Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
Este artículo estudia la modificación de la turbulencia de la fase portadora debido a la presencia de partículas sólidas en un flujo en canal totalmente desarrollado utilizando la aproximación de Simulación Numérica Directa (DNS) con partículas puntuales. Las partículas inerciales consideradas son m...
- Autores:
-
Laín Beatove, Santiago
Ortíz, Daniel
Ramírez, Jesús Antonio
Duque Daza, Carlos Alberto
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/15523
- Acceso en línea:
- https://hdl.handle.net/10614/15523
http://doi.org/10.15446/ing.investig.87275
https://red.uao.edu.co/
- Palabra clave:
- Simulación numérica directa
Flujo bifásico en canal
Turbulencia
Acoplo de dos vías
Direct numerical simulation
Particle-laden channel flow
Turbulence
Two-way coupling
- Rights
- openAccess
- License
- Derechos reservados - Universidad Nacional de Colombia, 2023
id |
REPOUAO2_ae5825863eb3c964a3282a7b70c3adb4 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/15523 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow |
dc.title.alternative.spa.fl_str_mv |
Análisis y discusión de los efectos del acople de dos vías en el flujo turbulento de un canal cargado con partículas |
title |
Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow |
spellingShingle |
Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow Simulación numérica directa Flujo bifásico en canal Turbulencia Acoplo de dos vías Direct numerical simulation Particle-laden channel flow Turbulence Two-way coupling |
title_short |
Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow |
title_full |
Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow |
title_fullStr |
Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow |
title_full_unstemmed |
Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow |
title_sort |
Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow |
dc.creator.fl_str_mv |
Laín Beatove, Santiago Ortíz, Daniel Ramírez, Jesús Antonio Duque Daza, Carlos Alberto |
dc.contributor.author.none.fl_str_mv |
Laín Beatove, Santiago Ortíz, Daniel Ramírez, Jesús Antonio Duque Daza, Carlos Alberto |
dc.subject.proposal.spa.fl_str_mv |
Simulación numérica directa Flujo bifásico en canal Turbulencia Acoplo de dos vías |
topic |
Simulación numérica directa Flujo bifásico en canal Turbulencia Acoplo de dos vías Direct numerical simulation Particle-laden channel flow Turbulence Two-way coupling |
dc.subject.proposal.eng.fl_str_mv |
Direct numerical simulation Particle-laden channel flow Turbulence Two-way coupling |
description |
Este artículo estudia la modificación de la turbulencia de la fase portadora debido a la presencia de partículas sólidas en un flujo en canal totalmente desarrollado utilizando la aproximación de Simulación Numérica Directa (DNS) con partículas puntuales. Las partículas inerciales consideradas son mucho más pequeñas que la menor de las estructuras vorticales turbulentas, manteniendo una fracción volumétrica del orden de 10−4 , en la cual las colisiones entre partículas son esporádicas y apenas tienen influencia en el desarrollo del flujo. Con el fin de evitar efectos simultáneos que puedan enmascarar el análisis de la interacción fluido-partícula, no se incluyen los efectos gravitatorios en el estudio, y las colisiones partícula-pared lisa se modelan como reflexiones ideales. Se ilustra y discute la alteración de la dinámica turbulenta del fluido por parte de las partículas, proporcionando un panorama de los fenómenos de interacción fluido-partícula a nivel microscópico y macroscópico. Finalmente, se muestra la relación de los fenómenos descritos con los efectos de reducción de arrastre causados por las partículas en el flujo en canal |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-04-10T15:13:23Z |
dc.date.available.none.fl_str_mv |
2024-04-10T15:13:23Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Laín Beatove, S.; Ortíz, D.; Ramírez. J. A.; Duque Daza, C. A. (2023). Analysis and Discussion of Two-Way Coupling Effects in Particle-Laden Turbulent Channel Flow. Ingeniería e Investigación 43(1). PP. 1-12. http://doi.org/10.15446/ing.investig.87275 |
dc.identifier.issn.spa.fl_str_mv |
0120-5609 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/15523 |
dc.identifier.doi.none.fl_str_mv |
http://doi.org/10.15446/ing.investig.87275 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Respositorio Educativo Digital UAO |
dc.identifier.repourl.none.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
Laín Beatove, S.; Ortíz, D.; Ramírez. J. A.; Duque Daza, C. A. (2023). Analysis and Discussion of Two-Way Coupling Effects in Particle-Laden Turbulent Channel Flow. Ingeniería e Investigación 43(1). PP. 1-12. http://doi.org/10.15446/ing.investig.87275 0120-5609 Universidad Autónoma de Occidente Respositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/15523 http://doi.org/10.15446/ing.investig.87275 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
12 |
dc.relation.citationissue.none.fl_str_mv |
1 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationvolume.none.fl_str_mv |
43 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Ingeniería e Investigación |
dc.relation.references.none.fl_str_mv |
Akiki, G., Jackson, T. L., and Balachandar, S. (2017). Pairwise interaction extended point-particle model for a random array of monodisperse spheres. Journal Fluid Mechanics, 813, 882-928. https://doi.org/10.1017/jfm.2016.877 Balachandar, S., and Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review Fluid Mechanics, 42, 111- 133. https://doi.org/10.1146/annurev.fluid.010908.165243 Battista, F., Mollicone, J. P., Gualtieri, P., Messina, R., and Casciola, C.M. (2019). Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the twoway coupling regime. Journal Fluid Mechanics, 878, 420- 444. https://doi.org/10.1017/jfm.2019.622 Bernard, P. S., Ashmawey, M. F., and Handler, R. A. (1989). An analysis of particle trajectories in computer-simulated turbulence channel flow. Physics of Fluids A, 1, 1532-1540. https://doi.org/10.1063/1.857330 Boivin, M., Simonin, O., and Squires, K. D. (1998). Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. Journal Fluid Mechanics, 375, 235- 263. https://doi.org/10.1017/S0022112098002821 Capecelatro, J., Desjardins, O., and Fox, R. O. (2018). On the transition between turbulence regimes in particle-laden channel flows. Journal Fluid Mechanics, 845, 499-519. https:// doi.org/10.1017/jfm.2018.259 Costa, P., Brandt, L., and Picano, F. (2021). Near-wall turbulence modulation by small inertial particles. Journal Fluid Mechanics, 922, A9. https://doi.org/10.1017/jfm.2021.507 de Villiers, E. (2006). The potential of Large Eddy Simulation for the modeling of wall bounded flows [Doctoral thesis, Imperial College of Science, Technology, and Medicine] https://scirp.org/reference/ReferencesPapers.aspx?ReferenceID= 2169716 Dritselis, C., and Vlachos, N. S. (2008). Numerical study of educed coherent structures in the near-wall region of a particle- laden channel flow. Physics of Fluids, 20, 055103. https:// doi.org/10.1063/1.2919108 Dritselis, C., and Vlachos, N.S. (2011). Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Physics of Fluids, 23, 025103. https://doi.org/10.1063/1.3553292 Dritselis, C. (2016). Direct numerical simulation of particle laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy. Fluid Dynamics Research, 48, 015507. https:// doi.org/10.1088/0169-5983/48/1/015507 Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52, 309-329. https://doi. org/10.1007/BF00936835 Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian Tracking of bubbles and particles in two-phase flow. Computers and Chemical Engineering, 28, 2727-2733. https://doi.org/10.1016/j.compchemeng. 2004.07.035 Gualtieri, P., Picano, F., Sardina, G., and Casciola, C.M. (2015). Exact regularized point particle method for multiphase flows in the two-way coupling regime. Journal Fluid Mechanics, 773, 520-561. https://doi.org/10.1017/ jfm.2015.258 Hunt, J. C. R., Wray, A. A., and Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research (Eds.), Proceedings of the Summer Program 1988 (pp. 193-208). https://web.stanford.edu/ group/ctr/Summer/201306111537.pdf Ireland, P. J., and Desjardins, O. (2017). Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. Journal Computational Physics, 338, 405-430. https:// doi.org/10.1016/j.jcp.2017.02.070 Jiménez, J., and Pinelli, A. (1999). The autonomous cycle of near-wall turbulence. Journal Fluid Mechanics, 389, 335- 359. https://doi.org/10.1017/S0022112099005066 Kontomaris, K., Hanratty, T. J., and McLaughlin, J. B. (1992). An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. Journal Computational Physics, 103, 231-242. https://doi.org/ 10.1016/0021-9991(92)90398-I Kuerten, J. G. M., van der Geld, C. W. M., and Geurts, B. J. (2011). Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Physics of Fluids, 23, 123301. https://doi. org/10.1063/1.3663308 Kuerten, J. G. M. (2016). Point-particle DNS and LES of particle- laden turbulent flow – A state-of-the-art review. Flow, Turbulence and Combustion, 97, 689-713. https://doi. org/10.1007/s10494-016-9765-y Laín, S., and Aliod, R. (2000). Study on the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. International Journal of Heat and Fluid Flow, 21, 374-380. https://doi. org/10.1016/S0142-727X(00)00023-0 Laín, S., and Sommerfeld, M. (2007). A study of pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Brazilian Journal of Chemical Engineering, 24, 535-546. Lee, J., and Lee, C. (2015). Modification of particle-laden near-wall turbulence; effect of Stokes number. Physics of Fluids, 27, 023303. https://doi.org/10.1063/1.4908277 Li, Y., McLaughlin, J. B., Kontomaris, K., and Portela, L. (2001). Numerical simulation of particle-laden turbulent channel flow. Physics of Fluids, 13, 2957-2967. https://doi.org/10.1063/1.1396846 Li, J., Wang, H., Liu, Z., Chen, S., and Zheng, C. (2012). An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 53, 1385-1403. https://doi.org/10.1007/ s00348-012-1364-7 Marchioli, C. (2003). Mechanisms for transfer, segregation and deposition of heavy particles in turbulent boundary layers [Doctoral thesis, University of Udine] http://calliope.dem. uniud.it/PEOPLE/cris.html Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F., and Portela, L. M. (2008). Statistics of particle dispersion in direct numerical simulations of wall bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34(9), 879-893. https:// doi.org/10.1016/j.ijmultiphaseflow.2008.01.009 Maxey, M. R., and Patel, B. K. (2001). Localized force representations for particles sedimenting in Stokes flow. International Journal of Multiphase Flow, 27, 1603-1626. https://doi. org/10.1016/S0301-9322(01)00014-3 Maxey, M. R., and Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883-889. https://doi.org/10.1063/1.864230 McLaughlin, J.B. (1989). Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids A, 1, 1211- 1224. https://doi.org/10.1063/1.857344 Pan, Y., and Banerjee, S. (1996). Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8, 2733-2755. https://doi.org/10.1063/1.869059 Reeks, M. W. (1983). The transport of discrete particles in inhomogeneous turbulence. Journal of Aerosol Science, 14, 729- 739. https://doi.org/10.1016/0021-8502(83)90055-1 Righetti, M., and Romano, G. P. (2004). Particle–fluid interactions in a plane near-wall turbulent flow. Journal Fluid Mechanics. https://doi.org/10.1017/S0022112004008304 Schoppa, W., and Hussain, F. (2002). Coherent structure generation in near-wall turbulence. Journal of Fluid Mechanics, 453, 57-108. https://doi.org/10.1017/S002211200100667X Sommerfeld, M., and Laín, S. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Canadian Journal of Chemical Engineering, 93, 1-17. https://doi. org/10.1002/cjce.22105 Vreman, A. W. (2007). Turbulence characteristics of particle-laden pipe flow. Journal Fluid Mechanics, 584, 235-279. https:// doi.org/10.1017/S0022112007006556 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia, 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Universidad Nacional de Colombia, 2023 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
12 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.place.spa.fl_str_mv |
Bogotá |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/90fd1500-98f2-48c0-b07d-61ba470c7923/download https://red.uao.edu.co/bitstreams/5e9483c9-35e9-4329-962b-b9969cd54ac8/download https://red.uao.edu.co/bitstreams/6a9ae90e-2dd2-4054-b157-4ef4334dfdde/download https://red.uao.edu.co/bitstreams/f5e7f868-7ec4-420d-8e00-df4b93a137a9/download |
bitstream.checksum.fl_str_mv |
b0e3de37db71e4300cf3bf76f8e7be77 6987b791264a2b5525252450f99b10d1 4c895595657457117caffaa9dc77d23d df2318cb9d9a9a45e613e3abef55c408 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1828230206307958784 |
spelling |
Laín Beatove, Santiagovirtual::5312-1Ortíz, DanielRamírez, Jesús AntonioDuque Daza, Carlos Alberto2024-04-10T15:13:23Z2024-04-10T15:13:23Z2023Laín Beatove, S.; Ortíz, D.; Ramírez. J. A.; Duque Daza, C. A. (2023). Analysis and Discussion of Two-Way Coupling Effects in Particle-Laden Turbulent Channel Flow. Ingeniería e Investigación 43(1). PP. 1-12. http://doi.org/10.15446/ing.investig.872750120-5609https://hdl.handle.net/10614/15523http://doi.org/10.15446/ing.investig.87275Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Este artículo estudia la modificación de la turbulencia de la fase portadora debido a la presencia de partículas sólidas en un flujo en canal totalmente desarrollado utilizando la aproximación de Simulación Numérica Directa (DNS) con partículas puntuales. Las partículas inerciales consideradas son mucho más pequeñas que la menor de las estructuras vorticales turbulentas, manteniendo una fracción volumétrica del orden de 10−4 , en la cual las colisiones entre partículas son esporádicas y apenas tienen influencia en el desarrollo del flujo. Con el fin de evitar efectos simultáneos que puedan enmascarar el análisis de la interacción fluido-partícula, no se incluyen los efectos gravitatorios en el estudio, y las colisiones partícula-pared lisa se modelan como reflexiones ideales. Se ilustra y discute la alteración de la dinámica turbulenta del fluido por parte de las partículas, proporcionando un panorama de los fenómenos de interacción fluido-partícula a nivel microscópico y macroscópico. Finalmente, se muestra la relación de los fenómenos descritos con los efectos de reducción de arrastre causados por las partículas en el flujo en canalThis paper studies the turbulence modification caused by the presence of solid particles in fully developed channel flow by means of the point particle Direct Numerical Simulations (DNS) approach. Inertial particles much smaller than the smallest vortical flow structures are considered, maintaining a volume fraction of the order 10−4 , where inter-particle collisions are rare and have nearly no influence on flow development. To avoid concurrent effects that could mask the analysis of fluid-turbulence interaction, gravity is not included in the study, and particle-smooth wall collisions are modelled as ideal reflections. The alteration of fluid turbulence dynamics by the particles is illustrated and discussed, providing an overview of the fluid-particle interaction phenomena occurring at both microscopic and macroscopic flow levels. Finally, the relation of such phenomena with drag-reducing effects by particles is demonstrated12 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotáDerechos reservados - Universidad Nacional de Colombia, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flowAnálisis y discusión de los efectos del acople de dos vías en el flujo turbulento de un canal cargado con partículasArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85121143Ingeniería e InvestigaciónAkiki, G., Jackson, T. L., and Balachandar, S. (2017). Pairwise interaction extended point-particle model for a random array of monodisperse spheres. Journal Fluid Mechanics, 813, 882-928. https://doi.org/10.1017/jfm.2016.877Balachandar, S., and Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review Fluid Mechanics, 42, 111- 133. https://doi.org/10.1146/annurev.fluid.010908.165243Battista, F., Mollicone, J. P., Gualtieri, P., Messina, R., and Casciola, C.M. (2019). Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the twoway coupling regime. Journal Fluid Mechanics, 878, 420- 444. https://doi.org/10.1017/jfm.2019.622Bernard, P. S., Ashmawey, M. F., and Handler, R. A. (1989). An analysis of particle trajectories in computer-simulated turbulence channel flow. Physics of Fluids A, 1, 1532-1540. https://doi.org/10.1063/1.857330Boivin, M., Simonin, O., and Squires, K. D. (1998). Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. Journal Fluid Mechanics, 375, 235- 263. https://doi.org/10.1017/S0022112098002821Capecelatro, J., Desjardins, O., and Fox, R. O. (2018). On the transition between turbulence regimes in particle-laden channel flows. Journal Fluid Mechanics, 845, 499-519. https:// doi.org/10.1017/jfm.2018.259Costa, P., Brandt, L., and Picano, F. (2021). Near-wall turbulence modulation by small inertial particles. Journal Fluid Mechanics, 922, A9. https://doi.org/10.1017/jfm.2021.507de Villiers, E. (2006). The potential of Large Eddy Simulation for the modeling of wall bounded flows [Doctoral thesis, Imperial College of Science, Technology, and Medicine] https://scirp.org/reference/ReferencesPapers.aspx?ReferenceID= 2169716Dritselis, C., and Vlachos, N. S. (2008). Numerical study of educed coherent structures in the near-wall region of a particle- laden channel flow. Physics of Fluids, 20, 055103. https:// doi.org/10.1063/1.2919108Dritselis, C., and Vlachos, N.S. (2011). Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Physics of Fluids, 23, 025103. https://doi.org/10.1063/1.3553292Dritselis, C. (2016). Direct numerical simulation of particle laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy. Fluid Dynamics Research, 48, 015507. https:// doi.org/10.1088/0169-5983/48/1/015507Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52, 309-329. https://doi. org/10.1007/BF00936835Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian Tracking of bubbles and particles in two-phase flow. Computers and Chemical Engineering, 28, 2727-2733. https://doi.org/10.1016/j.compchemeng. 2004.07.035Gualtieri, P., Picano, F., Sardina, G., and Casciola, C.M. (2015). Exact regularized point particle method for multiphase flows in the two-way coupling regime. Journal Fluid Mechanics, 773, 520-561. https://doi.org/10.1017/ jfm.2015.258Hunt, J. C. R., Wray, A. A., and Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research (Eds.), Proceedings of the Summer Program 1988 (pp. 193-208). https://web.stanford.edu/ group/ctr/Summer/201306111537.pdfIreland, P. J., and Desjardins, O. (2017). Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. Journal Computational Physics, 338, 405-430. https:// doi.org/10.1016/j.jcp.2017.02.070Jiménez, J., and Pinelli, A. (1999). The autonomous cycle of near-wall turbulence. Journal Fluid Mechanics, 389, 335- 359. https://doi.org/10.1017/S0022112099005066Kontomaris, K., Hanratty, T. J., and McLaughlin, J. B. (1992). An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. Journal Computational Physics, 103, 231-242. https://doi.org/ 10.1016/0021-9991(92)90398-IKuerten, J. G. M., van der Geld, C. W. M., and Geurts, B. J. (2011). Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Physics of Fluids, 23, 123301. https://doi. org/10.1063/1.3663308Kuerten, J. G. M. (2016). Point-particle DNS and LES of particle- laden turbulent flow – A state-of-the-art review. Flow, Turbulence and Combustion, 97, 689-713. https://doi. org/10.1007/s10494-016-9765-yLaín, S., and Aliod, R. (2000). Study on the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. International Journal of Heat and Fluid Flow, 21, 374-380. https://doi. org/10.1016/S0142-727X(00)00023-0Laín, S., and Sommerfeld, M. (2007). A study of pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Brazilian Journal of Chemical Engineering, 24, 535-546.Lee, J., and Lee, C. (2015). Modification of particle-laden near-wall turbulence; effect of Stokes number. Physics of Fluids, 27, 023303. https://doi.org/10.1063/1.4908277Li, Y., McLaughlin, J. B., Kontomaris, K., and Portela, L. (2001). Numerical simulation of particle-laden turbulent channel flow. Physics of Fluids, 13, 2957-2967. https://doi.org/10.1063/1.1396846Li, J., Wang, H., Liu, Z., Chen, S., and Zheng, C. (2012). An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 53, 1385-1403. https://doi.org/10.1007/ s00348-012-1364-7Marchioli, C. (2003). Mechanisms for transfer, segregation and deposition of heavy particles in turbulent boundary layers [Doctoral thesis, University of Udine] http://calliope.dem. uniud.it/PEOPLE/cris.htmlMarchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F., and Portela, L. M. (2008). Statistics of particle dispersion in direct numerical simulations of wall bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34(9), 879-893. https:// doi.org/10.1016/j.ijmultiphaseflow.2008.01.009Maxey, M. R., and Patel, B. K. (2001). Localized force representations for particles sedimenting in Stokes flow. International Journal of Multiphase Flow, 27, 1603-1626. https://doi. org/10.1016/S0301-9322(01)00014-3Maxey, M. R., and Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883-889. https://doi.org/10.1063/1.864230McLaughlin, J.B. (1989). Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids A, 1, 1211- 1224. https://doi.org/10.1063/1.857344Pan, Y., and Banerjee, S. (1996). Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8, 2733-2755. https://doi.org/10.1063/1.869059Reeks, M. W. (1983). The transport of discrete particles in inhomogeneous turbulence. Journal of Aerosol Science, 14, 729- 739. https://doi.org/10.1016/0021-8502(83)90055-1Righetti, M., and Romano, G. P. (2004). Particle–fluid interactions in a plane near-wall turbulent flow. Journal Fluid Mechanics. https://doi.org/10.1017/S0022112004008304Schoppa, W., and Hussain, F. (2002). Coherent structure generation in near-wall turbulence. Journal of Fluid Mechanics, 453, 57-108. https://doi.org/10.1017/S002211200100667XSommerfeld, M., and Laín, S. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Canadian Journal of Chemical Engineering, 93, 1-17. https://doi. org/10.1002/cjce.22105Vreman, A. W. (2007). Turbulence characteristics of particle-laden pipe flow. Journal Fluid Mechanics, 584, 235-279. https:// doi.org/10.1017/S0022112007006556Simulación numérica directaFlujo bifásico en canalTurbulenciaAcoplo de dos víasDirect numerical simulationParticle-laden channel flowTurbulenceTwo-way couplingComunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::5312-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::5312-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::5312-10000-0002-0269-2608virtual::5312-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::5312-1ORIGINALAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdfAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf3413867https://red.uao.edu.co/bitstreams/90fd1500-98f2-48c0-b07d-61ba470c7923/downloadb0e3de37db71e4300cf3bf76f8e7be77MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/5e9483c9-35e9-4329-962b-b9969cd54ac8/download6987b791264a2b5525252450f99b10d1MD52TEXTAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdf.txtAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdf.txtExtracted texttext/plain59586https://red.uao.edu.co/bitstreams/6a9ae90e-2dd2-4054-b157-4ef4334dfdde/download4c895595657457117caffaa9dc77d23dMD53THUMBNAILAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdf.jpgAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdf.jpgGenerated Thumbnailimage/jpeg16922https://red.uao.edu.co/bitstreams/f5e7f868-7ec4-420d-8e00-df4b93a137a9/downloaddf2318cb9d9a9a45e613e3abef55c408MD5410614/15523oai:red.uao.edu.co:10614/155232024-04-23 10:36:40.316https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Nacional de Colombia, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg== |