Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature

A tunable multi-wavelength fiber laser is proposed and demonstrated based on two main elements: an erbium-doped fiber ring cavity and compact intermodal fiber structure. The modal fiber interferometer is fabricated using the cost-effective arc splice technique between conventional single-mode fiber...

Full description

Autores:
Garcia Mina, Diego Felipe
Rojas-Laguna, Roberto
López Dieguez, Yanelis
Estudillo-Ayala, Julián Moisés
Jauregui-Vazquez, Daniel
Herrera Piad, Luis
Sierra Hernández, Juan M.
Gallegos-Arellano, Eloisa
Hernández García, Juan C.
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11399
Acceso en línea:
http://hdl.handle.net/10614/11399
https://doi.org/10.3390/app8081337
Palabra clave:
Fibra óptica
Fiber optics
Ring laser cavity
Fiber laser
Tunable multi-wavelength laser
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_aef53a1f569d4138b691d62e92844c2a
oai_identifier_str oai:red.uao.edu.co:10614/11399
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature
title Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature
spellingShingle Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature
Fibra óptica
Fiber optics
Ring laser cavity
Fiber laser
Tunable multi-wavelength laser
title_short Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature
title_full Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature
title_fullStr Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature
title_full_unstemmed Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature
title_sort Erbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature
dc.creator.fl_str_mv Garcia Mina, Diego Felipe
Rojas-Laguna, Roberto
López Dieguez, Yanelis
Estudillo-Ayala, Julián Moisés
Jauregui-Vazquez, Daniel
Herrera Piad, Luis
Sierra Hernández, Juan M.
Gallegos-Arellano, Eloisa
Hernández García, Juan C.
dc.contributor.author.none.fl_str_mv Garcia Mina, Diego Felipe
Rojas-Laguna, Roberto
López Dieguez, Yanelis
Estudillo-Ayala, Julián Moisés
Jauregui-Vazquez, Daniel
Herrera Piad, Luis
Sierra Hernández, Juan M.
Gallegos-Arellano, Eloisa
Hernández García, Juan C.
dc.subject.armarc.spa.fl_str_mv Fibra óptica
topic Fibra óptica
Fiber optics
Ring laser cavity
Fiber laser
Tunable multi-wavelength laser
dc.subject.armarc.eng.fl_str_mv Fiber optics
dc.subject.proposal.none.fl_str_mv Ring laser cavity
dc.subject.proposal.eng.fl_str_mv Fiber laser
Tunable multi-wavelength laser
description A tunable multi-wavelength fiber laser is proposed and demonstrated based on two main elements: an erbium-doped fiber ring cavity and compact intermodal fiber structure. The modal fiber interferometer is fabricated using the cost-effective arc splice technique between conventional single-mode fiber and microfiber. This optical fiber structure acts as a wavelength filter, operated in reflection mode. When the refractive index and temperature variations are applied over the fiber filter, the ring laser cavity provides several quad-wavelength laser spectra. The multi-wavelength spectra are tuned into the C-band with a resolution of 0.05 nm. In addition, the spectra are symmetric with minimal power difference between the lasing modes involved, and the average of the side mode suppression ratio is close to 37 dB. This laser offers low-cost implementation, low wavelength drift, and high power stability, as well as an effect of easy controllability regarding tuned multi-wavelength
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-08-10
dc.date.accessioned.none.fl_str_mv 2019-11-05T20:55:41Z
dc.date.available.none.fl_str_mv 2019-11-05T20:55:41Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2076-3417
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11399
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/app8081337
identifier_str_mv 2076-3417
url http://hdl.handle.net/10614/11399
https://doi.org/10.3390/app8081337
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationissue.none.fl_str_mv 8
dc.relation.citationvolume.none.fl_str_mv 8
dc.relation.cites.spa.fl_str_mv Lopez-Dieguez, Y., Estudillo-Ayala, J., Jauregui-Vazquez, D., Herrera-Piad, L., Sierra-Hernandez, J., Garcia-Mina, D., ... & Rojas-Laguna, R. (2018). Erbium Ring Fiber Laser Cavity Based on Tip Modal Interferometer and Its Tunable Multi-Wavelength Response for Refractive Index and Temperature. Applied Sciences, 8(8), 1337. doi:10.3390/app8081337
dc.relation.ispartofjournal.eng.fl_str_mv Applied Sciences, volumen 8, issue 8, páginas 1-11 (1337), (august, 2018)
dc.relation.references.none.fl_str_mv 1. Yin, Z.; Gao, L.; Liu, S.; Zhang, L.; Wu, F.; Chen, L.; Chen, X. Fiber Ring Laser Sensor for Temperature
Measurement. J. Lightw. Technol. 2010, 28, 3403–3408. [CrossRef] 2. Xu, Y.; Zhang, M.; Lu, P.; Mihailov, S.; Bao, X. Multi-parameter sensor based on random fiber lasers. AIP Adv. 2016, 6, 95009. [CrossRef]
3. Liu, Z.; Li, Y.; Liu, Y.; Tan, Z.-W.; Jian, S. A Static Axial Strain Fiber Ring Cavity Laser Sensor Based on Multi-Modal Interference. IEEE Photonics Technol. Lett. 2013, 25, 2050–2053. [CrossRef]
4. Bai, X.; Fan, D.; Wang, S.; Pu, S.; Zeng, X. Strain Sensor Based on Fiber Ring Cavity Laser With Photonic Crystal Fiber In-Line Mach–Zehnder Interferometer. IEEE Photonics J. 2014, 6, 1–8. [CrossRef]
5. Gonzalez-Reyna,M.A.; Alvarado-Mendez, E.; Estudillo-Ayala, J.M.; Vargas-Rodriguez, E.; Sosa-Morales,M.E.; Sierra-Hernandez, J.M.; Jauregui-Vazquez, D.; Rojas-Laguna, R. Laer Temperature Sensor Based on a Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2015, 27, 1141–1144. [CrossRef]
6. Sun, C.; Dong, Y.;Wang, M.; Jian, S. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel. Opt. Fiber Technol. 2018, 41, 212–216. [CrossRef]
7. Liang, L.; Ren, G.; Yin, B.; Peng,W.; Liang, X.; Jian, S. Refractive Index and Temperature Sensor Based on Fiber Ring Laser with STCS Fiber Structure. IEEE Photonics Technol. Lett. 2014, 26, 2201–2204. [CrossRef]
8. Liu, Z.; Tan, Z.; Yin, B.; Bai, Y.; Jian, S. Refractive index sensing characterization of a singlemode–claddingless–singlemode fiber structure based fiber ring cavity laser. Opt. Express 2014, 22, 5037. [CrossRef] [PubMed]
9. Zhang, Q.; Chang, J.;Wang, Q.;Wang, Z.;Wang, F.; Qin, Z. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection. Sensors 2017, 18, 42. [CrossRef] [PubMed]
10. Allen, T.J.; Beard, P.C. Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Opt. Lett. 2006, 31, 3462. [CrossRef] [PubMed]
11. Boroon, M.; Hitam, S.; Mahdi, M.A.; Sahbudin, R.K.Z.; Seyedzadeh, S. Performance of Multi-Wavelength Erbium Doped Fiber Laser on Free Space Optical Medium. In Proceedings of the IEEE 5th International Conference on Photonics, Kuala Lumpur, Malaysia, 2–4 September 2014; pp. 2–4.
12. Xu, D.; Cao, Y.; Zhao, A.; Tong, Z. A microwave photonic filter based on multi-wavelength fiber laser and infinite impulse response. Optoelectron. Lett. 2016, 12, 325–328. [CrossRef]
13. Wang, C.; Yao, J. Fiber Bragg gratings for microwave photonics subsystems. Opt. Express 2013, 21, 22868. [CrossRef] [PubMed]
14. Jauregui-Vazquez, D.; Rojas-Laguna, R.; Estudillo-Ayala, J.M.; Hernandez-Garcia, J.C.; Lopez-Dieguez, Y.; Sierra-Hernandez, J.M. A multi-wavelength erbium-doped fiber ring laser using an intrinsic Fabry–Perot interferometer. Laser Phys. 2016, 26, 105105. [CrossRef]
15. He, W.; Zhu, L.; Dong, M.; Lou, X.; Luo, F. Wavelength-switchable C-band erbium-doped fibre laser incorporating all-fibre Fabry–Perot interferometer fabricated by chemical etching. J. Mod. Opt. 2018, 65, 818–824. [CrossRef]
16. Sierra-Hernandez, J.M.; Rojas-Laguna, R.; Vargas-Rodriguez, E.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Guzmán-Chávez, A.D.; Zaca-Moran, P. A tunable multi-wavelength erbium doped fiber laser based on a Mach–Zehnder interferometer and photonic crystal fiber. Laser Phys. 2013, 23, 125103. [CrossRef]
17. Mirza, M.A.; Stewart, G. Theory and design of a simple tunable Sagnac loop filter for multiwavelength fiber lasers. Appl. Opt. 2008, 47, 5242–5252. [CrossRef] [PubMed]
18. Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J.M.; Rodríguez-Carreón, V.C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R.I.; Castillo-Guzman, A.A.; Rojas-Laguna, R. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer. Laser Phys. 2018, 28, 035107. [CrossRef]
19. Chow, J.; Town, G.; Eggleton, B.; Ibsen, M.; Sugden, K.; Bennion, I. Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters. IEEE Photonics Technol. Lett. 1996, 8, 60–62. [CrossRef]
20. Sun, G.; Moon, D.S.; Lin, A.; Han,W.-T.; Chung, Y. Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror. Opt. Express 2008, 16, 3652. [CrossRef] [PubMed]
21. Han, Y.G.; Kim, C.S.; Kang, J.U.; Paek, U.C.; Chung, Y. Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings. IEEE Photonics Technol. Lett. 2003, 15, 383–385. [CrossRef]
22. Zhang, Z.X.; Xu, K.; Wu, J.; Hong, X.B.; Lin, J.T. Multiwavelength figure-of-eight fiber laser with a nonlinear optical loop mirror. Laser Phys. Lett. 2008, 5, 213–216. [CrossRef]
23. Zhang, L.; Xu, Y.; Lu, P.; Mihailov, S.; Chen, L. Multi-Wavelength Brillouin Random Fiber Laser via Distributed Feedback from a Random Fiber Grating. J. Lightw. Technol. 2018, 36, 2122–2128. [CrossRef]
24. Liu, J.; Yao, J.; Yao, J.; Yeap, T.H. Single-longitudinal-mode multiwavelength fiber ring laser. IEEE Photonics Technol. Lett. 2004, 16, 1020–1022. [CrossRef]
25. Liu, X.; Han, D.; Sun, Z.; Zeng, C.; Lu, H.; Mao, D.; Cui, Y.; Wang, F. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep. 2013, 3, 2718. [CrossRef] [PubMed]
26. Yeh, C.H.; Chow, C.W.;Wu, Y.F.; Shih, F.Y.;Wang, C.H.; Chi, S. Multiwavelength erbium-doped fiber ring laser employing Fabry–Perot etalon inside cavity operating in room temperature. Opt. Fiber Technol. 2009, 15, 344–347. [CrossRef]
27. Lee, H.J.; Kim, S.-J.; Ko, M.O.; Kim, J.-H.; Jeon, M.Y. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor. Opt. Commun. 2018, 410, 637–642. [CrossRef]
28. Ummy, M.A.; Madamopoulos, N.; Dorsinville, R. Tunable multi-wavelength SOA based linear cavity fiber laser source for optical communications applications. In Proceedings of the 2011 International Conference on Communications and Information Technology (ICCIT), Venice, Italy, 27–29 April 2011; pp. 87–91.
29. Li, Y.; Tian, J.; Quan, M.; Yao, Y. Tunable Multiwavelength Er-Doped Fiber Laser with a Two-Stage Lyot Filter. IEEE Photonics Technol. Lett. 2017, 29, 287–290. [CrossRef]
30. He,W.; Li, D.; Zhu, L.; Dong, M.; Luo, F. Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach–Zehnder Interferometer with Optical Fiber Delay Line. IEEE Photonics J. 2017, 9, 1–8. [CrossRef]
31. Xiao, F.; Alameh, K.; Lee, Y.T. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers an Opto-VLSI processor and optical amplifiers. Opt. Express 2009, 17, 910–912. [CrossRef] [PubMed]
32. Zhou, M.; Ren, F.; Li, J.; Ge, D.; Zhang, Y.; Chen, Z.; He, Y. Tunable Multi-Wavelength EDF Laser Based on Sagnac Interferometer with Weakly-Coupled FMF Delay Line. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; pp. 7–9.
33. Luo, A.-P.; Luo, Z.-C.; Xu, W.-C. Tunable and switchable Multiwavelength Erbium-Doped Fiber Ring Laser Based on a Modified Dual-Pass. Opt. Lett. 2009, 34, 2135–2137. [CrossRef] [PubMed]
34. Lian, Y.; Ren, G.; Zhu, B.; Gao, Y.; Jian, W.; Ren, W.; Jian, S. Switchable multiwavelength fiber laser using erbium-doped twin-core fiber and nonlinear polarization rotation. Laser Phys. Lett. 2017, 14, 055101. [CrossRef]
35. Yan, N.; Han, X.; Chang, P.; Huang, L.; Gao, F.; Yu, X.; Zhang, W.; Zhang, Z.; Zhang, G.; Xu, J. Tunable dual-wavelength fiber laser with unique gain system based on in-fiber acousto-optic Mach–Zehnder interferometer. Opt. Express 2017, 25, 27609. [CrossRef] [PubMed]
36. Zulkhairi, A.S.; Azzuhri, S.R.; Shaharuddin, R.A.; Jaddoa, M.F.; Salim, M.A.M.; Jasim, A.A.; Ahmad, H. Switchable multiwavelength ytterbium-doped fiber laser using a non-adiabatic microfiber interferometer. Laser Phys. 2017, 27, 055104. [CrossRef]
37. Ahmad, H.; Jasim, A.A. Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer. Opt. Fiber Technol. 2017, 36, 105–114. [CrossRef]
38. Xu, Y.; Ren, L.; Ma, C.; Kong, X.; Ren, K.; Song, F. Stable and uniform multiwavelength erbium-doped fiber laser based on a microfiber knot resonator with a Sagnac loop reflector. J. Opt. 2017, 46, 420–424. [CrossRef]
39. Birks, T.A.; Li, Y.W. The Shape of Fiber Tapers. J. Lightw. Technol. 1992, 10, 432–438. [CrossRef]
40. Lopez-Dieguez, Y.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Sierra-Hernandez, J.M.; Herrera-Piad, L.A.; Cruz-Duarte, J.M.; Hernandez-Garcia, J.C.; Rojas-Laguna, R. Multi-mode all Fiber Interferometer based on Fabry-Perot Multi-cavity and its Temperature Response. Opt. Int. J. Light Electron Opt. 2017, 147, 232–239. [CrossRef]
41. Lopez-Dieguez, Y.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Herrera-Piad, L.A.; Sierra-Hernandez, J.M.; Hernandez-Garcia, J.C.; Bienchetti, M.; Reyes-Ayona, J.R.; Rojas-Laguna, R. Tip Fiber-Optic Intermodal Interferometer for Refractive Index Sensing. IEEE Photonics Technol. Lett. 2018, 30, 15–18. [CrossRef]
42. Liu, X.; Yang, X.; Lu, F.; Ng, J.; Zhou, X.; Lu, C. Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber. Opt. Express 2005, 13, 142–147. [CrossRef] [PubMed]
43. Qhumayo, S.; Manuel, R.M.; Grobler, M. Wavelength and power stabilization of a three wavelength Erbium doped fiber laser using a nonlinear optical loop mirror. In Proceedings of the AFRICON, Addis Ababa, Ethiopia, 14–17 September 2015; pp. 1–4.
44. Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009, 94, 131110. [CrossRef]
45. Chen, D.; Qin, S.; He, S. Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains. Opt. Express 2007, 15, 930–935. [CrossRef] [PubMed]
46. Iu, L.; Ang, Z.H.Y. Tunable and channel spacing precisely controlled comb filters based on the fused taper technology. Opt. Express 2018, 26, 265–272.
47. Ummy, M.A.; Madamopoulos, N.; Joyo, A.; Kouar, M.; Dorsinville, R. Tunable multi-wavelength SOA based linear cavity dual-output port fiber laser using Lyot-Sagnac loop mirror. Opt. Express 2011, 19, 3202–3211. [CrossRef] [PubMed]
48. Wang, Z.; Wang, T.; Ma, W.; Jia, Q.; Su, Q.; Zhang, P. Optical Fiber Technology Tunable multiwavelength Brillouin-Raman fiber laser in a linear cavity with spectrum reshaped by Rayleigh scattering. Opt. Fiber Technol. 2017, 36, 327–333. [CrossRef]
49. Yang, J.; Tjin, S.C.; Ngo, N.Q. Multiwavelength Tunable Fiber Ring Laser Based on Sampled Chirp Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2004, 16, 1026–1028. [CrossRef]
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.none.fl_str_mv 11 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Multidisciplinary Digital Publishing Institute (MDPI)
dc.source.spa.fl_str_mv reponame:Repositorio Institucional UAO
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/ca931b81-53be-4efe-9225-86c6d6d2f5eb/download
https://dspace7-uao.metacatalogo.com/bitstreams/8524e891-e7e3-4955-9688-53e11640e841/download
https://dspace7-uao.metacatalogo.com/bitstreams/9572c65d-639d-4ad4-869a-110fe2ffd6a0/download
https://dspace7-uao.metacatalogo.com/bitstreams/e3ee6820-5222-4992-b2ee-8b73d7050fc8/download
https://dspace7-uao.metacatalogo.com/bitstreams/6b8062bf-5422-4975-b353-a1bcefa95320/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
324956ba2bf2a362cfff09d67855a384
9fd9803752bf37e36356e35a3240b8d6
9b385ad05e0cb0d521fa6e6e8bb5cc5a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260135402405888
spelling Garcia Mina, Diego Felipec444e6cc93186e7c24a52a7b8e4a1f2dRojas-Laguna, Roberto1fa0b8616c13ea35108748b19cbc8e5cLópez Dieguez, Yanelis987b1d6450a79fad189040dbaf53c091Estudillo-Ayala, Julián Moisés461f2baa86eadf7985584ff6e523f461Jauregui-Vazquez, Daniele5c14b665a5ffef7b899f55cb736726aHerrera Piad, Luisd7a007fe23c47f6f0095ced6c14c52b9Sierra Hernández, Juan M.6d11dc7cf47b0943f7768749225b8534Gallegos-Arellano, Eloisac487cb5c00884f2945c20a11d7fe3cd4Hernández García, Juan C.9c0d9c5033006f873684bd0afd033d53Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-05T20:55:41Z2019-11-05T20:55:41Z2018-08-102076-3417http://hdl.handle.net/10614/11399https://doi.org/10.3390/app8081337A tunable multi-wavelength fiber laser is proposed and demonstrated based on two main elements: an erbium-doped fiber ring cavity and compact intermodal fiber structure. The modal fiber interferometer is fabricated using the cost-effective arc splice technique between conventional single-mode fiber and microfiber. This optical fiber structure acts as a wavelength filter, operated in reflection mode. When the refractive index and temperature variations are applied over the fiber filter, the ring laser cavity provides several quad-wavelength laser spectra. The multi-wavelength spectra are tuned into the C-band with a resolution of 0.05 nm. In addition, the spectra are symmetric with minimal power difference between the lasing modes involved, and the average of the side mode suppression ratio is close to 37 dB. This laser offers low-cost implementation, low wavelength drift, and high power stability, as well as an effect of easy controllability regarding tuned multi-wavelengthapplication/pdf11 páginasengMultidisciplinary Digital Publishing Institute (MDPI)Derechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAOErbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperatureArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Fibra ópticaFiber opticsRing laser cavityFiber laserTunable multi-wavelength laser88Lopez-Dieguez, Y., Estudillo-Ayala, J., Jauregui-Vazquez, D., Herrera-Piad, L., Sierra-Hernandez, J., Garcia-Mina, D., ... & Rojas-Laguna, R. (2018). Erbium Ring Fiber Laser Cavity Based on Tip Modal Interferometer and Its Tunable Multi-Wavelength Response for Refractive Index and Temperature. Applied Sciences, 8(8), 1337. doi:10.3390/app8081337Applied Sciences, volumen 8, issue 8, páginas 1-11 (1337), (august, 2018)1. Yin, Z.; Gao, L.; Liu, S.; Zhang, L.; Wu, F.; Chen, L.; Chen, X. Fiber Ring Laser Sensor for TemperatureMeasurement. J. Lightw. Technol. 2010, 28, 3403–3408. [CrossRef] 2. Xu, Y.; Zhang, M.; Lu, P.; Mihailov, S.; Bao, X. Multi-parameter sensor based on random fiber lasers. AIP Adv. 2016, 6, 95009. [CrossRef]3. Liu, Z.; Li, Y.; Liu, Y.; Tan, Z.-W.; Jian, S. A Static Axial Strain Fiber Ring Cavity Laser Sensor Based on Multi-Modal Interference. IEEE Photonics Technol. Lett. 2013, 25, 2050–2053. [CrossRef]4. Bai, X.; Fan, D.; Wang, S.; Pu, S.; Zeng, X. Strain Sensor Based on Fiber Ring Cavity Laser With Photonic Crystal Fiber In-Line Mach–Zehnder Interferometer. IEEE Photonics J. 2014, 6, 1–8. [CrossRef]5. Gonzalez-Reyna,M.A.; Alvarado-Mendez, E.; Estudillo-Ayala, J.M.; Vargas-Rodriguez, E.; Sosa-Morales,M.E.; Sierra-Hernandez, J.M.; Jauregui-Vazquez, D.; Rojas-Laguna, R. Laer Temperature Sensor Based on a Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2015, 27, 1141–1144. [CrossRef]6. Sun, C.; Dong, Y.;Wang, M.; Jian, S. Liquid level and temperature sensing by using dual-wavelength fiber laser based on multimode interferometer and FBG in parallel. Opt. Fiber Technol. 2018, 41, 212–216. [CrossRef]7. Liang, L.; Ren, G.; Yin, B.; Peng,W.; Liang, X.; Jian, S. Refractive Index and Temperature Sensor Based on Fiber Ring Laser with STCS Fiber Structure. IEEE Photonics Technol. Lett. 2014, 26, 2201–2204. [CrossRef]8. Liu, Z.; Tan, Z.; Yin, B.; Bai, Y.; Jian, S. Refractive index sensing characterization of a singlemode–claddingless–singlemode fiber structure based fiber ring cavity laser. Opt. Express 2014, 22, 5037. [CrossRef] [PubMed]9. Zhang, Q.; Chang, J.;Wang, Q.;Wang, Z.;Wang, F.; Qin, Z. Acousto-Optic Q-Switched Fiber Laser-Based Intra-Cavity Photoacoustic Spectroscopy for Trace Gas Detection. Sensors 2017, 18, 42. [CrossRef] [PubMed]10. Allen, T.J.; Beard, P.C. Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging. Opt. Lett. 2006, 31, 3462. [CrossRef] [PubMed]11. Boroon, M.; Hitam, S.; Mahdi, M.A.; Sahbudin, R.K.Z.; Seyedzadeh, S. Performance of Multi-Wavelength Erbium Doped Fiber Laser on Free Space Optical Medium. In Proceedings of the IEEE 5th International Conference on Photonics, Kuala Lumpur, Malaysia, 2–4 September 2014; pp. 2–4.12. Xu, D.; Cao, Y.; Zhao, A.; Tong, Z. A microwave photonic filter based on multi-wavelength fiber laser and infinite impulse response. Optoelectron. Lett. 2016, 12, 325–328. [CrossRef]13. Wang, C.; Yao, J. Fiber Bragg gratings for microwave photonics subsystems. Opt. Express 2013, 21, 22868. [CrossRef] [PubMed]14. Jauregui-Vazquez, D.; Rojas-Laguna, R.; Estudillo-Ayala, J.M.; Hernandez-Garcia, J.C.; Lopez-Dieguez, Y.; Sierra-Hernandez, J.M. A multi-wavelength erbium-doped fiber ring laser using an intrinsic Fabry–Perot interferometer. Laser Phys. 2016, 26, 105105. [CrossRef]15. He, W.; Zhu, L.; Dong, M.; Lou, X.; Luo, F. Wavelength-switchable C-band erbium-doped fibre laser incorporating all-fibre Fabry–Perot interferometer fabricated by chemical etching. J. Mod. Opt. 2018, 65, 818–824. [CrossRef]16. Sierra-Hernandez, J.M.; Rojas-Laguna, R.; Vargas-Rodriguez, E.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Guzmán-Chávez, A.D.; Zaca-Moran, P. A tunable multi-wavelength erbium doped fiber laser based on a Mach–Zehnder interferometer and photonic crystal fiber. Laser Phys. 2013, 23, 125103. [CrossRef]17. Mirza, M.A.; Stewart, G. Theory and design of a simple tunable Sagnac loop filter for multiwavelength fiber lasers. Appl. Opt. 2008, 47, 5242–5252. [CrossRef] [PubMed]18. Salceda-Delgado, G.; Martinez-Rios, A.; Sierra-Hernandez, J.M.; Rodríguez-Carreón, V.C.; Toral-Acosta, D.; Selvas-Aguilar, R.; Álvarez-Tamayo, R.I.; Castillo-Guzman, A.A.; Rojas-Laguna, R. Reconfiguration of the multiwavelength operation of optical fiber ring lasers by the modifiable intra-cavity induced losses of an in-fiber tip probe modal Michelson interferometer. Laser Phys. 2018, 28, 035107. [CrossRef]19. Chow, J.; Town, G.; Eggleton, B.; Ibsen, M.; Sugden, K.; Bennion, I. Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters. IEEE Photonics Technol. Lett. 1996, 8, 60–62. [CrossRef]20. Sun, G.; Moon, D.S.; Lin, A.; Han,W.-T.; Chung, Y. Tunable multiwavelength fiber laser using a comb filter based on erbium-ytterbium co-doped polarization maintaining fiber loop mirror. Opt. Express 2008, 16, 3652. [CrossRef] [PubMed]21. Han, Y.G.; Kim, C.S.; Kang, J.U.; Paek, U.C.; Chung, Y. Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings. IEEE Photonics Technol. Lett. 2003, 15, 383–385. [CrossRef]22. Zhang, Z.X.; Xu, K.; Wu, J.; Hong, X.B.; Lin, J.T. Multiwavelength figure-of-eight fiber laser with a nonlinear optical loop mirror. Laser Phys. Lett. 2008, 5, 213–216. [CrossRef]23. Zhang, L.; Xu, Y.; Lu, P.; Mihailov, S.; Chen, L. Multi-Wavelength Brillouin Random Fiber Laser via Distributed Feedback from a Random Fiber Grating. J. Lightw. Technol. 2018, 36, 2122–2128. [CrossRef]24. Liu, J.; Yao, J.; Yao, J.; Yeap, T.H. Single-longitudinal-mode multiwavelength fiber ring laser. IEEE Photonics Technol. Lett. 2004, 16, 1020–1022. [CrossRef]25. Liu, X.; Han, D.; Sun, Z.; Zeng, C.; Lu, H.; Mao, D.; Cui, Y.; Wang, F. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep. 2013, 3, 2718. [CrossRef] [PubMed]26. Yeh, C.H.; Chow, C.W.;Wu, Y.F.; Shih, F.Y.;Wang, C.H.; Chi, S. Multiwavelength erbium-doped fiber ring laser employing Fabry–Perot etalon inside cavity operating in room temperature. Opt. Fiber Technol. 2009, 15, 344–347. [CrossRef]27. Lee, H.J.; Kim, S.-J.; Ko, M.O.; Kim, J.-H.; Jeon, M.Y. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor. Opt. Commun. 2018, 410, 637–642. [CrossRef]28. Ummy, M.A.; Madamopoulos, N.; Dorsinville, R. Tunable multi-wavelength SOA based linear cavity fiber laser source for optical communications applications. In Proceedings of the 2011 International Conference on Communications and Information Technology (ICCIT), Venice, Italy, 27–29 April 2011; pp. 87–91.29. Li, Y.; Tian, J.; Quan, M.; Yao, Y. Tunable Multiwavelength Er-Doped Fiber Laser with a Two-Stage Lyot Filter. IEEE Photonics Technol. Lett. 2017, 29, 287–290. [CrossRef]30. He,W.; Li, D.; Zhu, L.; Dong, M.; Luo, F. Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach–Zehnder Interferometer with Optical Fiber Delay Line. IEEE Photonics J. 2017, 9, 1–8. [CrossRef]31. Xiao, F.; Alameh, K.; Lee, Y.T. Tunable multi-wavelength fiber lasers based on an Opto-VLSI processor and optical amplifiers an Opto-VLSI processor and optical amplifiers. Opt. Express 2009, 17, 910–912. [CrossRef] [PubMed]32. Zhou, M.; Ren, F.; Li, J.; Ge, D.; Zhang, Y.; Chen, Z.; He, Y. Tunable Multi-Wavelength EDF Laser Based on Sagnac Interferometer with Weakly-Coupled FMF Delay Line. In Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, 11–15 March 2018; pp. 7–9.33. Luo, A.-P.; Luo, Z.-C.; Xu, W.-C. Tunable and switchable Multiwavelength Erbium-Doped Fiber Ring Laser Based on a Modified Dual-Pass. Opt. Lett. 2009, 34, 2135–2137. [CrossRef] [PubMed]34. Lian, Y.; Ren, G.; Zhu, B.; Gao, Y.; Jian, W.; Ren, W.; Jian, S. Switchable multiwavelength fiber laser using erbium-doped twin-core fiber and nonlinear polarization rotation. Laser Phys. Lett. 2017, 14, 055101. [CrossRef]35. Yan, N.; Han, X.; Chang, P.; Huang, L.; Gao, F.; Yu, X.; Zhang, W.; Zhang, Z.; Zhang, G.; Xu, J. Tunable dual-wavelength fiber laser with unique gain system based on in-fiber acousto-optic Mach–Zehnder interferometer. Opt. Express 2017, 25, 27609. [CrossRef] [PubMed]36. Zulkhairi, A.S.; Azzuhri, S.R.; Shaharuddin, R.A.; Jaddoa, M.F.; Salim, M.A.M.; Jasim, A.A.; Ahmad, H. Switchable multiwavelength ytterbium-doped fiber laser using a non-adiabatic microfiber interferometer. Laser Phys. 2017, 27, 055104. [CrossRef]37. Ahmad, H.; Jasim, A.A. Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach-Zehnder interferometer. Opt. Fiber Technol. 2017, 36, 105–114. [CrossRef]38. Xu, Y.; Ren, L.; Ma, C.; Kong, X.; Ren, K.; Song, F. Stable and uniform multiwavelength erbium-doped fiber laser based on a microfiber knot resonator with a Sagnac loop reflector. J. Opt. 2017, 46, 420–424. [CrossRef]39. Birks, T.A.; Li, Y.W. The Shape of Fiber Tapers. J. Lightw. Technol. 1992, 10, 432–438. [CrossRef]40. Lopez-Dieguez, Y.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Sierra-Hernandez, J.M.; Herrera-Piad, L.A.; Cruz-Duarte, J.M.; Hernandez-Garcia, J.C.; Rojas-Laguna, R. Multi-mode all Fiber Interferometer based on Fabry-Perot Multi-cavity and its Temperature Response. Opt. Int. J. Light Electron Opt. 2017, 147, 232–239. [CrossRef]41. Lopez-Dieguez, Y.; Estudillo-Ayala, J.M.; Jauregui-Vazquez, D.; Herrera-Piad, L.A.; Sierra-Hernandez, J.M.; Hernandez-Garcia, J.C.; Bienchetti, M.; Reyes-Ayona, J.R.; Rojas-Laguna, R. Tip Fiber-Optic Intermodal Interferometer for Refractive Index Sensing. IEEE Photonics Technol. Lett. 2018, 30, 15–18. [CrossRef]42. Liu, X.; Yang, X.; Lu, F.; Ng, J.; Zhou, X.; Lu, C. Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber. Opt. Express 2005, 13, 142–147. [CrossRef] [PubMed]43. Qhumayo, S.; Manuel, R.M.; Grobler, M. Wavelength and power stabilization of a three wavelength Erbium doped fiber laser using a nonlinear optical loop mirror. In Proceedings of the AFRICON, Addis Ababa, Ethiopia, 14–17 September 2015; pp. 1–4.44. Lu, P.; Men, L.; Sooley, K.; Chen, Q. Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature. Appl. Phys. Lett. 2009, 94, 131110. [CrossRef]45. Chen, D.; Qin, S.; He, S. Channel-spacing-tunable multi-wavelength fiber ring laser with hybrid Raman and Erbium-doped fiber gains. Opt. Express 2007, 15, 930–935. [CrossRef] [PubMed]46. Iu, L.; Ang, Z.H.Y. Tunable and channel spacing precisely controlled comb filters based on the fused taper technology. Opt. Express 2018, 26, 265–272.47. Ummy, M.A.; Madamopoulos, N.; Joyo, A.; Kouar, M.; Dorsinville, R. Tunable multi-wavelength SOA based linear cavity dual-output port fiber laser using Lyot-Sagnac loop mirror. Opt. Express 2011, 19, 3202–3211. [CrossRef] [PubMed]48. Wang, Z.; Wang, T.; Ma, W.; Jia, Q.; Su, Q.; Zhang, P. Optical Fiber Technology Tunable multiwavelength Brillouin-Raman fiber laser in a linear cavity with spectrum reshaped by Rayleigh scattering. Opt. Fiber Technol. 2017, 36, 327–333. [CrossRef]49. Yang, J.; Tjin, S.C.; Ngo, N.Q. Multiwavelength Tunable Fiber Ring Laser Based on Sampled Chirp Fiber Bragg Grating. IEEE Photonics Technol. Lett. 2004, 16, 1026–1028. [CrossRef]PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/ca931b81-53be-4efe-9225-86c6d6d2f5eb/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/8524e891-e7e3-4955-9688-53e11640e841/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALErbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature.pdfErbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf3121544https://dspace7-uao.metacatalogo.com/bitstreams/9572c65d-639d-4ad4-869a-110fe2ffd6a0/download324956ba2bf2a362cfff09d67855a384MD54TEXTErbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature.pdf.txtErbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature.pdf.txtExtracted texttext/plain56422https://dspace7-uao.metacatalogo.com/bitstreams/e3ee6820-5222-4992-b2ee-8b73d7050fc8/download9fd9803752bf37e36356e35a3240b8d6MD55THUMBNAILErbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature.pdf.jpgErbium ring fiber laser cavity based on tip modal interferometer and its tunable multi-wavelength response for refractive index and temperature.pdf.jpgGenerated Thumbnailimage/jpeg15242https://dspace7-uao.metacatalogo.com/bitstreams/6b8062bf-5422-4975-b353-a1bcefa95320/download9b385ad05e0cb0d521fa6e6e8bb5cc5aMD5610614/11399oai:dspace7-uao.metacatalogo.com:10614/113992024-01-19 17:10:13.916https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K