Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow

Este artículo estudia la modificación de la turbulencia de la fase portadora debido a la presencia de partículas sólidas en un flujo en canal totalmente desarrollado utilizando la aproximación de Simulación Numérica Directa (DNS) con partículas puntuales. Las partículas inerciales consideradas son m...

Full description

Autores:
Laín Beatove, Santiago
Ortíz, Daniel
Ramírez, Jesús Antonio
Duque Daza, Carlos Alberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/15523
Acceso en línea:
https://hdl.handle.net/10614/15523
http://doi.org/10.15446/ing.investig.87275
https://red.uao.edu.co/
Palabra clave:
Simulación numérica directa
Flujo bifásico en canal
Turbulencia
Acoplo de dos vías
Direct numerical simulation
Particle-laden channel flow
Turbulence
Two-way coupling
Rights
openAccess
License
Derechos reservados - Universidad Nacional de Colombia, 2023
id REPOUAO2_ae5825863eb3c964a3282a7b70c3adb4
oai_identifier_str oai:red.uao.edu.co:10614/15523
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
dc.title.alternative.spa.fl_str_mv Análisis y discusión de los efectos del acople de dos vías en el flujo turbulento de un canal cargado con partículas
title Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
spellingShingle Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
Simulación numérica directa
Flujo bifásico en canal
Turbulencia
Acoplo de dos vías
Direct numerical simulation
Particle-laden channel flow
Turbulence
Two-way coupling
title_short Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
title_full Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
title_fullStr Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
title_full_unstemmed Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
title_sort Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flow
dc.creator.fl_str_mv Laín Beatove, Santiago
Ortíz, Daniel
Ramírez, Jesús Antonio
Duque Daza, Carlos Alberto
dc.contributor.author.none.fl_str_mv Laín Beatove, Santiago
Ortíz, Daniel
Ramírez, Jesús Antonio
Duque Daza, Carlos Alberto
dc.subject.proposal.spa.fl_str_mv Simulación numérica directa
Flujo bifásico en canal
Turbulencia
Acoplo de dos vías
topic Simulación numérica directa
Flujo bifásico en canal
Turbulencia
Acoplo de dos vías
Direct numerical simulation
Particle-laden channel flow
Turbulence
Two-way coupling
dc.subject.proposal.eng.fl_str_mv Direct numerical simulation
Particle-laden channel flow
Turbulence
Two-way coupling
description Este artículo estudia la modificación de la turbulencia de la fase portadora debido a la presencia de partículas sólidas en un flujo en canal totalmente desarrollado utilizando la aproximación de Simulación Numérica Directa (DNS) con partículas puntuales. Las partículas inerciales consideradas son mucho más pequeñas que la menor de las estructuras vorticales turbulentas, manteniendo una fracción volumétrica del orden de 10−4 , en la cual las colisiones entre partículas son esporádicas y apenas tienen influencia en el desarrollo del flujo. Con el fin de evitar efectos simultáneos que puedan enmascarar el análisis de la interacción fluido-partícula, no se incluyen los efectos gravitatorios en el estudio, y las colisiones partícula-pared lisa se modelan como reflexiones ideales. Se ilustra y discute la alteración de la dinámica turbulenta del fluido por parte de las partículas, proporcionando un panorama de los fenómenos de interacción fluido-partícula a nivel microscópico y macroscópico. Finalmente, se muestra la relación de los fenómenos descritos con los efectos de reducción de arrastre causados por las partículas en el flujo en canal
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-04-10T15:13:23Z
dc.date.available.none.fl_str_mv 2024-04-10T15:13:23Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Laín Beatove, S.; Ortíz, D.; Ramírez. J. A.; Duque Daza, C. A. (2023). Analysis and Discussion of Two-Way Coupling Effects in Particle-Laden Turbulent Channel Flow. Ingeniería e Investigación 43(1). PP. 1-12. http://doi.org/10.15446/ing.investig.87275
dc.identifier.issn.spa.fl_str_mv 0120-5609
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/15523
dc.identifier.doi.none.fl_str_mv http://doi.org/10.15446/ing.investig.87275
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Respositorio Educativo Digital UAO
dc.identifier.repourl.none.fl_str_mv https://red.uao.edu.co/
identifier_str_mv Laín Beatove, S.; Ortíz, D.; Ramírez. J. A.; Duque Daza, C. A. (2023). Analysis and Discussion of Two-Way Coupling Effects in Particle-Laden Turbulent Channel Flow. Ingeniería e Investigación 43(1). PP. 1-12. http://doi.org/10.15446/ing.investig.87275
0120-5609
Universidad Autónoma de Occidente
Respositorio Educativo Digital UAO
url https://hdl.handle.net/10614/15523
http://doi.org/10.15446/ing.investig.87275
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 12
dc.relation.citationissue.none.fl_str_mv 1
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 43
dc.relation.ispartofjournal.spa.fl_str_mv Ingeniería e Investigación
dc.relation.references.none.fl_str_mv Akiki, G., Jackson, T. L., and Balachandar, S. (2017). Pairwise interaction extended point-particle model for a random array of monodisperse spheres. Journal Fluid Mechanics, 813, 882-928. https://doi.org/10.1017/jfm.2016.877
Balachandar, S., and Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review Fluid Mechanics, 42, 111- 133. https://doi.org/10.1146/annurev.fluid.010908.165243
Battista, F., Mollicone, J. P., Gualtieri, P., Messina, R., and Casciola, C.M. (2019). Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the twoway coupling regime. Journal Fluid Mechanics, 878, 420- 444. https://doi.org/10.1017/jfm.2019.622
Bernard, P. S., Ashmawey, M. F., and Handler, R. A. (1989). An analysis of particle trajectories in computer-simulated turbulence channel flow. Physics of Fluids A, 1, 1532-1540. https://doi.org/10.1063/1.857330
Boivin, M., Simonin, O., and Squires, K. D. (1998). Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. Journal Fluid Mechanics, 375, 235- 263. https://doi.org/10.1017/S0022112098002821
Capecelatro, J., Desjardins, O., and Fox, R. O. (2018). On the transition between turbulence regimes in particle-laden channel flows. Journal Fluid Mechanics, 845, 499-519. https:// doi.org/10.1017/jfm.2018.259
Costa, P., Brandt, L., and Picano, F. (2021). Near-wall turbulence modulation by small inertial particles. Journal Fluid Mechanics, 922, A9. https://doi.org/10.1017/jfm.2021.507
de Villiers, E. (2006). The potential of Large Eddy Simulation for the modeling of wall bounded flows [Doctoral thesis, Imperial College of Science, Technology, and Medicine] https://scirp.org/reference/ReferencesPapers.aspx?ReferenceID= 2169716
Dritselis, C., and Vlachos, N. S. (2008). Numerical study of educed coherent structures in the near-wall region of a particle- laden channel flow. Physics of Fluids, 20, 055103. https:// doi.org/10.1063/1.2919108
Dritselis, C., and Vlachos, N.S. (2011). Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Physics of Fluids, 23, 025103. https://doi.org/10.1063/1.3553292
Dritselis, C. (2016). Direct numerical simulation of particle laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy. Fluid Dynamics Research, 48, 015507. https:// doi.org/10.1088/0169-5983/48/1/015507
Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52, 309-329. https://doi. org/10.1007/BF00936835
Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian Tracking of bubbles and particles in two-phase flow. Computers and Chemical Engineering, 28, 2727-2733. https://doi.org/10.1016/j.compchemeng. 2004.07.035
Gualtieri, P., Picano, F., Sardina, G., and Casciola, C.M. (2015). Exact regularized point particle method for multiphase flows in the two-way coupling regime. Journal Fluid Mechanics, 773, 520-561. https://doi.org/10.1017/ jfm.2015.258
Hunt, J. C. R., Wray, A. A., and Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research (Eds.), Proceedings of the Summer Program 1988 (pp. 193-208). https://web.stanford.edu/ group/ctr/Summer/201306111537.pdf
Ireland, P. J., and Desjardins, O. (2017). Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. Journal Computational Physics, 338, 405-430. https:// doi.org/10.1016/j.jcp.2017.02.070
Jiménez, J., and Pinelli, A. (1999). The autonomous cycle of near-wall turbulence. Journal Fluid Mechanics, 389, 335- 359. https://doi.org/10.1017/S0022112099005066
Kontomaris, K., Hanratty, T. J., and McLaughlin, J. B. (1992). An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. Journal Computational Physics, 103, 231-242. https://doi.org/ 10.1016/0021-9991(92)90398-I
Kuerten, J. G. M., van der Geld, C. W. M., and Geurts, B. J. (2011). Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Physics of Fluids, 23, 123301. https://doi. org/10.1063/1.3663308
Kuerten, J. G. M. (2016). Point-particle DNS and LES of particle- laden turbulent flow – A state-of-the-art review. Flow, Turbulence and Combustion, 97, 689-713. https://doi. org/10.1007/s10494-016-9765-y
Laín, S., and Aliod, R. (2000). Study on the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. International Journal of Heat and Fluid Flow, 21, 374-380. https://doi. org/10.1016/S0142-727X(00)00023-0
Laín, S., and Sommerfeld, M. (2007). A study of pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Brazilian Journal of Chemical Engineering, 24, 535-546.
Lee, J., and Lee, C. (2015). Modification of particle-laden near-wall turbulence; effect of Stokes number. Physics of Fluids, 27, 023303. https://doi.org/10.1063/1.4908277
Li, Y., McLaughlin, J. B., Kontomaris, K., and Portela, L. (2001). Numerical simulation of particle-laden turbulent channel flow. Physics of Fluids, 13, 2957-2967. https://doi.org/10.1063/1.1396846
Li, J., Wang, H., Liu, Z., Chen, S., and Zheng, C. (2012). An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 53, 1385-1403. https://doi.org/10.1007/ s00348-012-1364-7
Marchioli, C. (2003). Mechanisms for transfer, segregation and deposition of heavy particles in turbulent boundary layers [Doctoral thesis, University of Udine] http://calliope.dem. uniud.it/PEOPLE/cris.html
Marchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F., and Portela, L. M. (2008). Statistics of particle dispersion in direct numerical simulations of wall bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34(9), 879-893. https:// doi.org/10.1016/j.ijmultiphaseflow.2008.01.009
Maxey, M. R., and Patel, B. K. (2001). Localized force representations for particles sedimenting in Stokes flow. International Journal of Multiphase Flow, 27, 1603-1626. https://doi. org/10.1016/S0301-9322(01)00014-3
Maxey, M. R., and Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883-889. https://doi.org/10.1063/1.864230
McLaughlin, J.B. (1989). Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids A, 1, 1211- 1224. https://doi.org/10.1063/1.857344
Pan, Y., and Banerjee, S. (1996). Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8, 2733-2755. https://doi.org/10.1063/1.869059
Reeks, M. W. (1983). The transport of discrete particles in inhomogeneous turbulence. Journal of Aerosol Science, 14, 729- 739. https://doi.org/10.1016/0021-8502(83)90055-1
Righetti, M., and Romano, G. P. (2004). Particle–fluid interactions in a plane near-wall turbulent flow. Journal Fluid Mechanics. https://doi.org/10.1017/S0022112004008304
Schoppa, W., and Hussain, F. (2002). Coherent structure generation in near-wall turbulence. Journal of Fluid Mechanics, 453, 57-108. https://doi.org/10.1017/S002211200100667X
Sommerfeld, M., and Laín, S. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Canadian Journal of Chemical Engineering, 93, 1-17. https://doi. org/10.1002/cjce.22105
Vreman, A. W. (2007). Turbulence characteristics of particle-laden pipe flow. Journal Fluid Mechanics, 584, 235-279. https:// doi.org/10.1017/S0022112007006556
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Universidad Nacional de Colombia, 2023
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.place.spa.fl_str_mv Bogotá
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/90fd1500-98f2-48c0-b07d-61ba470c7923/download
https://red.uao.edu.co/bitstreams/5e9483c9-35e9-4329-962b-b9969cd54ac8/download
https://red.uao.edu.co/bitstreams/6a9ae90e-2dd2-4054-b157-4ef4334dfdde/download
https://red.uao.edu.co/bitstreams/f5e7f868-7ec4-420d-8e00-df4b93a137a9/download
bitstream.checksum.fl_str_mv b0e3de37db71e4300cf3bf76f8e7be77
6987b791264a2b5525252450f99b10d1
4c895595657457117caffaa9dc77d23d
df2318cb9d9a9a45e613e3abef55c408
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1828230206307958784
spelling Laín Beatove, Santiagovirtual::5312-1Ortíz, DanielRamírez, Jesús AntonioDuque Daza, Carlos Alberto2024-04-10T15:13:23Z2024-04-10T15:13:23Z2023Laín Beatove, S.; Ortíz, D.; Ramírez. J. A.; Duque Daza, C. A. (2023). Analysis and Discussion of Two-Way Coupling Effects in Particle-Laden Turbulent Channel Flow. Ingeniería e Investigación 43(1). PP. 1-12. http://doi.org/10.15446/ing.investig.872750120-5609https://hdl.handle.net/10614/15523http://doi.org/10.15446/ing.investig.87275Universidad Autónoma de OccidenteRespositorio Educativo Digital UAOhttps://red.uao.edu.co/Este artículo estudia la modificación de la turbulencia de la fase portadora debido a la presencia de partículas sólidas en un flujo en canal totalmente desarrollado utilizando la aproximación de Simulación Numérica Directa (DNS) con partículas puntuales. Las partículas inerciales consideradas son mucho más pequeñas que la menor de las estructuras vorticales turbulentas, manteniendo una fracción volumétrica del orden de 10−4 , en la cual las colisiones entre partículas son esporádicas y apenas tienen influencia en el desarrollo del flujo. Con el fin de evitar efectos simultáneos que puedan enmascarar el análisis de la interacción fluido-partícula, no se incluyen los efectos gravitatorios en el estudio, y las colisiones partícula-pared lisa se modelan como reflexiones ideales. Se ilustra y discute la alteración de la dinámica turbulenta del fluido por parte de las partículas, proporcionando un panorama de los fenómenos de interacción fluido-partícula a nivel microscópico y macroscópico. Finalmente, se muestra la relación de los fenómenos descritos con los efectos de reducción de arrastre causados por las partículas en el flujo en canalThis paper studies the turbulence modification caused by the presence of solid particles in fully developed channel flow by means of the point particle Direct Numerical Simulations (DNS) approach. Inertial particles much smaller than the smallest vortical flow structures are considered, maintaining a volume fraction of the order 10−4 , where inter-particle collisions are rare and have nearly no influence on flow development. To avoid concurrent effects that could mask the analysis of fluid-turbulence interaction, gravity is not included in the study, and particle-smooth wall collisions are modelled as ideal reflections. The alteration of fluid turbulence dynamics by the particles is illustrated and discussed, providing an overview of the fluid-particle interaction phenomena occurring at both microscopic and macroscopic flow levels. Finally, the relation of such phenomena with drag-reducing effects by particles is demonstrated12 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotáDerechos reservados - Universidad Nacional de Colombia, 2023https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Analysis and discussion of two-way coupling effects in particle-laden turbulent channel flowAnálisis y discusión de los efectos del acople de dos vías en el flujo turbulento de un canal cargado con partículasArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85121143Ingeniería e InvestigaciónAkiki, G., Jackson, T. L., and Balachandar, S. (2017). Pairwise interaction extended point-particle model for a random array of monodisperse spheres. Journal Fluid Mechanics, 813, 882-928. https://doi.org/10.1017/jfm.2016.877Balachandar, S., and Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual Review Fluid Mechanics, 42, 111- 133. https://doi.org/10.1146/annurev.fluid.010908.165243Battista, F., Mollicone, J. P., Gualtieri, P., Messina, R., and Casciola, C.M. (2019). Exact regularised point particle (ERPP) method for particle-laden wall-bounded flows in the twoway coupling regime. Journal Fluid Mechanics, 878, 420- 444. https://doi.org/10.1017/jfm.2019.622Bernard, P. S., Ashmawey, M. F., and Handler, R. A. (1989). An analysis of particle trajectories in computer-simulated turbulence channel flow. Physics of Fluids A, 1, 1532-1540. https://doi.org/10.1063/1.857330Boivin, M., Simonin, O., and Squires, K. D. (1998). Direct numerical simulation of turbulence modulation by particles in isotropic turbulence. Journal Fluid Mechanics, 375, 235- 263. https://doi.org/10.1017/S0022112098002821Capecelatro, J., Desjardins, O., and Fox, R. O. (2018). On the transition between turbulence regimes in particle-laden channel flows. Journal Fluid Mechanics, 845, 499-519. https:// doi.org/10.1017/jfm.2018.259Costa, P., Brandt, L., and Picano, F. (2021). Near-wall turbulence modulation by small inertial particles. Journal Fluid Mechanics, 922, A9. https://doi.org/10.1017/jfm.2021.507de Villiers, E. (2006). The potential of Large Eddy Simulation for the modeling of wall bounded flows [Doctoral thesis, Imperial College of Science, Technology, and Medicine] https://scirp.org/reference/ReferencesPapers.aspx?ReferenceID= 2169716Dritselis, C., and Vlachos, N. S. (2008). Numerical study of educed coherent structures in the near-wall region of a particle- laden channel flow. Physics of Fluids, 20, 055103. https:// doi.org/10.1063/1.2919108Dritselis, C., and Vlachos, N.S. (2011). Numerical investigation of momentum exchange between particles and coherent structures in low Re turbulent channel flow. Physics of Fluids, 23, 025103. https://doi.org/10.1063/1.3553292Dritselis, C. (2016). Direct numerical simulation of particle laden turbulent channel flows with two- and four-way coupling effects: budgets of Reynolds stress and streamwise enstrophy. Fluid Dynamics Research, 48, 015507. https:// doi.org/10.1088/0169-5983/48/1/015507Elghobashi, S. (1994). On predicting particle-laden turbulent flows. Applied Scientific Research, 52, 309-329. https://doi. org/10.1007/BF00936835Göz, M. F., Laín, S., and Sommerfeld, M. (2004). Study of the numerical instabilities in Lagrangian Tracking of bubbles and particles in two-phase flow. Computers and Chemical Engineering, 28, 2727-2733. https://doi.org/10.1016/j.compchemeng. 2004.07.035Gualtieri, P., Picano, F., Sardina, G., and Casciola, C.M. (2015). Exact regularized point particle method for multiphase flows in the two-way coupling regime. Journal Fluid Mechanics, 773, 520-561. https://doi.org/10.1017/ jfm.2015.258Hunt, J. C. R., Wray, A. A., and Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. In Center for Turbulence Research (Eds.), Proceedings of the Summer Program 1988 (pp. 193-208). https://web.stanford.edu/ group/ctr/Summer/201306111537.pdfIreland, P. J., and Desjardins, O. (2017). Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. Journal Computational Physics, 338, 405-430. https:// doi.org/10.1016/j.jcp.2017.02.070Jiménez, J., and Pinelli, A. (1999). The autonomous cycle of near-wall turbulence. Journal Fluid Mechanics, 389, 335- 359. https://doi.org/10.1017/S0022112099005066Kontomaris, K., Hanratty, T. J., and McLaughlin, J. B. (1992). An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. Journal Computational Physics, 103, 231-242. https://doi.org/ 10.1016/0021-9991(92)90398-IKuerten, J. G. M., van der Geld, C. W. M., and Geurts, B. J. (2011). Turbulence modification and heat transfer enhancement by inertial particles in turbulent channel flow. Physics of Fluids, 23, 123301. https://doi. org/10.1063/1.3663308Kuerten, J. G. M. (2016). Point-particle DNS and LES of particle- laden turbulent flow – A state-of-the-art review. Flow, Turbulence and Combustion, 97, 689-713. https://doi. org/10.1007/s10494-016-9765-yLaín, S., and Aliod, R. (2000). Study on the Eulerian dispersed phase equations in non-uniform turbulent two-phase flows: Discussion and comparison with experiments. International Journal of Heat and Fluid Flow, 21, 374-380. https://doi. org/10.1016/S0142-727X(00)00023-0Laín, S., and Sommerfeld, M. (2007). A study of pneumatic conveying of non-spherical particles in a turbulent horizontal channel flow. Brazilian Journal of Chemical Engineering, 24, 535-546.Lee, J., and Lee, C. (2015). Modification of particle-laden near-wall turbulence; effect of Stokes number. Physics of Fluids, 27, 023303. https://doi.org/10.1063/1.4908277Li, Y., McLaughlin, J. B., Kontomaris, K., and Portela, L. (2001). Numerical simulation of particle-laden turbulent channel flow. Physics of Fluids, 13, 2957-2967. https://doi.org/10.1063/1.1396846Li, J., Wang, H., Liu, Z., Chen, S., and Zheng, C. (2012). An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 53, 1385-1403. https://doi.org/10.1007/ s00348-012-1364-7Marchioli, C. (2003). Mechanisms for transfer, segregation and deposition of heavy particles in turbulent boundary layers [Doctoral thesis, University of Udine] http://calliope.dem. uniud.it/PEOPLE/cris.htmlMarchioli, C., Soldati, A., Kuerten, J. G. M., Arcen, B., Tanière, A., Goldensoph, G., Squires, K. D., Cargnelutti, M. F., and Portela, L. M. (2008). Statistics of particle dispersion in direct numerical simulations of wall bounded turbulence: Results of an international collaborative benchmark test. International Journal of Multiphase Flow, 34(9), 879-893. https:// doi.org/10.1016/j.ijmultiphaseflow.2008.01.009Maxey, M. R., and Patel, B. K. (2001). Localized force representations for particles sedimenting in Stokes flow. International Journal of Multiphase Flow, 27, 1603-1626. https://doi. org/10.1016/S0301-9322(01)00014-3Maxey, M. R., and Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Physics of Fluids, 26, 883-889. https://doi.org/10.1063/1.864230McLaughlin, J.B. (1989). Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids A, 1, 1211- 1224. https://doi.org/10.1063/1.857344Pan, Y., and Banerjee, S. (1996). Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8, 2733-2755. https://doi.org/10.1063/1.869059Reeks, M. W. (1983). The transport of discrete particles in inhomogeneous turbulence. Journal of Aerosol Science, 14, 729- 739. https://doi.org/10.1016/0021-8502(83)90055-1Righetti, M., and Romano, G. P. (2004). Particle–fluid interactions in a plane near-wall turbulent flow. Journal Fluid Mechanics. https://doi.org/10.1017/S0022112004008304Schoppa, W., and Hussain, F. (2002). Coherent structure generation in near-wall turbulence. Journal of Fluid Mechanics, 453, 57-108. https://doi.org/10.1017/S002211200100667XSommerfeld, M., and Laín, S. (2015). Parameters influencing dilute-phase pneumatic conveying through pipe systems: A computational study by the Euler/Lagrange approach. Canadian Journal of Chemical Engineering, 93, 1-17. https://doi. org/10.1002/cjce.22105Vreman, A. W. (2007). Turbulence characteristics of particle-laden pipe flow. Journal Fluid Mechanics, 584, 235-279. https:// doi.org/10.1017/S0022112007006556Simulación numérica directaFlujo bifásico en canalTurbulenciaAcoplo de dos víasDirect numerical simulationParticle-laden channel flowTurbulenceTwo-way couplingComunidad generalPublication082b0926-3385-4188-9c6a-bbbed7484a95virtual::5312-1082b0926-3385-4188-9c6a-bbbed7484a95virtual::5312-1https://scholar.google.com/citations?user=g-iBdUkAAAAJ&hl=esvirtual::5312-10000-0002-0269-2608virtual::5312-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000262129virtual::5312-1ORIGINALAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdfAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdfArchivo texto completo del artículo de revista, PDFapplication/pdf3413867https://red.uao.edu.co/bitstreams/90fd1500-98f2-48c0-b07d-61ba470c7923/downloadb0e3de37db71e4300cf3bf76f8e7be77MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81672https://red.uao.edu.co/bitstreams/5e9483c9-35e9-4329-962b-b9969cd54ac8/download6987b791264a2b5525252450f99b10d1MD52TEXTAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdf.txtAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdf.txtExtracted texttext/plain59586https://red.uao.edu.co/bitstreams/6a9ae90e-2dd2-4054-b157-4ef4334dfdde/download4c895595657457117caffaa9dc77d23dMD53THUMBNAILAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdf.jpgAnalysisAndDiscussionOfTwoWayCouplingEffectsInPartticle-Laden Turbulent Channel Flow.pdf.jpgGenerated Thumbnailimage/jpeg16922https://red.uao.edu.co/bitstreams/f5e7f868-7ec4-420d-8e00-df4b93a137a9/downloaddf2318cb9d9a9a45e613e3abef55c408MD5410614/15523oai:red.uao.edu.co:10614/155232024-04-23 10:36:40.316https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Universidad Nacional de Colombia, 2023open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coPHA+RUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS48L3A+Cg==