Energy access sustainability criteria definition for Colombian rural areas
Access to energy has long been a subject of interest for governments due to its pivotal role in advancing human progress and well-being. Colombia, like many other nations, faces the challenge of addressing the energy deficit experienced by communities within its jurisdiction. This research endeavor...
- Autores:
-
Montalvo-Navarrete, Juan M.
Lasso Palacios, Ana Paola
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15867
- Acceso en línea:
- https://hdl.handle.net/10614/15867
https://doi.org/10.1016/j.rser.2023.113922
https://red.uao.edu.co/
- Palabra clave:
- Energy access sustainability
Biomass
Rural communities
- Rights
- closedAccess
- License
- Derechos reservados - Elsevier, 2023
id |
REPOUAO2_aeefed7934e21c97008eb9f2655cb16a |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15867 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Energy access sustainability criteria definition for Colombian rural areas |
title |
Energy access sustainability criteria definition for Colombian rural areas |
spellingShingle |
Energy access sustainability criteria definition for Colombian rural areas Energy access sustainability Biomass Rural communities |
title_short |
Energy access sustainability criteria definition for Colombian rural areas |
title_full |
Energy access sustainability criteria definition for Colombian rural areas |
title_fullStr |
Energy access sustainability criteria definition for Colombian rural areas |
title_full_unstemmed |
Energy access sustainability criteria definition for Colombian rural areas |
title_sort |
Energy access sustainability criteria definition for Colombian rural areas |
dc.creator.fl_str_mv |
Montalvo-Navarrete, Juan M. Lasso Palacios, Ana Paola |
dc.contributor.author.none.fl_str_mv |
Montalvo-Navarrete, Juan M. Lasso Palacios, Ana Paola |
dc.subject.proposal.eng.fl_str_mv |
Energy access sustainability Biomass Rural communities |
topic |
Energy access sustainability Biomass Rural communities |
description |
Access to energy has long been a subject of interest for governments due to its pivotal role in advancing human progress and well-being. Colombia, like many other nations, faces the challenge of addressing the energy deficit experienced by communities within its jurisdiction. This research endeavor undertakes a comprehensive review of relevant literature pertaining to the sustainability of energy access, with a particular focus on the distinctive circumstances encountered in Non-Interconnected Zones. Through this review, an exhaustive examination of all significant dimensions of sustainability within the national context is conducted. The findings underscore the indispensability of formulating appropriate indicators to accurately assess the realities faced by these underserved populations, while concurrently safeguarding cultural and environmental heritage. The establishment of such indicators is poised to facilitate a comprehensive evaluation framework that duly recognizes the unique contextual factors influencing these communities' sustainable development across various dimensions |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-10-15T20:56:26Z |
dc.date.available.none.fl_str_mv |
2024-10-15T20:56:26Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Montalvo-Navarrete, J. M. y Lasso-Palacios, A. P. (2023). Energy access sustainability criteria definition for Colombian rural areas. Renewable and Sustainable Energy Reviews. volumen 189. https://doi.org/10.1016/j.rser.2023.113922 |
dc.identifier.issn.spa.fl_str_mv |
13640321 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15867 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.rser.2023.113922 |
dc.identifier.eissn.spa.fl_str_mv |
18790690 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Montalvo-Navarrete, J. M. y Lasso-Palacios, A. P. (2023). Energy access sustainability criteria definition for Colombian rural areas. Renewable and Sustainable Energy Reviews. volumen 189. https://doi.org/10.1016/j.rser.2023.113922 13640321 18790690 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15867 https://doi.org/10.1016/j.rser.2023.113922 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationvolume.spa.fl_str_mv |
189 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Renewable and Sustainable Energy Reviews |
dc.relation.references.none.fl_str_mv |
[1] Alam MS, Miah MD, Hammoudeh S, Tiwari AK. The nexus between access to electricity and labour productivity in developing countries. Energy Pol 2018;122: 715–26. [2] Bouzarovski S, Petrova S. A global perspective on domestic energy deprivation: overcoming the energy poverty–fuel poverty binary. Energy Res Social Sci 2015; 10:31–40. [3] Riva F, Ahlborg H, Hartvigsson E, Pachauri S, Colombo E. Electricity access and rural development: review of complex socio-economic dynamics and causal diagrams for more appropriate energy modelling. Energy Sustain Dev 2018;43: 203–23. [4] Kanagawa M, Nakata T. Assessment of access to electricity and the socioeconomic impacts in rural areas of developing countries. Energy Pol 2008;36: 2016–29. [5] Franco A, Shaker M, Kalubi D, Hostettler S. A review of sustainable energy access and technologies for healthcare facilities in the Global South. Sustain Energy Technol Assessments 2017;22:92–105. [6] Doll CNH, Pachauri S. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Pol 2010;38:5661–70. [7] Petersen J-P. Energy concepts for self-supplying communities based on local and renewable energy sources: a case study from northern Germany. Sustain Cities Soc 2016;26:1–8. [8] Corredor G. Colombia y la transicion ´ energ´etica. Cienc Política 2018;13:107–25. [9] Vanegas Cantarero MM. Of renewable energy, energy democracy, and sustainable development: a roadmap to accelerate the energy transition in developing countries. Energy Res Social Sci 2020;70. [10] Casillas CE, Kammen DM. The energy-poverty-climate nexus. Science (1979) 2010;330:1181–2. [11] Munoz ˜ Maldonado YA. Optimizacion ´ de recursos energ´eticos en zonas aisladas mediante estrategias de suministro y consumo. Universitat Polit`ecnica de Val`encia; 2012. https://doi.org/10.4995/Thesis/10251/16010. [12] SUPERSERVICOS. Diagnostico ´ de la prestacion ´ del servicio de energía el´ectrica 2017. 2017. Bogota ´ D.C. 13] Perea-Moreno M-A, Sameron-Manzano ´ E, Perea-Moreno A-J. Biomass as renewable energy: worldwide research trends. Sustainability 2019;11:863. [14] World Energy Council. World energy issues monitor 2019. 2019. London. [15] Lopez ´ Molinari VH, Manrique Castillo PA, Olaya RA. Identificacion ´ del potential de generacion ´ el´ectrica con fuentes no convencionales de energía renovable para aprovechamientos a pequena ˜ escala en el Valle del Cauca. 2015. [16] García JAC, Aya AAR. ´ Políticas energ´eticas como estrategias de RESPONSABILIDAD social del estado para el desarrollo de las zonas no interconectadas. Revista Científica Guarracuco 2013:142. [17] Sepúlveda JD, Riano ˜ NM. Elementos sociales en los procesos de transferencia tecnologica DE Fuentes No Convencionales de Energia Renovable FNCE-R en zonas no interconectadas en Colombia. Espacios 2016;7. [18] Gonz´ alez-Montoya D, Ramos-Paja CA, Potosí-Guerrero BA, Henao-Bravo EE, Saavedra-Montes AJ. An´ alisis de factibilidad t´ecnico-economico ´ de microrredes que integran celdas de combustible en zonas no interconectadas de Colombia. TecnoLogicas ´ 2018;21:71–89. [19] Guerrero EFC, Escorcia JMD. El sector solar fotovoltaico en el caribe colombiano: analisis ´ t´ecnico y de mercado. Sci Tech 2012;2:87–91. [20] Bravo Hidalgo D. Energía y desarrollo sostenible en Cuba. Cent Azúcar 2015;42: 14–25. [21] Gaona EE, Trujillo, Cl, Guacaneme JA. Rural microgrids and its potential application in Colombia. Renew Sustain Energy Rev 2015;51:125–37. [22] Bueno Lopez ´ M, Rodríguez Sarmiento LC, Rodríguez Sanchez ´ PJ. An´ alisis de costos de la generacion ´ de energía el´ectrica mediante fuentes renovables en el sistema el´ectrico colombiano. Ing Desarro 2016;34:397–419. [23] Florez ´ Acosta JH, Tobon ´ Orozco DF, Castillo Quintero GA. ¿ Ha sido efectiva la promocion ´ de soluciones energ´eticas en las zonas no interconectadas (ZNI) en Colombia? un analisis ´ de la estructura institucional. 2009. [24] Montalvo Navarrete JM. Seleccion ´ de criterios ambientales para la evaluacion ´ multicriterio de alternativas de suministro de energía el´ectica en zonas no interconectadas de Colombia. 2017. [25] Marvuglia A, Benetto E, Rege S, Jury C. Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: critical review and proposed framework for biogas production. Renew Sustain Energy Rev 2013;25:768–81. [26] Thanarak P. Social impact assessment of the biogas production through biomass for Bansuanmiang School under the Smart School project. Appl Mech Mater 2017; 855:108–13. Trans Tech Publ. [27] Asamblea departamental del Valle del Cauca. Plan de Desarrollo del Departamento del Valle del Cauca para el período 2016-2019. 2016. [28] Saldarriaga-Loaiza JD, Villada F, P´erez JF. An´ alisis de Costos Nivelados de Electricidad de Plantas de Cogeneracion ´ usando Biomasa Forestal en el Departamento de Antioquia, Colombia. Inf Tecnol 2019;30:63–74. [29] Superservicos. Zonas no interconectadas–zni diagnostico ´ de la prestacion ´ del servicio de energía el´ectrica. 2018. [30] Bustos J, Sepúlveda A, Trivino ˜ L. Zonas no interconectadas el´ectricamente en Colombia: problemas y perspectiva (Non Electric Interconnection Zones in Colombia: problems and Perspectives). Universidad Nacional de Colombia FCE Working Paper; 2014. [31] Ceballos YF, Jja Zambrano, Vel´ asquez JR. La Energía como una Herramienta de Desarrollo en Zonas Rurales no Iterconectadas. Investigacion ´ e Innovacion ´ En Ingenierías 2015;3. [32] Saviano M, Barile S, Farioli F, Orecchini F. Strengthening the science–policy–industry interface for progressing toward sustainability: a systems thinking view. Sustain Sci 2019;14:1549–64. [33] Katre A, Tozzi A. Assessing the sustainability of decentralized renewable energy systems: a comprehensive framework with analytical methods. Sustainability 2018;10:1058. [34] Geels FW. Disruption and low-carbon system transformation: progress and new challenges in socio-technical transitions research and the Multi-Level Perspective. Energy Res Social Sci 2018;37:224–31. [35] Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2019;208:785–94. [36] Rojas JF. Energias alternativas en Colombia bajo la ley 1715. 2015. [37] Cherubini F, Strømman AH. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 2011;102:437–51. [38] Buytaert V, Muys B, Devriendt N, Pelkmans L, Kretzschmar JG, Samson R. Towards integrated sustainability assessment for energetic use of biomass: a state of the art evaluation of assessment tools. Renew Sustain Energy Rev 2011;15: 3918–33. [39] Myllyviita T, Antikainen R, Leskinen P. Sustainability assessment tools–their comprehensiveness and utilisation in company-level sustainability assessments in Finland. Int J Sustain Dev World Ecol 2017;24:236–47. [40] Zanghelini GM, Cherubini E, Soares SR. How multi-criteria decision analysis (MCDA) is aiding life cycle assessment (LCA) in results interpretation. J Clean Prod 2018;172:609–22. [41] Khanali M, Ghasemi-Mobtaker H, Varmazyar H, Mohammadkashi N, Chau K, Nabavi-Pelesaraei A. Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production. Energy 2022;250: 123822. [42] Padilla-Rivera A, Paredes MG, Güereca LP. A systematic review of the sustainability assessment of bioenergy: the case of gaseous biofuels. Biomass Bioenergy 2019;125:79–94. [43] Myllyviita T, Holma A, Antikainen R, L¨ ahtinen K, Leskinen P. Assessing environmental impacts of biomass production chains–application of life cycle assessment (LCA) and multi-criteria decision analysis (MCDA). J Clean Prod 2012;29:238–45. [44] Mai-Moulin T, Hoefnagels R, Grundmann P, Junginger M. Effective sustainability criteria for bioenergy: towards the implementation of the european renewable directive II. Renew Sustain Energy Rev 2021;138:110645. [45] Elkasrawy MA, Makeen P, Abdellatif SO, Ghali HA. Optimizing electric vehicles station performance using AI-based decision maker algorithm. Emerging Topics in Artificial Intelligence 2020;11469:114691W. International Society for Optics and Photonics; 2020. [46] Grigoraș G, Neagu B-C, Scarlatache F, Noroc L, Chelaru E. Bi-level phase load balancing methodology with clustering-based consumers’ selection criterion for switching device placement in low voltage distribution networks. Mathematics 2021;9:542. [47] Noroc L, Grigoras G. Performance assessment of the hierarchical clustering methods in classification of electric distribution networks considering unbalance degree. In: 2020 12th international conference on electronics, computers and artificial intelligence (ECAI). IEEE; 2020. p. 1–4. [48] Saeidi E, Dehkordi AL, Nabavi-Pelesaraei A. Potential for optimization of energy consumption and costs in saffron production in central Iran through data envelopment analysis and multi-objective genetic algorithm. Environ Prog Sustain Energy 2022;41:e13857. [49] Nabavi-Pelesaraei A, Rafiee S, Hosseini-Fashami F, Chau K. Artificial neural networks and adaptive neuro-fuzzy inference system in energy modeling of agricultural products. Predictive modelling for energy management and power systems engineering, Elsevier; 2021. p. 299–334. [50] Ghasemi-Mobtaker H, Kaab A, Rafiee S, Nabavi-Pelesaraei A. A comparative of modeling techniques and life cycle assessment for prediction of output energy, economic profit, and global warming potential for wheat farms. Energy Rep 2022; 8:4922–34. [51] Quintero Coronel DA, Lenis Rodas YA, Corredor Martínez LA. Desarrollo de un modelo de gasificacion ´ en equilibrio químico para evaluar el potential energ´etico del cuesco en plantas extractoras de aceite de palma en Colombia. 2018. [52] Consorcio Energ´etico Corpoema. Formulacion ´ de un plan de desarrollo para las fuentes no convencionales de energía en Colombia (PDFNCE). 2010. September, 6. Corpoema CORPOEMA 2010, Bogot´ a, https://www.corpoema.net/web/s ervicios/. [53] Escalante H, Orduz J, Zapata H, Cardona MC, Duarte M. Atlas del potential energ´etico de la biomasa residual en Colombia. Anexo B: Muestreo y Caracterizacion ´ de La Biomasa Residual En Colombia. 2011. p. 131–6. Colombia. [54] P´erez-Rincon ´ MA. Los agrocombustibles:¿ solo canto de sirenas?: an´ alisis de los impactos ambientales y sociales para el caso colombiano. Agrocombustibles: “Llenando Tanques, Vaciando Territorios”. Editado Por Irene V´elez 2008:81–116. [55] Sarkodie SA, Strezov V, Weldekidan H, Asamoah EF, Owusu PA, Doyi INY. Environmental sustainability assessment using dynamic autoregressivedistributed lag simulations—nexus between greenhouse gas emissions, biomass energy, food and economic growth. Sci Total Environ 2019;668:318–32. [56] Kadiyala A, Kommalapati R, Huque Z. Evaluation of the life cycle greenhouse gas emissions from different biomass feedstock electricity generation systems. Sustainability 2016;8:1181. [57] Reilly J, Paltsev S. Biomass energy and competition for land. 2007. [58] Chen X, Onal ¨ H. Renewable energy policies and competition for biomass: implications for land use, food prices, and processing industry. Energy Pol 2016; 92:270–8. [59] Zscheischler J, Gaasch N, Manning DB, Weith T. Land use competition related to woody biomass production on arable land in Germany. Land Use Competition 2016:193–213. Springer. [60] Zhu Y, Liang J, Yang Q, Zhou H, Peng K. Water use of a biomass directcombustion power generation system in China: a combination of life cycle assessment and water footprint analysis. Renew Sustain Energy Rev 2019;115: 109396. [61] Ji X, Liu Y, Meng J, Wu X. Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers. Appl Energy 2020;276:115484. [62] Bispo A. Review of the impacts on water of land-use changes induced by non-food biomass production. Sustain Agri Rev 2018;30:127–47. Springer. [63] Mathioudakis V, Gerbens-Leenes PW, Van der Meer TH, Hoekstra AY. The water footprint of second-generation bioenergy: a comparison of biomass feedstocks and conversion techniques. J Clean Prod 2017;148:571–82. [64] Killeen TJ, Schroth G, Turner W, Harvey CA, Steininger MK, Dragisic C, et al. Stabilizing the agricultural frontier: leveraging REDD with biofuels for sustainable development. Biomass Bioenergy 2011;35:4815–23. [65] Bourgoin C, Blanc L, Bailly J-S, Cornu G, Berenguer E, Oszwald J, et al. The potential of multisource remote sensing for mapping the biomass of a degraded Amazonian forest. Forests 2018;9:303. [66] Qin Z, Zhuang Q, Cai X, He Y, Huang Y, Jiang D, et al. Biomass and biofuels in China: toward bioenergy resource potentials and their impacts on the environment. Renew Sustain Energy Rev 2018;82:2387–400. [67] Cordell RL, Mazet M, Dechoux C, Hama SML, Staelens J, Hofman J, et al. Evaluation of biomass burning across North West Europe and its impact on air quality. Atmos Environ 2016;141:276–86. [68] Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, et al. A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 2017;579:1000–34. [69] Gaba S. Review of the impacts on biodiversity of land-use changes induced by non-food biomass production. Sustain Agri Rev 2018;30:195–212. Springer. [70] Landis DA, Gratton C, Jackson RD, Gross KL, Duncan DS, Liang C, et al. Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass Bioenergy 2018;114:18–29. [71] Gonzalez-Salazar MA, Venturini M, Poganietz W-R, Finkenrath M, Kirsten T, Acevedo H, et al. Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP. Appl Energy 2016;180:338–52. [72] Arceo AA, ´ P´erez JAS, Cuza RP, Bosch ON. Impacto ambiental de las tecnologias de aprovechamiento energetico de la biomasa. Tecnol Quím 2001;21:98–105. [73] Gonz´ alez JRQ, Gonzalez ´ LEQ. Biomasa: m´etodos de produccion, ´ potential energ´etico y medio ambiente. I3+ 2015;2:28–44. [74] Torres PJP. Avaliaçao ˜ t´ecnico-economica ˆ de Diferentes tecnologias de Geraçao ˜ de Eletricidade para o aproveitamento energ´etico de Resíduos de Biomassa em comunidades isoladas. 2017. [75] Bentsen NS, Møller IM. Solar energy conserved in biomass: sustainable bioenergy use and reduction of land use change. Renew Sustain Energy Rev 2017;71:954–8. [76] Weldu YW, Assefa G. Evaluating the environmental sustainability of biomassbased energy strategy: using an impact matrix framework. Environ Impact Assess Rev 2016;60:75–82. [77] Correa-Henao GJ, Rojas-Zerpa JC. Marco de referencia para la planificacion ´ de generacion ´ distribuida en zonas no interconectadas. Iteckne 2017;14:70–87. [78] Franco C, Dyner I, Hoyos S. Contribucion ´ de la energía al desarrollo de comunidades aisladas no interconnectadas: un caso de aplicacion ´ de la dinamica ´ de sistemas y los medios de vida sostenibles en el suroccidente colombiano. Colombia: DYNA; 2008. [79] Gamboa Palacios YA. Gestion ´ de sistemas fotovoltaicos ´ para la generacion ´ de energía el´ectrica en zonas no interconectadas (en comunidades menores a 500 habitantes) en el pacífico colombiano. 2016. [80] Pinheiro G, Rendeiro G, Pinho J, Macedo E. Sustainable management model for rural electrification: case study based on biomass solid waste considering the Brazilian regulation policy. Renew Energy 2012;37:379–86. [81] Schmidhuber J. Impact of an increased biomass use on agricultural markets, prices and food security: a longer-term perspective. 2006. [82] Schuenemann F, Msangi S, Zeller M. Policies for a sustainable biomass energy sector in Malawi: enhancing energy and food security simultaneously. World Dev 2018;103:14–26. [83] Field CB, Campbell JE, Lobell DB. Biomass energy: the scale of the potential resource. Trends Ecol Evol 2008;23:65–72. [84] Asprilla Mosquera DB, Escobar Cordoba ´ JD, Can˜on ´ Barriga JE, Aguilar Lemus Y, Maturana Guevara JC. Analisis ´ del aprovechamiento sustentable de los residuos generados en la transformacion ´ de madera en dos municipios del departamento del choco-Colombia. ´ Revista Científica Ingeniería y Desarrollo 2019;37:192–211. [85] Villada Duque F, Lopez ´ Lezama JM, Munoz ˜ Galeano N. Effects of incentives for renewable energy in Colombia. Ing Univ 2017;21:257–72. [86] Guti´errez AS, Morejon ´ MB, Eras JJC, Ulloa MC, Martínez FJR, Rueda-Bayona JG. Data supporting the forecast of electricity generation capacity from nonconventional renewable energy sources in Colombia. Data Brief 2020;28:104949. [87] Cerd´ a E. Energía obtenida a partir de biomasa. Cuadernos Economicos ´ de ICE; 2012. [88] Franco C, Dyner I, Hoyos S. Contribucion ´ de la energía al desarrollo de comunidades aisladas no interconectadas: un caso de aplicacion ´ de la dinamica ´ de sistemas y los medios de vida sostenibles en el suroccidente colombiano. Dyna 2008;75:199–214. [89] Muscat A, de Olde EM, de Boer IJM, Ripoll-Bosch R. The battle for biomass: a systematic review of food-feed-fuel competition. Global Food Secur 2019:100330. [90] Pabon ´ MC, Castillo MC. Monografía de investigacion ´ sobre el potential que tiene Colombia para la implementacion ´ de energías no convencionales. 2016. [91] Ceballos Tobon ´ N, Hern´ andez Puerto E, Garzon ´ Monroy CA. Energizacion ´ para un mejor vivir: modelo de gestion ´ cultural. 2011. [92] Salazar Blanco SS. An´ alisis de los aspectos t´ecnicos e impactos socioeconomicos ´ de sistemas de generacion ´ aislada, a partir de energía fotovoltaica en zonas no interconectadas de Colombia. 2017. [93] Angel ´ Lasso JD, Betancourt Espinel A, Bravo Quiroga JA. Diseno ˜ de un modelo para la reduccion ´ de costos de generacion ´ el´ectrica en poblaciones sin acceso a la electricidad en Colombia. Pontificia Universidad Javeriana; 2016. [94] Bedoya Bahamon V, Medina Guevara T. Determinar los factores que inciden en la formulacion ´ de proyectos de generacion ´ de energía el´ectrica renovable y el impacto en la situacion ´ socio economica ´ de los habitantes del Choco ´ en el 2017. Universidad Nacional Abierta y a Distancia; 2018. [95] Carvajal CAR, V´elez DMC. Priorizacion ´ de proyectos inviables financieramente en zonas no interconectadas mediante la evaluacion ´ economica ´ y social. Revista Ciencias Estrat´egicas 2014;22:237–48. [96] Molano Valderrama DM, Ramirez Rico W. Exposicion ´ de las principales políticas públicas relacionadas con la cobertura energ´etica renovable de zonas no interconectadas en Colombia. 2020. [97] Ladino Tamayo AF, Martínez Rojas JA. Metodología para el aprovechamiento energ´etico de recursos de biomasa residual pecuaria en la autogeneracion ´ de electricidad: casos de estudio Briceno ˜ Boyac´ a y Cajic´ a Cundinamarca. Universidad Distrital Francisco Jos´e de Caldas; 2017. [98] Ortiz Jara RP. Recomendacion ´ para la Reforma Institucional del Sector El´ectrico para las Zonas No Interconectadas–ZNI. Revista de Ingeniería 2019;112–9. [99] Diaz Motta A. Estudio de factibilidad t´ecnico-economica ´ de un sistema de generacion ´ híbrido para zonas no interconectadas de Colombia. 2020. [100] Arias CM, Villar BIV. Energía limpia para iluminacion ´ en los HOGARES de las zonas no interconectadas. Encuentro Internacional de Educacion ´ En Ingeniería; 2020. [101] Osorio Orozco AM. Evaluacion ´ prototípica de como la electricidad puede contribuir al desarrollo de las zonas no interconectadas. Instituto de Sistemas y Ciencias de La Decision; ´ 2016. [102] Briceno ˜ Castaneda ˜ JS, Mogollon ´ Merchan ´ LL. Diseno ˜ de soluciones fotovoltaicas en viviendas de inter´es prioritario para las comunidades indígenas en Zonas No Interconectadas ZNI del Departamento del Meta. Universidad Distrital Francisco Jos´e de Caldas; 2019. [103] Solano Blandon ´ S. Estudio metodologico ´ para la generacion ´ de energía en zonas no interconectadas (ZNI), aplicado al contexto del posconflicto. 2018. [104] Montanez ˜ Rojas JF. Parametros tecnicos Y financieros de sistemas de generacion de energia electrica para zni de Colombia. Herramienta De Calculo; 2016. [105] García Franco JF. Diseno ˜ de Programas de Uso Racional y Eficiente de la Energía El´ectrica en Zonas No Interconectadas en Colombia. Universidad Nacional de Colombia; 2020. [106] Puertas Gonzalez ´ Y. Electrificacion ´ sostenible de zonas no interconectadas del pacífico colombiano, por medio de Clusters prototipo de sistemas híbridos solareolico-hidro-di ´ ´esel optimizados con Homer. Pontificia Universidad Javeriana; 2016. [107] Arroyave Valencia JA. Factibilidad de la implementacion ´ de paneles solares fotovoltaicos para la generacion ´ de energía el´ectrica en las cabeceras municipales de las Zonas No Interconectadas de Colombia. Universidad EAFIT; 2018. [108] Acuna ˜ Carpio AJ. Evaluacion ´ economica ´ para la prestacion ´ del servicio de energía el´ectrica al corregimiento de La Pena˜ –Sabanalarga por medio de los lineamientos FAZNI. 2019. [109] Joya Benavidez OR, Hern´ andez Hernandez ´ MA. Condiciones de pre-factibilidad t´ecnica y financiera para la instalacion ´ y puesta en servicio de un sistema de medicion ´ de energía el´ectrica en localidades de Buenaventura. 2020. [110] Salazar Herrera AM. An´ alisis de viabilidad identificacion ´ de variables claves y actores estrat´egicos para el diseno ˜ de un proyecto tipo de produccion ´ agropecuaria de biomasa forestal con fines dendroenerg´eticos en el municipio de Calamar (Guaviare). Pontificia Universidad Javeriana; 2018. [111] Rodríguez KJG. Sostenibilidad de la Produccion ´ de Energía a Partir de la Biomasa Forestal en la Orinoquía Colombiana. Universidad Catolica ´ de Colombia; 2019. [112] Sanchez Martinez AE, Calderon ´ Rodriguez SA. Determinacion ´ del potential energ´etico de la biomasa contenida en los residuos solidos ´ urbanos en el Amazonas Colombo-Brasileno. ˜ Universidad Distrital Francisco Jos´e de Caldas; 2020. [113] Alarcon ´ Chaparro AM. ´ Plan de suministro energ´etico en San Andr´es de Tumaco. 2017. [114] Iba´nez ˜ Leal JM. Uso de energías alternativas a pequena ˜ escala en regiones apartadas sin servicio de energía el´ectrica en Colombia. 2017. [115] Alayon ´ Cubillos FF. El impacto del marco de trabajo de Alianza Empresarial para la Seguridad Humana (HSBP) en la transicion ´ energ´etica en Colombia. Universidad Militar Nueva Granada; 2020. [116] Cadena Monroy Ai. ´ Barreras regulatorias y esquemas empresariales para el desarrollo de la energía rural. Revista de Ingeniería 2019;80–3. [117] Nussbaumer P, Bazilian M, Modi V. Measuring energy poverty: focusing on what matters. Renew Sustain Energy Rev 2012;16:231–43. [118] Yuan M-H, Lo S-L. Developing indicators for the monitoring of the sustainability of food, energy, and water. Renew Sustain Energy Rev 2020;119:109565. [119] Razmjoo AA, Sumper A, Davarpanah A. Development of sustainable energy indexes by the utilization of new indicators: a comparative study. Energy Rep 2019;5:375–83. [120] Gunnarsdottir ´ I, Davidsdottir B, Worrell E, Sigurgeirsdottir ´ S. Review of indicators for sustainable energy development. Renew Sustain Energy Rev 2020;133: 110294. [121] Hannan MA, Begum RA, Abdolrasol MG, Lipu MSH, Mohamed A, Rashid MM. Review of baseline studies on energy policies and indicators in Malaysia for future sustainable energy development. Renew Sustain Energy Rev 2018;94:551–64. [122] Sherwood J. The significance of biomass in a circular economy. Bioresour Technol 2020;300:122755. [123] Veyssi`ere S, Laperche B, Blanquart C. Territorial development process based on the circular economy: a systematic literature review. Eur Plann Stud 2022;30: 1192–211. [124] Hidalgo D, Martín-Marroquín JM, Corona F. A multi-waste management concept as a basis towards a circular economy model. Renew Sustain Energy Rev 2019; 111:481–9. [125] Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ. The Circular Economy–A new sustainability paradigm? J Clean Prod 2017;143:757–68. |
dc.rights.eng.fl_str_mv |
Derechos reservados - Elsevier, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsevier, 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.country.spa.fl_str_mv |
Colombia |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1364032123007803 |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/49b348b3-10ff-413f-ab07-d1f9ad2b23b9/download |
bitstream.checksum.fl_str_mv |
6987b791264a2b5525252450f99b10d1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260195499442176 |
spelling |
Montalvo-Navarrete, Juan M.Lasso Palacios, Ana Paolavirtual::5732-12024-10-15T20:56:26Z2024-10-15T20:56:26Z2023Montalvo-Navarrete, J. M. y Lasso-Palacios, A. P. (2023). Energy access sustainability criteria definition for Colombian rural areas. Renewable and Sustainable Energy Reviews. volumen 189. https://doi.org/10.1016/j.rser.2023.11392213640321https://hdl.handle.net/10614/15867https://doi.org/10.1016/j.rser.2023.11392218790690Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Access to energy has long been a subject of interest for governments due to its pivotal role in advancing human progress and well-being. Colombia, like many other nations, faces the challenge of addressing the energy deficit experienced by communities within its jurisdiction. This research endeavor undertakes a comprehensive review of relevant literature pertaining to the sustainability of energy access, with a particular focus on the distinctive circumstances encountered in Non-Interconnected Zones. Through this review, an exhaustive examination of all significant dimensions of sustainability within the national context is conducted. The findings underscore the indispensability of formulating appropriate indicators to accurately assess the realities faced by these underserved populations, while concurrently safeguarding cultural and environmental heritage. The establishment of such indicators is poised to facilitate a comprehensive evaluation framework that duly recognizes the unique contextual factors influencing these communities' sustainable development across various dimensionsapplication/pdfengElsevierDerechos reservados - Elsevier, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_14cbhttps://www.sciencedirect.com/science/article/pii/S1364032123007803Energy access sustainability criteria definition for Colombian rural areasArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombia189Renewable and Sustainable Energy Reviews[1] Alam MS, Miah MD, Hammoudeh S, Tiwari AK. The nexus between access to electricity and labour productivity in developing countries. Energy Pol 2018;122: 715–26. [2] Bouzarovski S, Petrova S. A global perspective on domestic energy deprivation: overcoming the energy poverty–fuel poverty binary. Energy Res Social Sci 2015; 10:31–40. [3] Riva F, Ahlborg H, Hartvigsson E, Pachauri S, Colombo E. Electricity access and rural development: review of complex socio-economic dynamics and causal diagrams for more appropriate energy modelling. Energy Sustain Dev 2018;43: 203–23. [4] Kanagawa M, Nakata T. Assessment of access to electricity and the socioeconomic impacts in rural areas of developing countries. Energy Pol 2008;36: 2016–29. [5] Franco A, Shaker M, Kalubi D, Hostettler S. A review of sustainable energy access and technologies for healthcare facilities in the Global South. Sustain Energy Technol Assessments 2017;22:92–105. [6] Doll CNH, Pachauri S. Estimating rural populations without access to electricity in developing countries through night-time light satellite imagery. Energy Pol 2010;38:5661–70. [7] Petersen J-P. Energy concepts for self-supplying communities based on local and renewable energy sources: a case study from northern Germany. Sustain Cities Soc 2016;26:1–8. [8] Corredor G. Colombia y la transicion ´ energ´etica. Cienc Política 2018;13:107–25. [9] Vanegas Cantarero MM. Of renewable energy, energy democracy, and sustainable development: a roadmap to accelerate the energy transition in developing countries. Energy Res Social Sci 2020;70. [10] Casillas CE, Kammen DM. The energy-poverty-climate nexus. Science (1979) 2010;330:1181–2. [11] Munoz ˜ Maldonado YA. Optimizacion ´ de recursos energ´eticos en zonas aisladas mediante estrategias de suministro y consumo. Universitat Polit`ecnica de Val`encia; 2012. https://doi.org/10.4995/Thesis/10251/16010. [12] SUPERSERVICOS. Diagnostico ´ de la prestacion ´ del servicio de energía el´ectrica 2017. 2017. Bogota ´ D.C. 13] Perea-Moreno M-A, Sameron-Manzano ´ E, Perea-Moreno A-J. Biomass as renewable energy: worldwide research trends. Sustainability 2019;11:863. [14] World Energy Council. World energy issues monitor 2019. 2019. London. [15] Lopez ´ Molinari VH, Manrique Castillo PA, Olaya RA. Identificacion ´ del potential de generacion ´ el´ectrica con fuentes no convencionales de energía renovable para aprovechamientos a pequena ˜ escala en el Valle del Cauca. 2015. [16] García JAC, Aya AAR. ´ Políticas energ´eticas como estrategias de RESPONSABILIDAD social del estado para el desarrollo de las zonas no interconectadas. Revista Científica Guarracuco 2013:142. [17] Sepúlveda JD, Riano ˜ NM. Elementos sociales en los procesos de transferencia tecnologica DE Fuentes No Convencionales de Energia Renovable FNCE-R en zonas no interconectadas en Colombia. Espacios 2016;7. [18] Gonz´ alez-Montoya D, Ramos-Paja CA, Potosí-Guerrero BA, Henao-Bravo EE, Saavedra-Montes AJ. An´ alisis de factibilidad t´ecnico-economico ´ de microrredes que integran celdas de combustible en zonas no interconectadas de Colombia. TecnoLogicas ´ 2018;21:71–89. [19] Guerrero EFC, Escorcia JMD. El sector solar fotovoltaico en el caribe colombiano: analisis ´ t´ecnico y de mercado. Sci Tech 2012;2:87–91. [20] Bravo Hidalgo D. Energía y desarrollo sostenible en Cuba. Cent Azúcar 2015;42: 14–25. [21] Gaona EE, Trujillo, Cl, Guacaneme JA. Rural microgrids and its potential application in Colombia. Renew Sustain Energy Rev 2015;51:125–37. [22] Bueno Lopez ´ M, Rodríguez Sarmiento LC, Rodríguez Sanchez ´ PJ. An´ alisis de costos de la generacion ´ de energía el´ectrica mediante fuentes renovables en el sistema el´ectrico colombiano. Ing Desarro 2016;34:397–419. [23] Florez ´ Acosta JH, Tobon ´ Orozco DF, Castillo Quintero GA. ¿ Ha sido efectiva la promocion ´ de soluciones energ´eticas en las zonas no interconectadas (ZNI) en Colombia? un analisis ´ de la estructura institucional. 2009. [24] Montalvo Navarrete JM. Seleccion ´ de criterios ambientales para la evaluacion ´ multicriterio de alternativas de suministro de energía el´ectica en zonas no interconectadas de Colombia. 2017. [25] Marvuglia A, Benetto E, Rege S, Jury C. Modelling approaches for consequential life-cycle assessment (C-LCA) of bioenergy: critical review and proposed framework for biogas production. Renew Sustain Energy Rev 2013;25:768–81. [26] Thanarak P. Social impact assessment of the biogas production through biomass for Bansuanmiang School under the Smart School project. Appl Mech Mater 2017; 855:108–13. Trans Tech Publ. [27] Asamblea departamental del Valle del Cauca. Plan de Desarrollo del Departamento del Valle del Cauca para el período 2016-2019. 2016. [28] Saldarriaga-Loaiza JD, Villada F, P´erez JF. An´ alisis de Costos Nivelados de Electricidad de Plantas de Cogeneracion ´ usando Biomasa Forestal en el Departamento de Antioquia, Colombia. Inf Tecnol 2019;30:63–74. [29] Superservicos. Zonas no interconectadas–zni diagnostico ´ de la prestacion ´ del servicio de energía el´ectrica. 2018. [30] Bustos J, Sepúlveda A, Trivino ˜ L. Zonas no interconectadas el´ectricamente en Colombia: problemas y perspectiva (Non Electric Interconnection Zones in Colombia: problems and Perspectives). Universidad Nacional de Colombia FCE Working Paper; 2014. [31] Ceballos YF, Jja Zambrano, Vel´ asquez JR. La Energía como una Herramienta de Desarrollo en Zonas Rurales no Iterconectadas. Investigacion ´ e Innovacion ´ En Ingenierías 2015;3. [32] Saviano M, Barile S, Farioli F, Orecchini F. Strengthening the science–policy–industry interface for progressing toward sustainability: a systems thinking view. Sustain Sci 2019;14:1549–64. [33] Katre A, Tozzi A. Assessing the sustainability of decentralized renewable energy systems: a comprehensive framework with analytical methods. Sustainability 2018;10:1058. [34] Geels FW. Disruption and low-carbon system transformation: progress and new challenges in socio-technical transitions research and the Multi-Level Perspective. Energy Res Social Sci 2018;37:224–31. [35] Correa JP, Montalvo-Navarrete JM, Hidalgo-Salazar MA. Carbon footprint considerations for biocomposite materials for sustainable products: a review. J Clean Prod 2019;208:785–94. [36] Rojas JF. Energias alternativas en Colombia bajo la ley 1715. 2015. [37] Cherubini F, Strømman AH. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour Technol 2011;102:437–51. [38] Buytaert V, Muys B, Devriendt N, Pelkmans L, Kretzschmar JG, Samson R. Towards integrated sustainability assessment for energetic use of biomass: a state of the art evaluation of assessment tools. Renew Sustain Energy Rev 2011;15: 3918–33. [39] Myllyviita T, Antikainen R, Leskinen P. Sustainability assessment tools–their comprehensiveness and utilisation in company-level sustainability assessments in Finland. Int J Sustain Dev World Ecol 2017;24:236–47. [40] Zanghelini GM, Cherubini E, Soares SR. How multi-criteria decision analysis (MCDA) is aiding life cycle assessment (LCA) in results interpretation. J Clean Prod 2018;172:609–22. [41] Khanali M, Ghasemi-Mobtaker H, Varmazyar H, Mohammadkashi N, Chau K, Nabavi-Pelesaraei A. Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production. Energy 2022;250: 123822. [42] Padilla-Rivera A, Paredes MG, Güereca LP. A systematic review of the sustainability assessment of bioenergy: the case of gaseous biofuels. Biomass Bioenergy 2019;125:79–94. [43] Myllyviita T, Holma A, Antikainen R, L¨ ahtinen K, Leskinen P. Assessing environmental impacts of biomass production chains–application of life cycle assessment (LCA) and multi-criteria decision analysis (MCDA). J Clean Prod 2012;29:238–45. [44] Mai-Moulin T, Hoefnagels R, Grundmann P, Junginger M. Effective sustainability criteria for bioenergy: towards the implementation of the european renewable directive II. Renew Sustain Energy Rev 2021;138:110645. [45] Elkasrawy MA, Makeen P, Abdellatif SO, Ghali HA. Optimizing electric vehicles station performance using AI-based decision maker algorithm. Emerging Topics in Artificial Intelligence 2020;11469:114691W. International Society for Optics and Photonics; 2020. [46] Grigoraș G, Neagu B-C, Scarlatache F, Noroc L, Chelaru E. Bi-level phase load balancing methodology with clustering-based consumers’ selection criterion for switching device placement in low voltage distribution networks. Mathematics 2021;9:542. [47] Noroc L, Grigoras G. Performance assessment of the hierarchical clustering methods in classification of electric distribution networks considering unbalance degree. In: 2020 12th international conference on electronics, computers and artificial intelligence (ECAI). IEEE; 2020. p. 1–4. [48] Saeidi E, Dehkordi AL, Nabavi-Pelesaraei A. Potential for optimization of energy consumption and costs in saffron production in central Iran through data envelopment analysis and multi-objective genetic algorithm. Environ Prog Sustain Energy 2022;41:e13857. [49] Nabavi-Pelesaraei A, Rafiee S, Hosseini-Fashami F, Chau K. Artificial neural networks and adaptive neuro-fuzzy inference system in energy modeling of agricultural products. Predictive modelling for energy management and power systems engineering, Elsevier; 2021. p. 299–334. [50] Ghasemi-Mobtaker H, Kaab A, Rafiee S, Nabavi-Pelesaraei A. A comparative of modeling techniques and life cycle assessment for prediction of output energy, economic profit, and global warming potential for wheat farms. Energy Rep 2022; 8:4922–34. [51] Quintero Coronel DA, Lenis Rodas YA, Corredor Martínez LA. Desarrollo de un modelo de gasificacion ´ en equilibrio químico para evaluar el potential energ´etico del cuesco en plantas extractoras de aceite de palma en Colombia. 2018. [52] Consorcio Energ´etico Corpoema. Formulacion ´ de un plan de desarrollo para las fuentes no convencionales de energía en Colombia (PDFNCE). 2010. September, 6. Corpoema CORPOEMA 2010, Bogot´ a, https://www.corpoema.net/web/s ervicios/. [53] Escalante H, Orduz J, Zapata H, Cardona MC, Duarte M. Atlas del potential energ´etico de la biomasa residual en Colombia. Anexo B: Muestreo y Caracterizacion ´ de La Biomasa Residual En Colombia. 2011. p. 131–6. Colombia. [54] P´erez-Rincon ´ MA. Los agrocombustibles:¿ solo canto de sirenas?: an´ alisis de los impactos ambientales y sociales para el caso colombiano. Agrocombustibles: “Llenando Tanques, Vaciando Territorios”. Editado Por Irene V´elez 2008:81–116. [55] Sarkodie SA, Strezov V, Weldekidan H, Asamoah EF, Owusu PA, Doyi INY. Environmental sustainability assessment using dynamic autoregressivedistributed lag simulations—nexus between greenhouse gas emissions, biomass energy, food and economic growth. Sci Total Environ 2019;668:318–32. [56] Kadiyala A, Kommalapati R, Huque Z. Evaluation of the life cycle greenhouse gas emissions from different biomass feedstock electricity generation systems. Sustainability 2016;8:1181. [57] Reilly J, Paltsev S. Biomass energy and competition for land. 2007. [58] Chen X, Onal ¨ H. Renewable energy policies and competition for biomass: implications for land use, food prices, and processing industry. Energy Pol 2016; 92:270–8. [59] Zscheischler J, Gaasch N, Manning DB, Weith T. Land use competition related to woody biomass production on arable land in Germany. Land Use Competition 2016:193–213. Springer. [60] Zhu Y, Liang J, Yang Q, Zhou H, Peng K. Water use of a biomass directcombustion power generation system in China: a combination of life cycle assessment and water footprint analysis. Renew Sustain Energy Rev 2019;115: 109396. [61] Ji X, Liu Y, Meng J, Wu X. Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers. Appl Energy 2020;276:115484. [62] Bispo A. Review of the impacts on water of land-use changes induced by non-food biomass production. Sustain Agri Rev 2018;30:127–47. Springer. [63] Mathioudakis V, Gerbens-Leenes PW, Van der Meer TH, Hoekstra AY. The water footprint of second-generation bioenergy: a comparison of biomass feedstocks and conversion techniques. J Clean Prod 2017;148:571–82. [64] Killeen TJ, Schroth G, Turner W, Harvey CA, Steininger MK, Dragisic C, et al. Stabilizing the agricultural frontier: leveraging REDD with biofuels for sustainable development. Biomass Bioenergy 2011;35:4815–23. [65] Bourgoin C, Blanc L, Bailly J-S, Cornu G, Berenguer E, Oszwald J, et al. The potential of multisource remote sensing for mapping the biomass of a degraded Amazonian forest. Forests 2018;9:303. [66] Qin Z, Zhuang Q, Cai X, He Y, Huang Y, Jiang D, et al. Biomass and biofuels in China: toward bioenergy resource potentials and their impacts on the environment. Renew Sustain Energy Rev 2018;82:2387–400. [67] Cordell RL, Mazet M, Dechoux C, Hama SML, Staelens J, Hofman J, et al. Evaluation of biomass burning across North West Europe and its impact on air quality. Atmos Environ 2016;141:276–86. [68] Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, et al. A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 2017;579:1000–34. [69] Gaba S. Review of the impacts on biodiversity of land-use changes induced by non-food biomass production. Sustain Agri Rev 2018;30:195–212. Springer. [70] Landis DA, Gratton C, Jackson RD, Gross KL, Duncan DS, Liang C, et al. Biomass and biofuel crop effects on biodiversity and ecosystem services in the North Central US. Biomass Bioenergy 2018;114:18–29. [71] Gonzalez-Salazar MA, Venturini M, Poganietz W-R, Finkenrath M, Kirsten T, Acevedo H, et al. Development of a technology roadmap for bioenergy exploitation including biofuels, waste-to-energy and power generation & CHP. Appl Energy 2016;180:338–52. [72] Arceo AA, ´ P´erez JAS, Cuza RP, Bosch ON. Impacto ambiental de las tecnologias de aprovechamiento energetico de la biomasa. Tecnol Quím 2001;21:98–105. [73] Gonz´ alez JRQ, Gonzalez ´ LEQ. Biomasa: m´etodos de produccion, ´ potential energ´etico y medio ambiente. I3+ 2015;2:28–44. [74] Torres PJP. Avaliaçao ˜ t´ecnico-economica ˆ de Diferentes tecnologias de Geraçao ˜ de Eletricidade para o aproveitamento energ´etico de Resíduos de Biomassa em comunidades isoladas. 2017. [75] Bentsen NS, Møller IM. Solar energy conserved in biomass: sustainable bioenergy use and reduction of land use change. Renew Sustain Energy Rev 2017;71:954–8. [76] Weldu YW, Assefa G. Evaluating the environmental sustainability of biomassbased energy strategy: using an impact matrix framework. Environ Impact Assess Rev 2016;60:75–82. [77] Correa-Henao GJ, Rojas-Zerpa JC. Marco de referencia para la planificacion ´ de generacion ´ distribuida en zonas no interconectadas. Iteckne 2017;14:70–87. [78] Franco C, Dyner I, Hoyos S. Contribucion ´ de la energía al desarrollo de comunidades aisladas no interconnectadas: un caso de aplicacion ´ de la dinamica ´ de sistemas y los medios de vida sostenibles en el suroccidente colombiano. Colombia: DYNA; 2008. [79] Gamboa Palacios YA. Gestion ´ de sistemas fotovoltaicos ´ para la generacion ´ de energía el´ectrica en zonas no interconectadas (en comunidades menores a 500 habitantes) en el pacífico colombiano. 2016. [80] Pinheiro G, Rendeiro G, Pinho J, Macedo E. Sustainable management model for rural electrification: case study based on biomass solid waste considering the Brazilian regulation policy. Renew Energy 2012;37:379–86. [81] Schmidhuber J. Impact of an increased biomass use on agricultural markets, prices and food security: a longer-term perspective. 2006. [82] Schuenemann F, Msangi S, Zeller M. Policies for a sustainable biomass energy sector in Malawi: enhancing energy and food security simultaneously. World Dev 2018;103:14–26. [83] Field CB, Campbell JE, Lobell DB. Biomass energy: the scale of the potential resource. Trends Ecol Evol 2008;23:65–72. [84] Asprilla Mosquera DB, Escobar Cordoba ´ JD, Can˜on ´ Barriga JE, Aguilar Lemus Y, Maturana Guevara JC. Analisis ´ del aprovechamiento sustentable de los residuos generados en la transformacion ´ de madera en dos municipios del departamento del choco-Colombia. ´ Revista Científica Ingeniería y Desarrollo 2019;37:192–211. [85] Villada Duque F, Lopez ´ Lezama JM, Munoz ˜ Galeano N. Effects of incentives for renewable energy in Colombia. Ing Univ 2017;21:257–72. [86] Guti´errez AS, Morejon ´ MB, Eras JJC, Ulloa MC, Martínez FJR, Rueda-Bayona JG. Data supporting the forecast of electricity generation capacity from nonconventional renewable energy sources in Colombia. Data Brief 2020;28:104949. [87] Cerd´ a E. Energía obtenida a partir de biomasa. Cuadernos Economicos ´ de ICE; 2012. [88] Franco C, Dyner I, Hoyos S. Contribucion ´ de la energía al desarrollo de comunidades aisladas no interconectadas: un caso de aplicacion ´ de la dinamica ´ de sistemas y los medios de vida sostenibles en el suroccidente colombiano. Dyna 2008;75:199–214. [89] Muscat A, de Olde EM, de Boer IJM, Ripoll-Bosch R. The battle for biomass: a systematic review of food-feed-fuel competition. Global Food Secur 2019:100330. [90] Pabon ´ MC, Castillo MC. Monografía de investigacion ´ sobre el potential que tiene Colombia para la implementacion ´ de energías no convencionales. 2016. [91] Ceballos Tobon ´ N, Hern´ andez Puerto E, Garzon ´ Monroy CA. Energizacion ´ para un mejor vivir: modelo de gestion ´ cultural. 2011. [92] Salazar Blanco SS. An´ alisis de los aspectos t´ecnicos e impactos socioeconomicos ´ de sistemas de generacion ´ aislada, a partir de energía fotovoltaica en zonas no interconectadas de Colombia. 2017. [93] Angel ´ Lasso JD, Betancourt Espinel A, Bravo Quiroga JA. Diseno ˜ de un modelo para la reduccion ´ de costos de generacion ´ el´ectrica en poblaciones sin acceso a la electricidad en Colombia. Pontificia Universidad Javeriana; 2016. [94] Bedoya Bahamon V, Medina Guevara T. Determinar los factores que inciden en la formulacion ´ de proyectos de generacion ´ de energía el´ectrica renovable y el impacto en la situacion ´ socio economica ´ de los habitantes del Choco ´ en el 2017. Universidad Nacional Abierta y a Distancia; 2018. [95] Carvajal CAR, V´elez DMC. Priorizacion ´ de proyectos inviables financieramente en zonas no interconectadas mediante la evaluacion ´ economica ´ y social. Revista Ciencias Estrat´egicas 2014;22:237–48. [96] Molano Valderrama DM, Ramirez Rico W. Exposicion ´ de las principales políticas públicas relacionadas con la cobertura energ´etica renovable de zonas no interconectadas en Colombia. 2020. [97] Ladino Tamayo AF, Martínez Rojas JA. Metodología para el aprovechamiento energ´etico de recursos de biomasa residual pecuaria en la autogeneracion ´ de electricidad: casos de estudio Briceno ˜ Boyac´ a y Cajic´ a Cundinamarca. Universidad Distrital Francisco Jos´e de Caldas; 2017. [98] Ortiz Jara RP. Recomendacion ´ para la Reforma Institucional del Sector El´ectrico para las Zonas No Interconectadas–ZNI. Revista de Ingeniería 2019;112–9. [99] Diaz Motta A. Estudio de factibilidad t´ecnico-economica ´ de un sistema de generacion ´ híbrido para zonas no interconectadas de Colombia. 2020. [100] Arias CM, Villar BIV. Energía limpia para iluminacion ´ en los HOGARES de las zonas no interconectadas. Encuentro Internacional de Educacion ´ En Ingeniería; 2020. [101] Osorio Orozco AM. Evaluacion ´ prototípica de como la electricidad puede contribuir al desarrollo de las zonas no interconectadas. Instituto de Sistemas y Ciencias de La Decision; ´ 2016. [102] Briceno ˜ Castaneda ˜ JS, Mogollon ´ Merchan ´ LL. Diseno ˜ de soluciones fotovoltaicas en viviendas de inter´es prioritario para las comunidades indígenas en Zonas No Interconectadas ZNI del Departamento del Meta. Universidad Distrital Francisco Jos´e de Caldas; 2019. [103] Solano Blandon ´ S. Estudio metodologico ´ para la generacion ´ de energía en zonas no interconectadas (ZNI), aplicado al contexto del posconflicto. 2018. [104] Montanez ˜ Rojas JF. Parametros tecnicos Y financieros de sistemas de generacion de energia electrica para zni de Colombia. Herramienta De Calculo; 2016. [105] García Franco JF. Diseno ˜ de Programas de Uso Racional y Eficiente de la Energía El´ectrica en Zonas No Interconectadas en Colombia. Universidad Nacional de Colombia; 2020. [106] Puertas Gonzalez ´ Y. Electrificacion ´ sostenible de zonas no interconectadas del pacífico colombiano, por medio de Clusters prototipo de sistemas híbridos solareolico-hidro-di ´ ´esel optimizados con Homer. Pontificia Universidad Javeriana; 2016. [107] Arroyave Valencia JA. Factibilidad de la implementacion ´ de paneles solares fotovoltaicos para la generacion ´ de energía el´ectrica en las cabeceras municipales de las Zonas No Interconectadas de Colombia. Universidad EAFIT; 2018. [108] Acuna ˜ Carpio AJ. Evaluacion ´ economica ´ para la prestacion ´ del servicio de energía el´ectrica al corregimiento de La Pena˜ –Sabanalarga por medio de los lineamientos FAZNI. 2019. [109] Joya Benavidez OR, Hern´ andez Hernandez ´ MA. Condiciones de pre-factibilidad t´ecnica y financiera para la instalacion ´ y puesta en servicio de un sistema de medicion ´ de energía el´ectrica en localidades de Buenaventura. 2020. [110] Salazar Herrera AM. An´ alisis de viabilidad identificacion ´ de variables claves y actores estrat´egicos para el diseno ˜ de un proyecto tipo de produccion ´ agropecuaria de biomasa forestal con fines dendroenerg´eticos en el municipio de Calamar (Guaviare). Pontificia Universidad Javeriana; 2018. [111] Rodríguez KJG. Sostenibilidad de la Produccion ´ de Energía a Partir de la Biomasa Forestal en la Orinoquía Colombiana. Universidad Catolica ´ de Colombia; 2019. [112] Sanchez Martinez AE, Calderon ´ Rodriguez SA. Determinacion ´ del potential energ´etico de la biomasa contenida en los residuos solidos ´ urbanos en el Amazonas Colombo-Brasileno. ˜ Universidad Distrital Francisco Jos´e de Caldas; 2020. [113] Alarcon ´ Chaparro AM. ´ Plan de suministro energ´etico en San Andr´es de Tumaco. 2017. [114] Iba´nez ˜ Leal JM. Uso de energías alternativas a pequena ˜ escala en regiones apartadas sin servicio de energía el´ectrica en Colombia. 2017. [115] Alayon ´ Cubillos FF. El impacto del marco de trabajo de Alianza Empresarial para la Seguridad Humana (HSBP) en la transicion ´ energ´etica en Colombia. Universidad Militar Nueva Granada; 2020. [116] Cadena Monroy Ai. ´ Barreras regulatorias y esquemas empresariales para el desarrollo de la energía rural. Revista de Ingeniería 2019;80–3. [117] Nussbaumer P, Bazilian M, Modi V. Measuring energy poverty: focusing on what matters. Renew Sustain Energy Rev 2012;16:231–43. [118] Yuan M-H, Lo S-L. Developing indicators for the monitoring of the sustainability of food, energy, and water. Renew Sustain Energy Rev 2020;119:109565. [119] Razmjoo AA, Sumper A, Davarpanah A. Development of sustainable energy indexes by the utilization of new indicators: a comparative study. Energy Rep 2019;5:375–83. [120] Gunnarsdottir ´ I, Davidsdottir B, Worrell E, Sigurgeirsdottir ´ S. Review of indicators for sustainable energy development. Renew Sustain Energy Rev 2020;133: 110294. [121] Hannan MA, Begum RA, Abdolrasol MG, Lipu MSH, Mohamed A, Rashid MM. Review of baseline studies on energy policies and indicators in Malaysia for future sustainable energy development. Renew Sustain Energy Rev 2018;94:551–64. [122] Sherwood J. The significance of biomass in a circular economy. Bioresour Technol 2020;300:122755. [123] Veyssi`ere S, Laperche B, Blanquart C. Territorial development process based on the circular economy: a systematic literature review. Eur Plann Stud 2022;30: 1192–211. [124] Hidalgo D, Martín-Marroquín JM, Corona F. A multi-waste management concept as a basis towards a circular economy model. Renew Sustain Energy Rev 2019; 111:481–9. [125] Geissdoerfer M, Savaget P, Bocken NMP, Hultink EJ. The Circular Economy–A new sustainability paradigm? J Clean Prod 2017;143:757–68.Energy access sustainabilityBiomassRural communitiesComunidad generalPublicationbd725aa6-63d2-4466-8f6c-6272ff578e51virtual::5732-1bd725aa6-63d2-4466-8f6c-6272ff578e51virtual::5732-1https://scholar.google.com/citations?authuser=1&user=OwQcMxAAAAAJvirtual::5732-10000-0001-9975-0386virtual::5732-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000852961virtual::5732-1ORIGINALLICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/49b348b3-10ff-413f-ab07-d1f9ad2b23b9/download6987b791264a2b5525252450f99b10d1MD5210614/15867oai:red.uao.edu.co:10614/158672024-10-15 16:11:55.353https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2023metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |