Relevant kinematic feature selection to support human action recognition in MoCap data
This paper presents a feature selection comparison oriented to human action recognition only with the kinematic features of skeleton representation. For this purpose, three relevance methods are used to rank the contribution of kinematic features for classifying an action is employed. Particularly,...
- Autores:
-
Pulgarín Giraldo, Juan Diego
Alvarez Meza, Andrés Marino
Ruales Torres, Anderson Alberto
Castellanos-Dominguez, German
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11187
- Palabra clave:
- Cinemática
Kinematics
Movimientos mecánicos
Mechanical movements
Center kernel alignment
Feature selection
Human motion
Kinematics
Motion capture data
Principal component analysis
Relevance
ReliefF
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_b13b5d86fbd1b2b802fa4e0b54b7fcaf |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11187 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Relevant kinematic feature selection to support human action recognition in MoCap data |
title |
Relevant kinematic feature selection to support human action recognition in MoCap data |
spellingShingle |
Relevant kinematic feature selection to support human action recognition in MoCap data Cinemática Kinematics Movimientos mecánicos Mechanical movements Center kernel alignment Feature selection Human motion Kinematics Motion capture data Principal component analysis Relevance ReliefF |
title_short |
Relevant kinematic feature selection to support human action recognition in MoCap data |
title_full |
Relevant kinematic feature selection to support human action recognition in MoCap data |
title_fullStr |
Relevant kinematic feature selection to support human action recognition in MoCap data |
title_full_unstemmed |
Relevant kinematic feature selection to support human action recognition in MoCap data |
title_sort |
Relevant kinematic feature selection to support human action recognition in MoCap data |
dc.creator.fl_str_mv |
Pulgarín Giraldo, Juan Diego Alvarez Meza, Andrés Marino Ruales Torres, Anderson Alberto Castellanos-Dominguez, German |
dc.contributor.author.none.fl_str_mv |
Pulgarín Giraldo, Juan Diego Alvarez Meza, Andrés Marino Ruales Torres, Anderson Alberto Castellanos-Dominguez, German |
dc.subject.lemb.spa.fl_str_mv |
Cinemática |
topic |
Cinemática Kinematics Movimientos mecánicos Mechanical movements Center kernel alignment Feature selection Human motion Kinematics Motion capture data Principal component analysis Relevance ReliefF |
dc.subject.lemb.eng.fl_str_mv |
Kinematics |
dc.subject.armarc.spa.fl_str_mv |
Movimientos mecánicos |
dc.subject.armarc.eng.fl_str_mv |
Mechanical movements |
dc.subject.proposal.eng.fl_str_mv |
Center kernel alignment Feature selection Human motion Kinematics Motion capture data Principal component analysis Relevance ReliefF |
description |
This paper presents a feature selection comparison oriented to human action recognition only with the kinematic features of skeleton representation. For this purpose, three relevance methods are used to rank the contribution of kinematic features for classifying an action is employed. Particularly, the method with the best results includes the supervised information regarding the action to find out a relevant set of features, encoding the most discriminative information. Experimental results are obtained on a well-known public data (MSR Action3D). Results are encouraging to use kernel theory methods to get better kinematic feature selection for each action with a good generalization indistinct to the subject |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2019-10-09T21:15:39Z |
dc.date.available.none.fl_str_mv |
2019-10-09T21:15:39Z |
dc.type.spa.fl_str_mv |
Capítulo - Parte de Libro |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_3248 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/bookPart |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.isbn.spa.fl_str_mv |
9783319597720 (impreso) 9783319597737 (en línea) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10614/11187 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1007/978-3-319-59773-7_51 |
identifier_str_mv |
9783319597720 (impreso) 9783319597737 (en línea) |
url |
http://hdl.handle.net/10614/11187 https://doi.org/10.1007/978-3-319-59773-7_51 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.eng.fl_str_mv |
Biomedical Applications Based on Natural and Artificial Computing : International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, June 19-23, 2017, Proceedings, Part II. Páginas 501-509, (2017) |
dc.relation.haspart.eng.fl_str_mv |
Biomedical Applications Based on Natural and Artificial Computing International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017 Corunna, Spain, June 19–23, 2017 Proceedings, Part II |
dc.relation.cites.spa.fl_str_mv |
Pulgarin-Giraldo, J. D., Ruales-Torres, A. A., Álvarez-Meza, A. M., & Castellanos-Dominguez, G. (2017, June). Relevant Kinematic Feature Selection to Support Human Action Recognition in MoCap Data. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(10338, 501-509). Springer, Cham.DOI: 10.1007/978-3-319-59773-7 51 |
dc.relation.ispartofbook.eng.fl_str_mv |
Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science |
dc.relation.references.none.fl_str_mv |
1. Kale, G.V., Patil, V.H.: A study of vision based human motion recognition and analysis. IJACI 7(2), 75–92 (2016) 2. Mandery, C., Plappert, M., Sol, J.B., Asfour, T.: Dimensionality reduction for whole-body human motion recognition. In: 19th International Conference on Information Fusion, FUSION, Heidelberg, Germany, 5–8 July 2016, pp. 355–362 (2016) 3. Althloothi, S., Mahoor, M.H., Zhang, X., Voyles, R.M.: Human activity recognition using multi-features and multiple kernel learning. Pattern Recogn. 47(5), 1800–1812 (2014) 4. Li, M., Leung, H., Liu, Z., Zhou, L.: 3D human motion retrieval using graph kernels based on adaptive graph construction. Comput. Graph. Pergamon 54, 104–112 (2016) 5. Wang, L., Zhao, G., Cheng, L., Pietikainen, M.: Machine Learning for Vision-Based Motion Analysis, 1st edn. Springer, Heidelberg (2011) 6. Wei, X.K., Chai, J.: Modeling 3D human poses from uncalibrated monocular images. In: IEEE 12th International Conference on Computer Vision, ICCV, Kyoto, Japan, 27 September–4 October 2009, pp. 1873–1880 (2009) 7. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshopps 2010, San Francisco, CA, USA, 13–18 June 2010, pp. 9–14 (2010) 8. Ravet, T., Tilmanne, J., d’Alessandro, N.: Hidden Markov model based real-time motion recognition and following. In: Proceedings of the 2014 International Workshop on Movement, Computing, MOCO 2014, pp. 82–87. ACM, New York (2014) 9. Jiang, Y., Saxena, A.: Modeling high-dimensional humans for activity anticipation using Gaussian process latent CRFs. In: Robotics: Science and Systems X, University of California, Berkeley, USA, 12–16 July 2014 (2014) 10. Garc´ıa-Vega, S., ´Alvarez-Meza, A.M., Castellanos-Dom´ınguez, C.G.: MoCap data segmentation and classification using kernel based multi-channel analysis. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259, pp. 495–502. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41827-3 62 11. Pulgarin-Giraldo, J.D., Alvarez-Meza, A.M., Melo-Betancourt, L.G., Ramos-Bermudez, S., Castellanos-Dominguez, G.: A similarity indicator for differentiating kinematic performance between qualified tennis players. In: Beltr´an-Casta˜n´on, C., Nystr¨om, I., Famili, F. (eds.) CIARP 2016. LNCS, vol. 10125, pp. 309–317. Springer, Cham (2017). doi:10.1007/978-3-319-52277-7 38 12. Diaz-Martinez, N.F., Pulgarin-Giraldo, J.D., Vinasco-Isaza, L.E., Agredo, W.: Analysis of the alignment angles and flexion angle in women with patellofemoral pain syndrome. In: Torres, I., Bustamante, J., Sierra, D. (eds.) CLAIB 2016. IFMBE Proceedings. Springer, Singapore (2016) 13. Yang, X., Tian, Y.: Effective 3D action recognition using eigenjoints. J. Vis. Commun. Image Represent. 25(1), 2–11 (2014) 14. Yang, X., Tian, Y.: Eigenjoints-based action recognition using Na¨ıve-Bayes-Nearest-Neighbor. In: CVPR Workshops, pp. 14–19. IEEE Computer Society (2012) 15. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Sequence of the most informative joints (SMIJ): a new representation for human skeletal action recognition. J. Vis. Commun. Image Represent. 25(1), 24–38 (2014)16. Alvarez-Meza, A.M., Velasquez-Martinez, L.F., Castellanos-Dominguez, G.: Timeseries discrimination using feature relevance analysis in motor imagery classification. Neurocomputing 151(Part 1), 122–129 (2015) 17. Brockmeier, A.J., Choi, J.S., Kriminger, E.G., Francis, J.T., Principe, J.C.: Neural decoding with kernel-based metric learning. Neural Comput. 26(6), 1080–1107 (2014) 18. Zeng, X.,Wang, Q., Zhang, C., Cai, H.: Feature selection based on reliefF and PCA for underwater sound classification. In: Proceedings of 3rd International Conference on Computer Science and Network Technology, pp. 442–445 (2013) |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
https://link.springer.com/content/pdf/10.1007%2F978-3-319-59773-7.pdf |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/a1895f50-9797-40b1-80ff-52236d101c94/download https://red.uao.edu.co/bitstreams/1de70a8f-599f-42c7-96e1-86cc9cfe29ec/download https://red.uao.edu.co/bitstreams/f8a28c28-a8b2-4279-8902-8ba786958783/download https://red.uao.edu.co/bitstreams/b69872f5-18c9-4c84-812d-31e3a8791fdd/download https://red.uao.edu.co/bitstreams/1e0ff30f-1e34-4420-bd39-607637a0f4fc/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 a53b73b7e4ab63daf187fb53f09066fe 6592b8efce6f924dbd16e944869b6309 5ed8d3658bda674f84c0330abf027064 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259780845305856 |
spelling |
Pulgarín Giraldo, Juan Diegovirtual::4143-1Alvarez Meza, Andrés Marino5154abb266e67961a71f8dc28e883cbfRuales Torres, Anderson Albertoc4e9d8430ebbca3f3657cebc87184857Castellanos-Dominguez, Germane7877f60c5ac464594daa00d2d4e8180Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-10-09T21:15:39Z2019-10-09T21:15:39Z20179783319597720 (impreso)9783319597737 (en línea)http://hdl.handle.net/10614/11187https://doi.org/10.1007/978-3-319-59773-7_51This paper presents a feature selection comparison oriented to human action recognition only with the kinematic features of skeleton representation. For this purpose, three relevance methods are used to rank the contribution of kinematic features for classifying an action is employed. Particularly, the method with the best results includes the supervised information regarding the action to find out a relevant set of features, encoding the most discriminative information. Experimental results are obtained on a well-known public data (MSR Action3D). Results are encouraging to use kernel theory methods to get better kinematic feature selection for each action with a good generalization indistinct to the subjectapplication/pdf9 páginasengSpringerBiomedical Applications Based on Natural and Artificial Computing : International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017, Corunna, Spain, June 19-23, 2017, Proceedings, Part II. Páginas 501-509, (2017)Biomedical Applications Based on Natural and Artificial Computing International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2017 Corunna, Spain, June 19–23, 2017 Proceedings, Part IIPulgarin-Giraldo, J. D., Ruales-Torres, A. A., Álvarez-Meza, A. M., & Castellanos-Dominguez, G. (2017, June). Relevant Kinematic Feature Selection to Support Human Action Recognition in MoCap Data. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science(10338, 501-509). Springer, Cham.DOI: 10.1007/978-3-319-59773-7 51Biomedical Applications Based on Natural and Artificial Computing. IWINAC 2017. Lecture Notes in Computer Science1. Kale, G.V., Patil, V.H.: A study of vision based human motion recognition and analysis. IJACI 7(2), 75–92 (2016)2. Mandery, C., Plappert, M., Sol, J.B., Asfour, T.: Dimensionality reduction for whole-body human motion recognition. In: 19th International Conference on Information Fusion, FUSION, Heidelberg, Germany, 5–8 July 2016, pp. 355–362 (2016)3. Althloothi, S., Mahoor, M.H., Zhang, X., Voyles, R.M.: Human activity recognition using multi-features and multiple kernel learning. Pattern Recogn. 47(5), 1800–1812 (2014)4. Li, M., Leung, H., Liu, Z., Zhou, L.: 3D human motion retrieval using graph kernels based on adaptive graph construction. Comput. Graph. Pergamon 54, 104–112 (2016)5. Wang, L., Zhao, G., Cheng, L., Pietikainen, M.: Machine Learning for Vision-Based Motion Analysis, 1st edn. Springer, Heidelberg (2011)6. Wei, X.K., Chai, J.: Modeling 3D human poses from uncalibrated monocular images. In: IEEE 12th International Conference on Computer Vision, ICCV, Kyoto, Japan, 27 September–4 October 2009, pp. 1873–1880 (2009)7. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3D points. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshopps 2010, San Francisco, CA, USA, 13–18 June 2010, pp. 9–14 (2010)8. Ravet, T., Tilmanne, J., d’Alessandro, N.: Hidden Markov model based real-time motion recognition and following. In: Proceedings of the 2014 International Workshop on Movement, Computing, MOCO 2014, pp. 82–87. ACM, New York (2014)9. Jiang, Y., Saxena, A.: Modeling high-dimensional humans for activity anticipation using Gaussian process latent CRFs. In: Robotics: Science and Systems X, University of California, Berkeley, USA, 12–16 July 2014 (2014)10. Garc´ıa-Vega, S., ´Alvarez-Meza, A.M., Castellanos-Dom´ınguez, C.G.: MoCap data segmentation and classification using kernel based multi-channel analysis. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8259, pp. 495–502. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41827-3 6211. Pulgarin-Giraldo, J.D., Alvarez-Meza, A.M., Melo-Betancourt, L.G., Ramos-Bermudez, S., Castellanos-Dominguez, G.: A similarity indicator for differentiating kinematic performance between qualified tennis players. In: Beltr´an-Casta˜n´on, C., Nystr¨om, I., Famili, F. (eds.) CIARP 2016. LNCS, vol. 10125, pp. 309–317. Springer, Cham (2017). doi:10.1007/978-3-319-52277-7 3812. Diaz-Martinez, N.F., Pulgarin-Giraldo, J.D., Vinasco-Isaza, L.E., Agredo, W.: Analysis of the alignment angles and flexion angle in women with patellofemoral pain syndrome. In: Torres, I., Bustamante, J., Sierra, D. (eds.) CLAIB 2016. IFMBE Proceedings. Springer, Singapore (2016)13. Yang, X., Tian, Y.: Effective 3D action recognition using eigenjoints. J. Vis. Commun. Image Represent. 25(1), 2–11 (2014)14. Yang, X., Tian, Y.: Eigenjoints-based action recognition using Na¨ıve-Bayes-Nearest-Neighbor. In: CVPR Workshops, pp. 14–19. IEEE Computer Society (2012)15. Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., Bajcsy, R.: Sequence of the most informative joints (SMIJ): a new representation for human skeletal action recognition. J. Vis. Commun. Image Represent. 25(1), 24–38 (2014)16. Alvarez-Meza, A.M., Velasquez-Martinez, L.F., Castellanos-Dominguez, G.: Timeseries discrimination using feature relevance analysis in motor imagery classification. Neurocomputing 151(Part 1), 122–129 (2015)17. Brockmeier, A.J., Choi, J.S., Kriminger, E.G., Francis, J.T., Principe, J.C.: Neural decoding with kernel-based metric learning. Neural Comput. 26(6), 1080–1107 (2014)18. Zeng, X.,Wang, Q., Zhang, C., Cai, H.: Feature selection based on reliefF and PCA for underwater sound classification. In: Proceedings of 3rd International Conference on Computer Science and Network Technology, pp. 442–445 (2013)Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://link.springer.com/content/pdf/10.1007%2F978-3-319-59773-7.pdfRelevant kinematic feature selection to support human action recognition in MoCap dataCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookPartinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85CinemáticaKinematicsMovimientos mecánicosMechanical movementsCenter kernel alignmentFeature selectionHuman motionKinematicsMotion capture dataPrincipal component analysisRelevanceReliefFPublication33e9b6b4-bd6d-4b86-b500-ae237e1e9a98virtual::4143-133e9b6b4-bd6d-4b86-b500-ae237e1e9a98virtual::4143-1https://scholar.google.com.co/citations?user=Bwuc2BkAAAAJ&hl=envirtual::4143-10000-0002-6409-5104virtual::4143-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000207497virtual::4143-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/a1895f50-9797-40b1-80ff-52236d101c94/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/1de70a8f-599f-42c7-96e1-86cc9cfe29ec/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALRelevant kinematic feature selection to support human action recognition in MoCap data.pdfRelevant kinematic feature selection to support human action recognition in MoCap data.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf322749https://red.uao.edu.co/bitstreams/f8a28c28-a8b2-4279-8902-8ba786958783/downloada53b73b7e4ab63daf187fb53f09066feMD54TEXTRelevant kinematic feature selection to support human action recognition in MoCap data.pdf.txtRelevant kinematic feature selection to support human action recognition in MoCap data.pdf.txtExtracted texttext/plain23576https://red.uao.edu.co/bitstreams/b69872f5-18c9-4c84-812d-31e3a8791fdd/download6592b8efce6f924dbd16e944869b6309MD55THUMBNAILRelevant kinematic feature selection to support human action recognition in MoCap data.pdf.jpgRelevant kinematic feature selection to support human action recognition in MoCap data.pdf.jpgGenerated Thumbnailimage/jpeg11673https://red.uao.edu.co/bitstreams/1e0ff30f-1e34-4420-bd39-607637a0f4fc/download5ed8d3658bda674f84c0330abf027064MD5610614/11187oai:red.uao.edu.co:10614/111872024-03-13 14:15:10.699https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |