Design of a multivariable control system for an additive manufacturing process

Additive Manufacturing, also known as 3D printing, has been used to build objects in different application fields because it allows the creation of complex geometries easily, rapidly, at low cost, and versatile compared to traditional manufacturing. However, these objects still present some drawback...

Full description

Autores:
Mercado Rivera, Francisco José
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14506
Acceso en línea:
https://hdl.handle.net/10614/14506
https://red.uao.edu.co/
Palabra clave:
Doctorado en Ingeniería
Manufactura adictiva
Impresión 3D
Additive Manufacturing
3D printing
Control system
Closed-loop control system
Rights
openAccess
License
Derechos reservados - Universidad Autónoma de Occidente, 2022
id REPOUAO2_b0b236b370ca9517ff4203c5c13167dc
oai_identifier_str oai:red.uao.edu.co:10614/14506
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Design of a multivariable control system for an additive manufacturing process
title Design of a multivariable control system for an additive manufacturing process
spellingShingle Design of a multivariable control system for an additive manufacturing process
Doctorado en Ingeniería
Manufactura adictiva
Impresión 3D
Additive Manufacturing
3D printing
Control system
Closed-loop control system
title_short Design of a multivariable control system for an additive manufacturing process
title_full Design of a multivariable control system for an additive manufacturing process
title_fullStr Design of a multivariable control system for an additive manufacturing process
title_full_unstemmed Design of a multivariable control system for an additive manufacturing process
title_sort Design of a multivariable control system for an additive manufacturing process
dc.creator.fl_str_mv Mercado Rivera, Francisco José
dc.contributor.advisor.none.fl_str_mv Rojas Arciniegas, Álvaro José
Romero Cano, Victor
dc.contributor.author.none.fl_str_mv Mercado Rivera, Francisco José
dc.subject.spa.fl_str_mv Doctorado en Ingeniería
Manufactura adictiva
topic Doctorado en Ingeniería
Manufactura adictiva
Impresión 3D
Additive Manufacturing
3D printing
Control system
Closed-loop control system
dc.subject.armarc.spa.fl_str_mv Impresión 3D
dc.subject.proposal.eng.fl_str_mv Additive Manufacturing
3D printing
Control system
Closed-loop control system
description Additive Manufacturing, also known as 3D printing, has been used to build objects in different application fields because it allows the creation of complex geometries easily, rapidly, at low cost, and versatile compared to traditional manufacturing. However, these objects still present some drawbacks, such as poor surface finishes, low mechanical performance, high variability in the dimensions, and several others. These drawbacks can be associated with some challenges that Additive Manufacturing machines still have, such as the number of processable materials, dependence on human supervision, or the lack of a control system during the manufacturing process. The latter challenge mainly affects the machine's reliability and repeatability; therefore, this work aims to design and implement a multivariable closed-loop control system into an Additive Manufacturing process in order to supervise and control variables involved in the expected behavior of the manufacturing process. For this purpose, this dissertation presents a characterization of three different Additive Manufacturing techniques and an exploratory study of closed-loop controls system applied in Additive Manufacturing. In addition, the design and integration of a multivariable closed-loop control system into an Additive Manufacturing machine and a study of how the performance of the pieces is affected by this integration of closed-loop control systems are presented. The proposed approach of a multivariable closed-loop control system was integrated into a CORE XY Fused Filament Fabrication machine, which involved different feedback and control strategies, such as artificial intelligence control, and classic control, that allowed the creation of objects with better performance.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-07
dc.date.accessioned.none.fl_str_mv 2023-01-23T13:37:51Z
dc.date.available.none.fl_str_mv 2023-01-23T13:37:51Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.eng.fl_str_mv https://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14506
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
url https://hdl.handle.net/10614/14506
https://red.uao.edu.co/
identifier_str_mv Universidad Autónoma de Occidente
Repositorio Educativo Digital
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.cites.none.fl_str_mv Mercado Rivera, F. J. (2022) Design of a multivariable control system for an additive manufacturing process (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://red.uao.edu.co/handle/10614/14506
dc.relation.references.none.fl_str_mv [1] Comisión Económica para América Latina y el Caribe (CEPAL), “Ciencia, tecnología e innovación en la economía digital. La situación de América Latina y el Caribe,” in Segunda Reunión de la Conferencia de Ciencia, Innovación y TIC de la CEPAL, 2016, p. 96.
[2] COLCIENCIAS Departamento Administrativo de Ciencia Tecnología e innovación., “Plan Nacional de Ciencia, Tecnología e Innovación para el Desarrollo del Sector de las Tecnologías de la Información y las Comunicaciones TIC 2017-2022.” p. 302, 2016.
[3] J. Francolí Fontrodona and R. Blanco Díaz, “Estado actual y perspectivas de la impresión en 3D,” Generalitat de Catalunya, p. 15, 2014, doi: 10.3354/meps07572.
[4] I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing: Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., vol. 1. New York: Springer, 2015. doi: 10.1007/978-1-4939-2113-3.
[5] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive Manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos B Eng, vol. 143, no. December 2017, pp. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012.
[6] M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan, and R. Fesperman, “Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes,” vol. 55, no. NIST IR 8036, pp. 1400–1418, 2015, [Online]. Available: http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8036.pdf
[7] W. Gao et al., “The status, challenges, and future of Additive Manufacturing in engineering,” CAD Computer Aided Design, vol. 69, pp. 65–89, 2015, doi: 10.1016/j.cad.2015.04.001.
8] T. Pereira, J. v. Kennedy, and J. Potgieter, “A comparison of traditional manufacturing vs Additive Manufacturing, the best method for the job,” Procedia Manuf, vol. 30, pp. 11–18, 2019, doi: 10.1016/j.promfg.2019.02.003.
[9] “10 of the Biggest Challenges in Scaling Additive Manufacturing for Production [Expert Roundup] - AMFG.” https://amfg.ai/2019/10/08/10- of-the-biggest-challenges-in-scaling-additive-manufacturing-forproduction-expert-roundup/ (accessed Jun. 24, 2020).
[10] A. Dolenc, “An Overview Of Rapid Prototyping Technologies In Manufacturing,” Helsinki University of Technology, pp. 1–23, 1994.
[11] R. Radharamanan, “Additive Manufacturing in manufacturing education: A new course development and implementation,” 124th ASEE Annual Conference and Exposition, vol. 2017-June, 2017, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030546544&partnerID=40&md5=52a59c40b6ae240978c8052b1fcd 619d
[12] J. Gardan, “Additive Manufacturing technologies: state of the art and trends,” Int J Prod Res, vol. 7543, no. August, pp. 1–15, 2015, doi: 10.1080/00207543.2015.1115909.
[13] ISO/ASTM, “Additive Manufacturing-General principles-Terminology,” ISO/ASTM 52900, 2015 [Online]. Available: www.iso.orgwww.astm.org
[14] ASTM International, “F2792-12a - Standard Terminology for Additive Manufacturing Technologies,” Rapid Manufacturing Association, pp. 10–12, 2013, doi: 10.1520/F2792-12A.2.
[15] I. v. Khudyakov, “Fast photopolymerization of acrylate coatings: Achievements and problems,” Prog Org Coat, vol. 121, pp. 151–159, 2018, doi: 10.1016/j.porgcoat.2018.04.030.
[16] H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y. J. Kim, “Lasers in Additive Manufacturing: A review,” International Journal of Precision Engineering and Manufacturing - Green Technology, vol. 4, no. 3, pp. 307–322, 2017, doi: 10.1007/s40684-017-0037-7.
[17] C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography,” US4575330, Mar. 11, 1986 [Online]. Available: https://patentimages.storage.googleapis.com/5c/a0/27/e49642dab99cf6/US4575330.pdf
[18] J.-C. André, A. le Mehauté, and O. de Witte, “Device for producing a model of an industrial part.,” FR2567668, Jul. 16, 1884 [Online]. Available: https://patents.google.com/patent/FR2567668A1/en
[19] 3D Systems Inc., “Our Story | 3D Systems,” 2017. https://www.3dsystems.com/ourstory?smtNoRedir=1&_ga=2.152734138.2087497582.1539697878- 1649132499.1539697878 (accessed Oct. 15, 2018).
[20] F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials, vol. 31, no. 24, pp. 6121–6130, 2010, doi: 10.1016/j.biomaterials.2010.04.050.
[21] M. Sauerhoefer, “Method of post processing stereolithographically produced objects,” US5482659A, Sep. 01, 1996 [Online]. Available: https://patents.google.com/patent/US5482659?oq=Method+of+post+processing+stereolithographically+produced+objects
[22] N. N. Kumbhar and A. v. Mulay, “Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review,” Journal of The Institution of Engineers (India): Series C, vol. 99, no. 4, pp. 481–487, 2016, doi: 10.1007/s40032-016-0340-z.
[23] Carbon, “About Carbon - Who We Are and Our Vision.” https://www.carbon3d.com/about/ (accessed Oct. 16, 2018).
[24] R. Janusziewicz, J. R. Tumbleston, A. L. Quintanilla, S. J. Mecham, and J. M. DeSimone, “Layerless fabrication with continuous liquid interface production,” Proc Natl Acad Sci U S A, vol. 113, no. 42, pp. 11703– 11708, 2016, doi: 10.1073/pnas.1605271113.
25] J. R. Tumbleston et al., “Continuous liquid interface production of 3D objects,” Science (1979), vol. 347, no. 6228, pp. 1349–1352, 2015, doi: 10.1126/science.aaa2397.
[26] F. Calignano et al., “Overview on Additive Manufacturing technologies,” Proceedings of the IEEE, vol. 105, no. 4, pp. 593–612, 2017, doi: 10.1109/JPROC.2016.2625098.
[27] W. Feng et al., “Development of a Drop-On-Demand Micro Dispensing System",” Materials Science Forum, vol. 507, pp. 25–30, 2006.
[28] F. Gao and A. A. Sonin., “Precise deposition of molten microdrops: the physics of digital microfabrication,” Royal Society, vol. 444, no. 1922, 1994.
[29] Stratasys, “3D Printing; Additive Manufacturing.” http://www.stratasys.com/ (accessed Oct. 17, 2018).
[30] T. T. Wohlers and T. Caffrey, Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report. Cary, NC, USA, 2014.
[31] T. Do, P. Kwon, and C. S. Shin, “Process development toward fulldensity stainless steel parts with binder jetting printing,” Int J Mach Tools Manuf, vol. 121, no. November 2016, pp. 50–60, 2017, doi: 10.1016/j.ijmachtools.2017.04.006.
[32] Y. Bai and C. B. Williams, “Binder jetting Additive Manufacturing with a particle-free metal ink as a binder precursor,” Mater Des, vol. 147, pp. 146–156, 2018, doi: 10.1016/j.matdes.2018.03.027.
[33] M. Ziaee and N. B. Crane, “Binder jetting: A review of process, materials, and methods,” Addit Manuf, vol. 28, no. June, pp. 781–801, 2019, doi: 10.1016/j.addma.2019.05.031.
[34] X. Xu, N. Perry, and Y. F. Zhao, “Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes,” Procedia CIRP, vol. 15, pp. 19–25, 2014, doi: 10.1016/j.procir.2014.06.030.
[35] S. S. Crump, “Apparatus and Method for Creating Three-Dimensional Object,” 5121329, Jun. 09, 1992 [Online]. Available: https://patents.google.com/patent/US5121329A/en
[36] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv Manuf, vol. 3, no. 1, pp. 42–53, 2015, doi: 10.1007/s40436-014-0097-7.
[37] H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive Manufacturing methods and modeling approaches: A critical review,” International Journal of Advanced Manufacturing Technology, vol. 83, no. 1–4, pp. 389–405, 2016, doi: 10.1007/s00170-015-7576-2.
[38] R. Jones et al., “Reprap - The replicating rapid prototyper,” Robotica, vol. 29, pp. 177–191, 2011, doi: 10.1017/S026357471000069X.
[39] J. R. Dizon, A. H. Espera Jr, Chen Qiyi, and Advincula Rigoberto C., “Mechanical characterization of 3D-printed polymers,” Addit Manuf, vol. 20, pp. 44–67, Mar. 2018, doi: https://doi.org/10.1016/j.addma.2017.12.002.
[40] T. T. Wohlers and T. Caffrey, Wohlers Report 2011: Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress ReportTitle. Fort Collins, CO, US: Wohlers Associates, Inc., 2011.
[41] J. Sun, W. Zhou, D. Huang, J. Y. H. Fuh, and G. S. Hong, “An Overview of 3D Printing Technologies for Food Fabrication,” Food Bioproc Tech, vol. 8, no. 8, pp. 1605–1615, 2015, doi: 10.1007/s11947-015-1528-6.
[42] G. Vozzi, A. Previti, D. de Rossi, and A. Ahluwalia, “Microsyringe-Based Deposition of Two-Dimensional and Three-Dimensional Polymer Scaffolds with a Well-Defined Geometry for Application to Tissue Engineering,” Tissue Eng, vol. 8, no. 6, pp. 1089–1098, 2002, doi: 10.1089/107632702320934182.
[43] J. Sun, Z. Peng, W. Zhou, J. Y. H. Fuh, G. S. Hong, and A. Chiu, “A Review on 3D Printing for Customized Food Fabrication,” Procedia Manufacturing, vol. 1. pp. 308–319, 2015. doi: 10.1016/j.promfg.2015.09.057.
[44] N. Lobonnote, A. Ronnquist, B. Manum, and P. Ruther, “Additive construction: State-of-the-art, challenges and opportunities,” Autom Constr, vol. 72, pp. 347–366, 2016, doi: https://doi.org/10.1016/j.autcon.2016.08.026.
[45] W. E. Frazier, “Metal Additive Manufacturing: A review,” J Mater Eng Perform, vol. 23, no. 6, pp. 1917–1928, 2014, doi: 10.1007/s11665-014- 0958-z.
[46] H. Attar, M. Calin, L. C. Zhang, S. Scudino, and J. Eckert, “Manufacture by selective laser melting and mechanical behavior of commercially pure titanium,” Materials Science and Engineering A, vol. 593. pp. 170–177, 2014. doi: 10.1016/j.msea.2013.11.038.
[47] Y. Oshida, “10 - Fabrication Technologies,” in Bioscience and Bioengineering of Titanium Materials , 2nd ed., Oxford: Elsevier, 2013, pp. 303–340. doi: https://doi.org/10.1016/B978-0-444-62625-7.00010-8.
[48] G. Casalino, S. L. Campanelli, N. Contuzzi, and A. D. Ludovico, “Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel,” Opt Laser Technol, vol. 65, pp. 151–158, 2015, doi: 10.1016/j.optlastec.2014.07.021.
[49] J. P. Kruth, L. Froyen, J. van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, “Selective laser melting of iron-based powder,” J Mater Process Technol, vol. 149, no. 1–3, pp. 616–622, 2004, doi: 10.1016/j.jmatprotec.2003.11.051.
[50] W. Meiners, K. D. Wissenbach, and A. D. Gasser, “Shaped body especially prototype or replacement part production,” DE19649849C1, Dec. 02, 1998
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Autónoma de Occidente, 2022
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Universidad Autónoma de Occidente, 2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 179 páginas : ilustraciones
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Autónoma de Occidente
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Cali
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/2742115f-2b68-44bd-8433-512310c3552a/download
https://red.uao.edu.co/bitstreams/75b5bec7-7085-4717-a1a0-c29815b99a4e/download
https://red.uao.edu.co/bitstreams/93f8edf6-93c4-4ed7-96d3-cd7dd8711c92/download
https://red.uao.edu.co/bitstreams/fb262826-4023-43fc-a39c-7bd8278494a8/download
https://red.uao.edu.co/bitstreams/36d8a402-6341-4b5e-9940-e3e2f28cfbb5/download
https://red.uao.edu.co/bitstreams/2bfd2b82-9f84-4984-bc07-28de1c559ff6/download
https://red.uao.edu.co/bitstreams/d423ba3c-672d-4201-b8f2-1e377e142468/download
bitstream.checksum.fl_str_mv 0ea7693eaff6f63fda6e67f9ecf4412f
b053acbe02ea528b5aa51963dcd5eb33
20b5ba22b1117f71589c7318baa2c560
5460d7252b8f31620cfb7d0ffa4fbb4d
55c7f632528328801392f2ed91ed337b
b1cb165fc1277c91d65119f1e16ec8f5
0151e1d2814e757d85f75f1351c0b218
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259959675748352
spelling Rojas Arciniegas, Álvaro Josévirtual::4477-1Romero Cano, Victor03522958c937aa89475211eb4f1a4dc8Mercado Rivera, Francisco Josée588d61fb626619caf2a9ada6dc2d6242023-01-23T13:37:51Z2023-01-23T13:37:51Z2022-12-07https://hdl.handle.net/10614/14506Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/Additive Manufacturing, also known as 3D printing, has been used to build objects in different application fields because it allows the creation of complex geometries easily, rapidly, at low cost, and versatile compared to traditional manufacturing. However, these objects still present some drawbacks, such as poor surface finishes, low mechanical performance, high variability in the dimensions, and several others. These drawbacks can be associated with some challenges that Additive Manufacturing machines still have, such as the number of processable materials, dependence on human supervision, or the lack of a control system during the manufacturing process. The latter challenge mainly affects the machine's reliability and repeatability; therefore, this work aims to design and implement a multivariable closed-loop control system into an Additive Manufacturing process in order to supervise and control variables involved in the expected behavior of the manufacturing process. For this purpose, this dissertation presents a characterization of three different Additive Manufacturing techniques and an exploratory study of closed-loop controls system applied in Additive Manufacturing. In addition, the design and integration of a multivariable closed-loop control system into an Additive Manufacturing machine and a study of how the performance of the pieces is affected by this integration of closed-loop control systems are presented. The proposed approach of a multivariable closed-loop control system was integrated into a CORE XY Fused Filament Fabrication machine, which involved different feedback and control strategies, such as artificial intelligence control, and classic control, that allowed the creation of objects with better performance.Tesis (Doctor en Ingeniería)-- Universidad Autónoma de Occidente, 2022DoctoradoDoctor(a) en Ingeniería179 páginas : ilustracionesapplication/pdfengUniversidad Autónoma de OccidenteDoctorado en IngenieríaFacultad de IngenieríaCaliDerechos reservados - Universidad Autónoma de Occidente, 2022https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Doctorado en IngenieríaManufactura adictivaImpresión 3DAdditive Manufacturing3D printingControl systemClosed-loop control systemDesign of a multivariable control system for an additive manufacturing processTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06Textinfo:eu-repo/semantics/doctoralThesishttps://purl.org/redcol/resource_type/TDhttp://purl.org/coar/version/c_71e4c1898caa6e32Mercado Rivera, F. J. (2022) Design of a multivariable control system for an additive manufacturing process (Tesis). Universidad Autónoma de Occidente. Cali. Colombia. https://red.uao.edu.co/handle/10614/14506[1] Comisión Económica para América Latina y el Caribe (CEPAL), “Ciencia, tecnología e innovación en la economía digital. La situación de América Latina y el Caribe,” in Segunda Reunión de la Conferencia de Ciencia, Innovación y TIC de la CEPAL, 2016, p. 96.[2] COLCIENCIAS Departamento Administrativo de Ciencia Tecnología e innovación., “Plan Nacional de Ciencia, Tecnología e Innovación para el Desarrollo del Sector de las Tecnologías de la Información y las Comunicaciones TIC 2017-2022.” p. 302, 2016.[3] J. Francolí Fontrodona and R. Blanco Díaz, “Estado actual y perspectivas de la impresión en 3D,” Generalitat de Catalunya, p. 15, 2014, doi: 10.3354/meps07572.[4] I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing: Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, 2nd ed., vol. 1. New York: Springer, 2015. doi: 10.1007/978-1-4939-2113-3.[5] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive Manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos B Eng, vol. 143, no. December 2017, pp. 172–196, 2018, doi: 10.1016/j.compositesb.2018.02.012.[6] M. Mani, B. Lane, A. Donmez, S. Feng, S. Moylan, and R. Fesperman, “Measurement Science Needs for Real-time Control of Additive Manufacturing Powder Bed Fusion Processes,” vol. 55, no. NIST IR 8036, pp. 1400–1418, 2015, [Online]. Available: http://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8036.pdf[7] W. Gao et al., “The status, challenges, and future of Additive Manufacturing in engineering,” CAD Computer Aided Design, vol. 69, pp. 65–89, 2015, doi: 10.1016/j.cad.2015.04.001.8] T. Pereira, J. v. Kennedy, and J. Potgieter, “A comparison of traditional manufacturing vs Additive Manufacturing, the best method for the job,” Procedia Manuf, vol. 30, pp. 11–18, 2019, doi: 10.1016/j.promfg.2019.02.003.[9] “10 of the Biggest Challenges in Scaling Additive Manufacturing for Production [Expert Roundup] - AMFG.” https://amfg.ai/2019/10/08/10- of-the-biggest-challenges-in-scaling-additive-manufacturing-forproduction-expert-roundup/ (accessed Jun. 24, 2020).[10] A. Dolenc, “An Overview Of Rapid Prototyping Technologies In Manufacturing,” Helsinki University of Technology, pp. 1–23, 1994.[11] R. Radharamanan, “Additive Manufacturing in manufacturing education: A new course development and implementation,” 124th ASEE Annual Conference and Exposition, vol. 2017-June, 2017, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030546544&partnerID=40&md5=52a59c40b6ae240978c8052b1fcd 619d[12] J. Gardan, “Additive Manufacturing technologies: state of the art and trends,” Int J Prod Res, vol. 7543, no. August, pp. 1–15, 2015, doi: 10.1080/00207543.2015.1115909.[13] ISO/ASTM, “Additive Manufacturing-General principles-Terminology,” ISO/ASTM 52900, 2015 [Online]. Available: www.iso.orgwww.astm.org[14] ASTM International, “F2792-12a - Standard Terminology for Additive Manufacturing Technologies,” Rapid Manufacturing Association, pp. 10–12, 2013, doi: 10.1520/F2792-12A.2.[15] I. v. Khudyakov, “Fast photopolymerization of acrylate coatings: Achievements and problems,” Prog Org Coat, vol. 121, pp. 151–159, 2018, doi: 10.1016/j.porgcoat.2018.04.030.[16] H. Lee, C. H. J. Lim, M. J. Low, N. Tham, V. M. Murukeshan, and Y. J. Kim, “Lasers in Additive Manufacturing: A review,” International Journal of Precision Engineering and Manufacturing - Green Technology, vol. 4, no. 3, pp. 307–322, 2017, doi: 10.1007/s40684-017-0037-7.[17] C. W. Hull, “Apparatus for production of three-dimensional objects by stereolithography,” US4575330, Mar. 11, 1986 [Online]. Available: https://patentimages.storage.googleapis.com/5c/a0/27/e49642dab99cf6/US4575330.pdf[18] J.-C. André, A. le Mehauté, and O. de Witte, “Device for producing a model of an industrial part.,” FR2567668, Jul. 16, 1884 [Online]. Available: https://patents.google.com/patent/FR2567668A1/en[19] 3D Systems Inc., “Our Story | 3D Systems,” 2017. https://www.3dsystems.com/ourstory?smtNoRedir=1&_ga=2.152734138.2087497582.1539697878- 1649132499.1539697878 (accessed Oct. 15, 2018).[20] F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials, vol. 31, no. 24, pp. 6121–6130, 2010, doi: 10.1016/j.biomaterials.2010.04.050.[21] M. Sauerhoefer, “Method of post processing stereolithographically produced objects,” US5482659A, Sep. 01, 1996 [Online]. Available: https://patents.google.com/patent/US5482659?oq=Method+of+post+processing+stereolithographically+produced+objects[22] N. N. Kumbhar and A. v. Mulay, “Post Processing Methods used to Improve Surface Finish of Products which are Manufactured by Additive Manufacturing Technologies: A Review,” Journal of The Institution of Engineers (India): Series C, vol. 99, no. 4, pp. 481–487, 2016, doi: 10.1007/s40032-016-0340-z.[23] Carbon, “About Carbon - Who We Are and Our Vision.” https://www.carbon3d.com/about/ (accessed Oct. 16, 2018).[24] R. Janusziewicz, J. R. Tumbleston, A. L. Quintanilla, S. J. Mecham, and J. M. DeSimone, “Layerless fabrication with continuous liquid interface production,” Proc Natl Acad Sci U S A, vol. 113, no. 42, pp. 11703– 11708, 2016, doi: 10.1073/pnas.1605271113.25] J. R. Tumbleston et al., “Continuous liquid interface production of 3D objects,” Science (1979), vol. 347, no. 6228, pp. 1349–1352, 2015, doi: 10.1126/science.aaa2397.[26] F. Calignano et al., “Overview on Additive Manufacturing technologies,” Proceedings of the IEEE, vol. 105, no. 4, pp. 593–612, 2017, doi: 10.1109/JPROC.2016.2625098.[27] W. Feng et al., “Development of a Drop-On-Demand Micro Dispensing System",” Materials Science Forum, vol. 507, pp. 25–30, 2006.[28] F. Gao and A. A. Sonin., “Precise deposition of molten microdrops: the physics of digital microfabrication,” Royal Society, vol. 444, no. 1922, 1994.[29] Stratasys, “3D Printing; Additive Manufacturing.” http://www.stratasys.com/ (accessed Oct. 17, 2018).[30] T. T. Wohlers and T. Caffrey, Wohlers Report 2014: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report. Cary, NC, USA, 2014.[31] T. Do, P. Kwon, and C. S. Shin, “Process development toward fulldensity stainless steel parts with binder jetting printing,” Int J Mach Tools Manuf, vol. 121, no. November 2016, pp. 50–60, 2017, doi: 10.1016/j.ijmachtools.2017.04.006.[32] Y. Bai and C. B. Williams, “Binder jetting Additive Manufacturing with a particle-free metal ink as a binder precursor,” Mater Des, vol. 147, pp. 146–156, 2018, doi: 10.1016/j.matdes.2018.03.027.[33] M. Ziaee and N. B. Crane, “Binder jetting: A review of process, materials, and methods,” Addit Manuf, vol. 28, no. June, pp. 781–801, 2019, doi: 10.1016/j.addma.2019.05.031.[34] X. Xu, N. Perry, and Y. F. Zhao, “Energy and Material Flow Analysis of Binder-jetting Additive Manufacturing Processes,” Procedia CIRP, vol. 15, pp. 19–25, 2014, doi: 10.1016/j.procir.2014.06.030.[35] S. S. Crump, “Apparatus and Method for Creating Three-Dimensional Object,” 5121329, Jun. 09, 1992 [Online]. Available: https://patents.google.com/patent/US5121329A/en[36] O. A. Mohamed, S. H. Masood, and J. L. Bhowmik, “Optimization of fused deposition modeling process parameters: a review of current research and future prospects,” Adv Manuf, vol. 3, no. 1, pp. 42–53, 2015, doi: 10.1007/s40436-014-0097-7.[37] H. Bikas, P. Stavropoulos, and G. Chryssolouris, “Additive Manufacturing methods and modeling approaches: A critical review,” International Journal of Advanced Manufacturing Technology, vol. 83, no. 1–4, pp. 389–405, 2016, doi: 10.1007/s00170-015-7576-2.[38] R. Jones et al., “Reprap - The replicating rapid prototyper,” Robotica, vol. 29, pp. 177–191, 2011, doi: 10.1017/S026357471000069X.[39] J. R. Dizon, A. H. Espera Jr, Chen Qiyi, and Advincula Rigoberto C., “Mechanical characterization of 3D-printed polymers,” Addit Manuf, vol. 20, pp. 44–67, Mar. 2018, doi: https://doi.org/10.1016/j.addma.2017.12.002.[40] T. T. Wohlers and T. Caffrey, Wohlers Report 2011: Additive Manufacturing and 3D Printing State of the Industry Annual Worldwide Progress ReportTitle. Fort Collins, CO, US: Wohlers Associates, Inc., 2011.[41] J. Sun, W. Zhou, D. Huang, J. Y. H. Fuh, and G. S. Hong, “An Overview of 3D Printing Technologies for Food Fabrication,” Food Bioproc Tech, vol. 8, no. 8, pp. 1605–1615, 2015, doi: 10.1007/s11947-015-1528-6.[42] G. Vozzi, A. Previti, D. de Rossi, and A. Ahluwalia, “Microsyringe-Based Deposition of Two-Dimensional and Three-Dimensional Polymer Scaffolds with a Well-Defined Geometry for Application to Tissue Engineering,” Tissue Eng, vol. 8, no. 6, pp. 1089–1098, 2002, doi: 10.1089/107632702320934182.[43] J. Sun, Z. Peng, W. Zhou, J. Y. H. Fuh, G. S. Hong, and A. Chiu, “A Review on 3D Printing for Customized Food Fabrication,” Procedia Manufacturing, vol. 1. pp. 308–319, 2015. doi: 10.1016/j.promfg.2015.09.057.[44] N. Lobonnote, A. Ronnquist, B. Manum, and P. Ruther, “Additive construction: State-of-the-art, challenges and opportunities,” Autom Constr, vol. 72, pp. 347–366, 2016, doi: https://doi.org/10.1016/j.autcon.2016.08.026.[45] W. E. Frazier, “Metal Additive Manufacturing: A review,” J Mater Eng Perform, vol. 23, no. 6, pp. 1917–1928, 2014, doi: 10.1007/s11665-014- 0958-z.[46] H. Attar, M. Calin, L. C. Zhang, S. Scudino, and J. Eckert, “Manufacture by selective laser melting and mechanical behavior of commercially pure titanium,” Materials Science and Engineering A, vol. 593. pp. 170–177, 2014. doi: 10.1016/j.msea.2013.11.038.[47] Y. Oshida, “10 - Fabrication Technologies,” in Bioscience and Bioengineering of Titanium Materials , 2nd ed., Oxford: Elsevier, 2013, pp. 303–340. doi: https://doi.org/10.1016/B978-0-444-62625-7.00010-8.[48] G. Casalino, S. L. Campanelli, N. Contuzzi, and A. D. Ludovico, “Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel,” Opt Laser Technol, vol. 65, pp. 151–158, 2015, doi: 10.1016/j.optlastec.2014.07.021.[49] J. P. Kruth, L. Froyen, J. van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers, “Selective laser melting of iron-based powder,” J Mater Process Technol, vol. 149, no. 1–3, pp. 616–622, 2004, doi: 10.1016/j.jmatprotec.2003.11.051.[50] W. Meiners, K. D. Wissenbach, and A. D. Gasser, “Shaped body especially prototype or replacement part production,” DE19649849C1, Dec. 02, 1998Comunidad generalPublicationhttps://scholar.google.com/citations?user=Jk__bOIAAAAJ&hl=envirtual::4477-10000-0001-9242-799Xvirtual::4477-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000657956virtual::4477-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4477-15d4f6e65-758a-44ee-be02-f12af232a478virtual::4477-1ORIGINALT10496_Design of a multivariable control system for an additive manufacturing process .pdfT10496_Design of a multivariable control system for an additive manufacturing process .pdfTexto archivo completo del trabajo de grado, PDFapplication/pdf5386133https://red.uao.edu.co/bitstreams/2742115f-2b68-44bd-8433-512310c3552a/download0ea7693eaff6f63fda6e67f9ecf4412fMD51TA10496_Autorización trabajo de grado.pdfTA10496_Autorización trabajo de grado.pdfAutorización publicación del trabajo de gradoapplication/pdf218555https://red.uao.edu.co/bitstreams/75b5bec7-7085-4717-a1a0-c29815b99a4e/downloadb053acbe02ea528b5aa51963dcd5eb33MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/93f8edf6-93c4-4ed7-96d3-cd7dd8711c92/download20b5ba22b1117f71589c7318baa2c560MD53TEXTT10496_Design of a multivariable control system for an additive manufacturing process .pdf.txtT10496_Design of a multivariable control system for an additive manufacturing process .pdf.txtExtracted texttext/plain267276https://red.uao.edu.co/bitstreams/fb262826-4023-43fc-a39c-7bd8278494a8/download5460d7252b8f31620cfb7d0ffa4fbb4dMD54TA10496_Autorización trabajo de grado.pdf.txtTA10496_Autorización trabajo de grado.pdf.txtExtracted texttext/plain4080https://red.uao.edu.co/bitstreams/36d8a402-6341-4b5e-9940-e3e2f28cfbb5/download55c7f632528328801392f2ed91ed337bMD56THUMBNAILT10496_Design of a multivariable control system for an additive manufacturing process .pdf.jpgT10496_Design of a multivariable control system for an additive manufacturing process .pdf.jpgGenerated Thumbnailimage/jpeg6737https://red.uao.edu.co/bitstreams/2bfd2b82-9f84-4984-bc07-28de1c559ff6/downloadb1cb165fc1277c91d65119f1e16ec8f5MD55TA10496_Autorización trabajo de grado.pdf.jpgTA10496_Autorización trabajo de grado.pdf.jpgGenerated Thumbnailimage/jpeg13243https://red.uao.edu.co/bitstreams/d423ba3c-672d-4201-b8f2-1e377e142468/download0151e1d2814e757d85f75f1351c0b218MD5710614/14506oai:red.uao.edu.co:10614/145062024-03-14 10:58:56.331https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Autónoma de Occidente, 2022open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K