OccidenteCaliDerechos reservados - Universidad Autónoma de Occidente, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Desequilibrio de tensiones en motores de inducciónCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Motores eléctricos de inducciónMotores eléctricosElectric motorsElectric motors, Induction15127Quispe Oqueña, E.C., Gómez Sarduy, J. R. (2020). Desequilibrio de tensiones en motores de inducción. Universidad Autónoma de Occidente. Desequilibrio de tensiones en motores de inducción. Modelado, impacto en el desempeño energético, determinación de la eficiencia (Capítulo 1, pp.27-51). Programa editorial Universidad Autónoma de Occidente.Desequilibrio de tensiones en motores de inducción. Modelado, impacto en el desempeño energético, determinación de la eficiencia[1] International Energy Agency (IEA), World Energy Outlook 2016. November 2016. [En línea]. Disponible en: https://webstore. iea.org/world-energy-outlook-2016. Consultado: 18 de febrero de 2019.[2] A. de Almeida, J. Fong, C. U. Brunner, R. Werle y M. V. Werkhoven, “New technology trends and policy needs in energy efficient motor systems - A major opportunity for energy and carbon savings”, Renewable and Sustainable Energy Reviews, vol. 115, pp. 1-12, 2019.[3] International Energy Agency (IEA), Key World Energy Statistics 2019. [En línea]. Disponible en: http://www.iea.org/statistics/. Consultado: 20 de enero de 2020.[4] UN Environment, EnergyEfficient Electric Motors and Motor Systems, 2017. [En línea]. Disponible en: https://united4efficiency. org/wp-content/uploads/2017/09/U4E-MotorGuide- 201709-Final.pdf. Consultado: 21 de febrero de 2019.[5] International Electrotechnical Commission (IEC), IEC 600341: 2017, Rotating Electrical Machines. Part 1: Rating and performance. Geneva, Switzerland: IEC, 2017.[6] National Electrical Manufacturers Association (NEMA), Standard Publication NEMA MG12016, Motors and Generators. Rosslyn, USA: NEMA, 2016.[7] Electric Power Research Institute (EPRI), “Voltage Unbalance: Power Quality Issues, Related Standards and Mitigation Techniques. Effect on Unbalanced Voltage on End Use Equipment Performance”. Final Report. EPRI Distribution Center, California, USA, June 2000.[8] A. Jouanne, y B. Banerjee, “Assessment of voltage unbalance”, IEEE Transaction on Power Delivery, vol. 16, n.º 4, pp. 782-790, 2001.[9] R. C. Dugan, M. F. McGranaghan, S. Santoso, H. W. Beaty, Electric Power System Quality, 3rd edition. New York: McGraw Hill, 2012.[10] International Electrotehnical Commission (IEC), International Standard IEC 61000427, Electromagnetic Compatibility (EMC). Part 4.27: Testing and Measurement Techniques – Unbalance, Immunity Test. Geneva, Switzerland: IEC, 2000.[11] Institute of Electrical Electronics Engineers (IEEE), IEEE Std. 1411993, IEEE Recommended Practice for Electric Power Distribution for Industrial Plan, USA, 1994.[12] Instituto Colombiano de Normas Técnicas (Icontec), Norma Técnica Colombiana NTC 5001, calidad de la potencia eléctrica: Límites y metodología de evaluación en punto de conexión común. Bogotá, 2008.[13] S. E. M. de Oliveira, “Operation of three-phase induction connected to one-phase supply”, IEEE Transaction on Energy Conversion, vol. 5, n.º 4, pp. 713-718, 1990.[14] C. L. Fortescue, “Method of symmetrical coordinates applied to the solution of poliphase networks”, AIEE Transaction, vol. 37, Part II, pp. 1027-1140,1918.[15] C. F. Wagner y R. D. Evans, Symmetrical Components: As Applied to the Analysis of Unbalanced Electrical Circuits. New York: McGraw-Hill, 1933.[16] W. B. Lyon, Application of the Method of Symmetrical Components. New York: McGraw Hill, 1937.[17] E. Clarke, Circuit Analysis of AC Power Systems. Volume I: Symmetrical and Related Components. New York: John Wiley & Sons, 1943.[18] P. K. Kovács e I. Racz, Transiente Vorgange in Wechselstrommaschinen. Budapest: Akademiai Kiado, 1959.[19] Y. H. Ku, “Transient analysis of rotating machines and stationary networks by means of rotating reference frames”, Transactions of the American Institute of Electrical Engineers AIEE, vol. 70, n.º 1, pp. 943-957, 1951.[20] W. H. Kerstin y W. H. Phillips, “Phase frame analysis effects of voltage unbalance on induction Machines”, IEEE Transaction on Industry Applications, vol. 33, n.º 2, pp. 415-420, 1997.[21] H. Weyl, Simetría. Madrid: McGraw Hill/Interamericana, 1990.[22] A. Eltom y M. A. Aziz, “The economics of energy efficient motors during unbalanced voltage condition”, Proceedings of the Inagural IEEE Power Engeneering Society PES Conference and Exposition in Africa, July 11-15, pp. 378-384, 2005.[23] International Electrotechnical Commission (IEC), International Standard IEC 6003430, Rotating Electrical Machines. Part 30: Efficiency Classes of SingleSpeed, ThreePhase, Cage Induction Motors (IECode). Geneva, Switzerland, 2008.[24] B. N. Gafford, W. C. Duesterhoef y C. C. Mosher, “Heating of induction motors on unbalanced voltages”, AIEE Transaction on Power Apparatus and Systems Pt.IIIA, vol. PAS-78, pp. 282-297, 1959.[25] O. C. N. Souto, J. C. de Oliveira y L. M. Neto, “Induction motor thermal behaviour and life expectancy under non-ideal supply conditions”, Proceedings of Ninth International Conference on Harmonics and Quality of Power, 2000, vol. 3, 1-4 Oct., pp. 899-904, 2000.[26] J. P. G. de Abreu y A. E. Emanuel, “Induction motor thermal aging caused by voltage distortion and imbalance: loss of useful life and its estimated cost”, IEEE Transaction on Industry Application, vol. 38, n.º 1, pp.12-20, 2002.[27] H. Orae y A. Quantative, “Approach to estimate the life expectancy of motor insulation system”, IEEE Transactions on Dielectrics and Electrical Insulation, vol.7, n.º 6, pp. 790-796, 2000.[28] P. Donolo, G. Bossio, C. de Angelo, G. Garcia y M. Donolo, “Voltage unbalance and harmonic distortion effects on induction motor power, torque and vibrations”, Electric Power Systems Research, vol. 140, pp. 866-873, 2016.[29] International Electrotehnical Commission (IEC), International Standard IEC 6003426, Rotating Electrical Machines. Part 26: Effects on Unbalanced Voltages on the Performance of Induction Motors Geneva, Switzerland, 2006.[30] C. L. Fortescue, “Polyphase power representation by means of symmetrical coordinates”, AIEE Transaction, vol. 39, part II, pp. 1481-1484, 1920.[31] D. R. Evans y Pierce R. T., “Unbalanced factor meter”, Estados Unidos, patente número 1.567.582, 1925.[32] Y. J. Wang, “Analysis of effects of three-phase voltage unbalance on induction motors with emphasis on the angle of the complex voltage unbalance factor”, IEEE Transaction on Energy Conversion, vol. 16, n.º 3, pp. 270-275, 2001.[33] Ch. Lee, B. Cheng; W. Lee e Y. Hsu, “Effects of various unbalanced voltages on the operation performance of an induction motor under the same voltage unbalance factor condition”, Electric Power Systems Research, vol. 47, n.º 3, pp.153-163, 1998.[34] J. Faiz, H. Ebrahimpour y P. Pillay, “Influence of unbalanced voltage on the steady-state performance of a three-phase squirrel- cage induction motor”, IEEE Transaction on Energy Conversion, vol. 19, n.º 4, pp. 657-662, 2004.[35] A. Siddique, G. S. Yadava, y B. Singh, “Effect of voltage unbalance on induction motors”, Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, Indianapolis, in USA, 19-22 September 2004, pp. 26-29.[36] J. Faiz y H. Ebrahimpour, “Precise derating of three-phase induction motor with unbalanced voltages”, Proceeding of IEEE Industry Applications Conference 2005. Fourtieth IAS Annual Meeting, Conference Record of the 2005, vol. 1, 2-6 Oct 2005, pp. 481-491.[37] L. F. Mantilla, “Analysis of the voltage phasors characteristics for motor unbalanced supplies under constant voltage level”, Electrical Engineering, vol. 90, n.º 6, pp. 395-406, 2008.[38] E. C. Quispe, X. M. López-Fernández, A. M. S. Mendes, A. J. Marques Cardoso, y J. A. Palacios, “Experimental study of the effect of positive sequence voltage on the derating of induction motors under voltage unbalance”, Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC 2011), 15-18 de mayo de 2011, Niagara Falls, Canadá, pp. 908-911.[39] E. C. Quispe, “Efectos del desequilibrio de tensiones sobre la operación del motor de inducción trifásico: Énfasis en la caracterización del desequilibrio de tensiones y el efecto sobre la potencia nominal”, tesis doctoral, Universidad del Valle, Cali, Colombia, 2012.[40] J. M. Aller Castro, “Métodos para el análisis y control dinámico de la máquina de inducción”, trabajo para ascender a la categoría de profesor titular, Universidad Simón Bolívar, Venezuela, 1997 [en línea]. Disponible en: http://prof.usb.ve/jaller/investigacion. html[41] G. J. Retter, Matrix and SpacePhasor Theory of Electrical Machines. Budapest: Muszaki Konyvkiado, 1987.[42] J. E. Williams, “Operation of three-phase induction motors on unbalanced voltages”, AIEE Transaction on Power Apparatus and Systems Pt. IIIA, vol. 73, pp. 125-133, April 1954.[43] A. M. S. Mendes, E. C. Quispe, X. M. López-Fernández y A. J. Marquez Cardoso, “Influence of the positive sequence voltage on the temperature of three-phase induction”, Proceedings of the XIX International Conference on Electrical Machines (ICEM 2010). Sept 6-8, 2010, Rome, Italy.[44] P. B. Cummings, J. R. Dunki-Jacobs y R. H. Kerr, “Protection of induction motors against unbalanced voltage operation”, IEEE Transaction on Industry Applications, vol. IA-21, pp. 778-792, May/June 1985.[45] M. M. Berndt y N. L. Schmitz, “Derating of polyphase induction motors operated with unbalanced line voltages”, AIEE Transaction on Power Apparatus and Systems, vol. 81, pp. 680-686, February 1963.[46] N. Rama Rao and P. A. D. Jyothi Rao, “Rerating factors of polyphase induction motors under unbalanced line voltage conditions”, IEEE Transaction on Power Apparatus and Systems, vol. PAS-87, n.º 1, pp. 240-249, January 1968.[47] E. C. Quispe, X. M. López-Fernández, A. M. S. Mendes, A. J. Marques Cardoso, y J. A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance”, Electric Machines & Drives Conference (IEMDC), 2013.[48] E. C. Quispe, I. D. López, F. J. T. E. Ferreira, V. Sousa, “Unbalanced voltages impacts on the energy performance of induction motors”, International Journal of Electrical and Computer Engineering (IJECE), vol. 8, n.º 3, pp. 1412-1422, 2018.[49] A. Khan, “Torque pulsations and currents in induction motors with unbalanced voltages”, tesis de maestría, Concordia University, Montreal, Québec, Canadá, 1987 [en línea]. Disponible en: https://spectrum.library.concordia.ca/5433/[50] V. Sousa, J. J. Cabello, A. Sagastume, M. J. Cabello, “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring”, Measurement, n.º 136, pp. 237-247, 2019.[51] J. R. Gómez, E. C. Quispe, M. A. de Armas, P. R. Viego, “Estimation of induction motor efficiency in-situ under unbalanced voltages using genetic algorithms”, Proceedings ICEM 2008, Vilamoura, pp. 1–4, 2008.[52] V. Sousa, P. R. Viego, J. R. Gómez, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages”, Measurement, vol. 46, n.º 7, pp. 2232- 2237, 2013.[53] V. Sousa, P. R. Viego, J. R. Gómez, N. Lemozy, A. Jurado, E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages”, IEEE Transaction on Energy Conversion, vol. 30, n.º 1, pp. 331-339, 2015.Comunidad universitaria en generalPublicationc6bf35c2-a499-44cd-abc3-eb4b458d7de5virtual::6-1c6bf35c2-a499-44cd-abc3-eb4b458d7de5virtual::6-1https://scholar.google.com.co/citations?user=8WM_SB8AAAAJ&hl=envirtual::6-1https://orcid.org/0000-0003-3223-1834virtual::6-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000144304virtual::6-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/b3aa94ba-c0ab-4985-82e7-7733525ec31e/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALDesequilibrio de Tensiones en motores de inducción.pdfDesequilibrio de Tensiones en motores de inducción.pdfTexto archivo completo del capítulo del libro, PDFapplication/pdf1162300https://red.uao.edu.co/bitstreams/65913d30-e6c9-4ec7-9ec3-08a257f43e73/downloadc4b29ccc7d6f4bd853b9f1ae3f1715afMD53TEXTDesequilibrio de Tensiones en motores de inducción.pdf.txtDesequilibrio de Tensiones en motores de inducción.pdf.txtExtracted texttext/plain48135https://red.uao.edu.co/bitstreams/2ca0be72-e841-47d4-bedc-d19369f196cd/download5826dd5ac5f964b950bf8048277edd55MD54THUMBNAILDesequilibrio de Tensiones en motores de inducción.pdf.jpgDesequilibrio de Tensiones en motores de inducción.pdf.jpgGenerated Thumbnailimage/jpeg5441https://red.uao.edu.co/bitstreams/b4488f75-c176-4b48-b519-24c9267765d3/download1b50f13c29860368c5b251a52a8ae501MD5510614/13368oai:red.uao.edu.co:10614/133682024-03-01 11:52:03.451https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Autónoma de Occidente, 2020open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K