Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach

Aedes aegypti females mosquitoes are the principal transmitters of dengue and other arboviral infections. In recent years, it was disclosed that, when deliberately infected with Wolbachia symbiont, this mosquito species loses its vectorial competence and becomes less capable of transmitting the viru...

Full description

Autores:
Cardona Salgado, Daiver
Campo Duarte, Doris Elena
Sepúlveda Salcedo, Lilian Sofía
Vasilieva, Olga
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13290
Acceso en línea:
https://hdl.handle.net/10614/13290
Palabra clave:
Control de vectores
Vector control
Dengue - Control biológico
Dengue - Biological control
Wolbachia-based biocontrol
Dengue transmission model
wMelPop strain
Aedes aegypti
Optimal control
Optimal release program
Rights
openAccess
License
Derechos reservados - Elsevier, 2020
id REPOUAO2_ad814d6ce442861dd5aad1f59d7fdd1c
oai_identifier_str oai:red.uao.edu.co:10614/13290
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach
title Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach
spellingShingle Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach
Control de vectores
Vector control
Dengue - Control biológico
Dengue - Biological control
Wolbachia-based biocontrol
Dengue transmission model
wMelPop strain
Aedes aegypti
Optimal control
Optimal release program
title_short Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach
title_full Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach
title_fullStr Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach
title_full_unstemmed Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach
title_sort Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach
dc.creator.fl_str_mv Cardona Salgado, Daiver
Campo Duarte, Doris Elena
Sepúlveda Salcedo, Lilian Sofía
Vasilieva, Olga
dc.contributor.author.none.fl_str_mv Cardona Salgado, Daiver
Campo Duarte, Doris Elena
Sepúlveda Salcedo, Lilian Sofía
dc.contributor.author.spa.fl_str_mv Vasilieva, Olga
dc.contributor.corporatename.eng.fl_str_mv Elsevier
dc.subject.lemb.spa.fl_str_mv Control de vectores
topic Control de vectores
Vector control
Dengue - Control biológico
Dengue - Biological control
Wolbachia-based biocontrol
Dengue transmission model
wMelPop strain
Aedes aegypti
Optimal control
Optimal release program
dc.subject.lemb.eng.fl_str_mv Vector control
dc.subject.armarc.spa.fl_str_mv Dengue - Control biológico
dc.subject.armarc.eng.fl_str_mv Dengue - Biological control
dc.subject.proposal.eng.fl_str_mv Wolbachia-based biocontrol
Dengue transmission model
wMelPop strain
Aedes aegypti
Optimal control
Optimal release program
description Aedes aegypti females mosquitoes are the principal transmitters of dengue and other arboviral infections. In recent years, it was disclosed that, when deliberately infected with Wolbachia symbiont, this mosquito species loses its vectorial competence and becomes less capable of transmitting the virus to human hosts. Thanks to this important discovery, Wolbachia-based biocontrol is now accepted as an ecologically friendly and potentially cost-effective method for prevention and control of dengue and other arboviral infections. In this paper, we propose a dengue transmission model that accounts for the presence of wild Aedes aegypti females and those deliberately infected with wMelPop Wolbachia strain, which is regarded as the best blocker of dengue and other arboviral infections. However, wMelPop strain of Wolbachia considerably reduces the individual fitness of mosquitoes, what makes rather challenging to achieve the gradual extrusion of wild mosquitoes and ensure their posterior replacement by Wolbachia-carriers. Nonetheless, this obstacle have been overcome by employing the optimal control approach for design of specific intervention programs based on daily releases of Wolbachia-carrying mosquitoes. The resulting optimal release programs ensure the population replacement and eventual local extinction of wild mosquitoes in the finite time and also entail a significant reduction in the number of expected dengue infections among human hosts under the long-term settings
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-01-09
dc.date.accessioned.none.fl_str_mv 2021-09-29T20:40:40Z
dc.date.available.none.fl_str_mv 2021-09-29T20:40:40Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0307904X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13290
dc.identifier.doi.none.fl_str_mv 10.1016/j.apm.2020.01.032
identifier_str_mv 0307904X
10.1016/j.apm.2020.01.032
url https://hdl.handle.net/10614/13290
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationedition.spa.fl_str_mv Volumen 82 (2020)
dc.relation.citationendpage.spa.fl_str_mv 149
dc.relation.citationstartpage.spa.fl_str_mv 125
dc.relation.citationvolume.spa.fl_str_mv Volumen 82
dc.relation.cites.eng.fl_str_mv Cardona Salgado, D., Campo Duarte, D. E., Sepulveda Salcedo, L.S., Vasilieva O. (2020). Wolbachia based biocontrol for dengue reduction using dynamic optimization approach. Elsevier. Applied Mathematical Modelling (Vol.82), pp. 125-149. https://doi.org/10.1016/j.apm.2020.01.032
dc.relation.ispartofjournal.eng.fl_str_mv Applied Mathematical Modelling
dc.relation.references.none.fl_str_mv [1] J. Brown, C. McBride, P. Johnson, S. Ritchie, C. Paupy, H. Bossin, J. Lutomiah, I. Fernandez-Salas, A. Ponlawat, A. Cornel, W. Black, N. Gorro- chotegui-Escalante, L. Urdaneta-Marquez, M. Sylla, M. Slotman, K. Murray, C. Walker, J. Powell, Worldwide patterns of genetic differentiation imply multiple “domestications”of Aedes aegypti, a major vector of human diseases, Proc. R. Soc. B Biol. Sci. 278 (1717) (2011) 2446–2454.
[2] A. Clements, The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, CABI, Cambridge MA, USA, 2011.
[3] G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathogens 6 (4) (2010) e10 0 0833.
[4] F. Frentiu, T. Zakir, T. Walker, J. Popovici, A. Pyke, A. van den Hurk, E. McGraw, S. O’Neill,Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia, PLoS Negl. Trop. Diseases 8 (2) (2014) 1–10. [5] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, S. O’Neill, Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell 139 (7) (2009) 1268–1278.
[6] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476 (7361) (2011) 450–453.
[7] Y. Ye, A. Carrasco, F. Frentiu, S. Chenoweth, N. Beebe, A. van den Hurk, C. Simmons, S. O’Neill, E. McGraw, Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti, PLoS Neglected Trop. Diseases 9 (6) (2015) 1–19.
[8] I. Dorigatti, C. McCormack, G. Nedjati-Gilani, N. Ferguson, Using Wolbachia for dengue control: Insights from modelling, Trends Parasitol. 34 (2) (2018) 102–113.
[9] J. Bull, M. Turelli, Wolbachia versus dengue evolutionary forecasts, Evolut. Med. Public Health 2013 (1) (2013) 197–207.
[10] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. Ryan, S.L. O’Neill, E. McGraw, V. Long, L. Dui, H. Nguyen, N. Chau, B. Wills, C. Simmons, Modeling the impact on virus transmission of Wolbachia -mediated blocking of dengue virus infection of Aedes aegypti, Sci. Translat. Med. 7 (279) (2015) 279ra3.
[11] A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y. Leong, Y. Dong, H. Cook, J. Axford, A. Callahan, N. Kenny, C. Omodei, E. McGraw, P. Ryan, S. Ritchie, M. Turelli, S. O’Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature 476 (7361) (2011) 454–457.
[12] J. Kamtchum-Tatuene, B. Makepeace, L. Benjamin, M. Baylis, Solomon, The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections, Current Opin. Infect. Diseases 30 (1) (2017) 108.
[13] M. Woolfit, I. Iturbe-Ormaetxe, J. Brownlie, T. Walker, M. Riegler, A. Seleznev, E. Popovici J.and Rancès, B. Wee, J. Pavlides, M. Sullivan, S. Beatson, A. Lane, M. Sidhu, C. McMeniman, E. McGraw, S. O’Neill, Genomic evolution of the pathogenic Wolbachia strain, wMelPop, Genome Biol. Evolut. 5 (11) (2013) 2189–2204.
[14] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, S. O’Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science 323 (5910) (2009) 141–144.
[15] C. McMeniman, S. O’Neill,A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence, PLoS Negleted Trop. Diseases 4 (7) (2010) e748.
[16] S. Ritchie, M. Townsend, C. Paton, A. Callahan, A. Hoffmann, Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti, PLoS Negleted Trop. Diseases 9 (7) (2015) e0 0 03930.
[17] P. Ross, N. Endersby, H. Yeap, A. Hoffmann, Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia -infected Aedes aegypti, Am. J. Trop. Med. Hyg. 91 (1) (2014) 198–205.
[18] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Aggarwal, M. Schwemmer, C. Hom, R. Grosberg, S. Schreiber, Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, J. Theor. Biol. 297 (2012) 26–32.
[19] T. Nguyen, H. Le Nguyen, T. Nguyen, S. Vu, N. Tran, T. Le, Q. Vien, T. Bui, H. Le, S. Kutcher, T. Hurst, T. Duong, J. Jeffery, J. Darbro, H. Kay, I. Iturbe-Or- maetxe, J. Popovici, B. Montgomery, A. Turley, F. Zigterman, H. Cook, P. Cook, P. Johnson, P. Ryan, C. Paton, S. Ritchie, C. Simmons, S. O’Neill, A. Hoff- mann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Paras. Vect. 8 (1) (2015) 563.
[20] H. Yeap, J. Axford, J. Popovici, N. Endersby, I. Iturbe-Ormaetxe, S. Ritchie, A. Hoffmann, Assessing quality of life-shortening Wolbachia -infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments, Paras. Vect. 7 (1) (2014) 1.
[21] T. Ruang-Areerate, P. Kittayapong, Wolbachia transinfection in Aedes aegypti : a potential gene driver of dengue vectors, Proc. Natl. Acad. Sci. 103 (33) (2006) 12534–12539.
[22] N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, Charles Griffin & Company Ltd, Bucks, U.K., 1975.
[23] D. Campo-Duarte, D. Cardona-Salgado, O. Vasilieva, Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach, Appl. Math. Inf. Sci. 11 (4) (2017) 1011–1027.
[24] H. Hughes, N. Britton, Modelling the use of Wolbachia to control dengue fever transmission, Bull. Math. Biol. 75 (5) (2013) 796–818.
[25] M. Ndii, R. Hickson, D. Allingham, G. Mercer, Modelling the transmission dynamics of dengue in the presence of Wolbachia, Math. Biosci. 262 (2015) 157–166.
[26] W. Bock, Y. Jayathunga, Optimal control of a multi-patch dengue model under the influence of Wolbachia bacterium, Math. Biosci. 315 (2019) 108219.
[27] J. Liles, Effects of mating or association of the sexes on longevity in Aedes aegypti (L.)., Mosquito News 25 (4) (1965) 434–439.
[28] P.-A. Bliman, M.S. Aronna, F.C. Coelho, M.A.H. Da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol. 76 (5) (2018) 1269–1300.
[29] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females, Int. J. Pure Appl. Math. 112 (2) (2017) 219–238.
[30] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, M. Svinin, Optimal control methods for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, J. Math. Biol. 76 (7) (2018) 1907–1950.
[31] J. Farkas, S. Gourley, R. Liu, A.-A. Yakubu, Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus, J. Math. Biol. 75 (3) (2017) 621–647.
[32] M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution 64 (1) (2010) 232–241.
[33] S. Dobson, C. Fox, F. Jiggins, The effect of Wolbachia -induced cytoplasmic incompatibility on host population size in natural and manipulated systems, Proc. R. Soc. Lond. B Biol. Sci. 269 (1490) (2002) 437–445.
[34] N. Britton, Essential Mathematical Biology, Springer Undergraduate Mathematics Series, Springer, London, UK, 2012.
[35] M. Grunnill, M. Boots, How important is vertical transmission of dengue viruses by mosquitoes (Diptera: Culicidae)? J. Med. Entomol. 53 (1) (2015) 1–19.
[36] E. Barrios, S. Lee, O. Vasilieva, Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia, J. Theoret. Biol. 453 (2018) 14–39.
[37] A. Turley, L. Moreira, S. O’Neill, E. McGraw,Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti, PLoS Neglect. Trop. Diseases 3 (9) (2009) e516.
[38] J. Putnam, T. Scott, Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti, Am. J. Trop. Med. Hyg. 52 (3) (1995) 225–227.
[39] O. Diekmann, J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathe- matical & Computational Biology, Wiley, Chichester, UK, 2000.
[40] O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (4) (1990) 365–382.
[41] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (1) (2002) 29–48.
[42] M. Martcheva, An introduction to mathematical epidemiology, Texts in Applied Mathematics, 61, Springer, New York, USA, 2015.
[43] M. Andraud, N. Hens, C. Marais, P. Beutels, Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PloS One 7 (11) (2012) e–49085.
[44] D. Kroese, T. Taimre, Z. Botev, Handbook of Monte Carlo Methods, Wiley Series in Probability and Statistics 706, Wiley, Hoboken NJ, USA, 2011.
[45] A. Lawson, Statistical Methods in Spatial Epidemiology, Wiley Series in Probability and Statistics, 2 ed., Wiley, Chichester, UK, 2006.
[46] L.S. Sepúlveda, O. Vasilieva, Optimal control approach to dengue reduction and prevention in Cali, Colombia, Math. Methods Appl. Sci. 39 (18) (2016) 5475–5496.
[47] A. Bryson, Y. Ho, Applied Optimal Control: Optimization, Estimation and Control, Taylor & Francis, USA, 1975.
[48] S. Lenhart, J. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC, Boca Raton FL, USA, 2007.
[49] W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, USA, 1975.
[50] S. Roberts, J. Shipman, Two-Point Boundary Value Problems: Shooting Methods, Modern analytic and computational methods in science and mathe- matics, 31, Elsevier, New York, USA, 1972.
[51] U. Ascher, R. Mattheij, R. Russell, Numerical solution of boundary value problems for ordinary differential equations, Prentice Hall Series in Computa- tional Mathematics, Prentice Hall Inc., Englewood Cliffs NJ, USA, 1988.
[52] M. Patterson, A. Rao, GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature col- location methods and sparse nonlinear programming, ACM Trans. Math. Softw. (TOMS) 41 (1) (2014) 1.
[53] D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, G. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica 46 (11) (2010) 1843–1851.
[54] F. Méndez, M. Barreto, J. Arias, G. Rengifo, J. Muñoz, M. Burbano, B. Parra, Human and mosquito infections by dengue viruses during and after epi- demics in a dengue endemic region of Colombia, Am. J. Trop. Med. Hyg. 74 (4) (2006) 678–683.
[55] C. Ocampo, D. Wesson, Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia, Am. J. Trop. Med. Hyg. 71 (4) (2004) 506–513.
[56] WHO, World life expectancy: Colombia, 2014, ( http://www.worldlifeexpectancy.com/colombia-life-expectancy ).
[57] G. Escobar-Morales (Ed.), Cali en cifras 2010 [Cali in numbers 2010], Departamento Administrativo de Planeación, Alcaldia de Santiago de Cali, 2010.
[58] A. Costero, J. Edman, G. Clark, T. Scott, Life table study of aedes aegypti (diptera: Culicidae) in puerto rico fed only human blood versus blood plus sugar, J. Med. Entomol. 35 (5) (1998) 809–813, doi: 10.1093/jmedent/35.5.809.
[59] T. Scott, P. Amerasinghe, A. Morrison, L. Lorenz, G. Clark, D. Strickman, P. Kittayapong, J. Edman, Longitudinal studies of Aedes aegypti (Diptera: Culicidae ) in Thailand and Puerto Rico: blood feeding frequency, J. Med. Entomol. 37 (1) (20 0 0) 89–101.
[60] T. Scott, A. Morrison, L. Lorenz, G. Clark, D. Strickman, P. Kittayapong, H. Zhou, J. Edman, Longitudinal studies of Aedes aegypti (Diptera: Culicidae ) in Thailand and Puerto Rico: population dynamics, J. Med. Entomol. 37 (1) (20 0 0) 77–88.
[61] M. Derouich, A. Boutayeb, E. Twizell, A model of dengue fever, BioMed. Eng. OnLine 2 (1) (2003) 4.
[62] J. Suaya, D. Shepard, J. Siqueira, C. Martelli, L. Lum, L. Tan, S. Kongsin, S. Jiamton, F. Garrido, R. Montoya, B. Armien, R. Huy, L. Castillo, M. Caram, B. Sah, R. Sughayyar, K. Tyo, S. Halstead, Cost of dengue cases in eight countries in the Americas and Asia: a prospective study, Am. J. Trop. Med. Hyg. 80 (5) (2009) 846–855.
[63] H. Nishiura, Duration of short-lived cross-protective immunity against a clinical attack of dengue: A preliminary estimate, Dengue Bull. 32 (2008) 55–66.
[64] G. Snow, B. Haaland, E. Ooi, D. Gubler, Research on dengue during World War II revisited, Am. J. Trop. Med. Hygiene 91 (6) (2014) 1203–1217.
dc.rights.spa.fl_str_mv Derechos reservados - Elsevier, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsevier, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 25 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier
dc.publisher.place.eng.fl_str_mv New York
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/72863426-1699-4edf-9373-e4ee1d649564/download
https://red.uao.edu.co/bitstreams/be8c68f7-7f37-4633-9946-6f1a818be43d/download
https://red.uao.edu.co/bitstreams/2e774564-8d8c-48a4-9ba3-3d727e93301e/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
41a973ece5aa6d40a9bf6a13bbc454fc
f54e349a59363525b27203e97171c86a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260085610774528
spelling Cardona Salgado, Daivervirtual::1168-1Campo Duarte, Doris Elenavirtual::1001-1Sepúlveda Salcedo, Lilian Sofíavirtual::4677-1Vasilieva, Olga31f6a4db00254953edddbca148e36487Elsevier2021-09-29T20:40:40Z2021-09-29T20:40:40Z2020-01-090307904Xhttps://hdl.handle.net/10614/1329010.1016/j.apm.2020.01.032Aedes aegypti females mosquitoes are the principal transmitters of dengue and other arboviral infections. In recent years, it was disclosed that, when deliberately infected with Wolbachia symbiont, this mosquito species loses its vectorial competence and becomes less capable of transmitting the virus to human hosts. Thanks to this important discovery, Wolbachia-based biocontrol is now accepted as an ecologically friendly and potentially cost-effective method for prevention and control of dengue and other arboviral infections. In this paper, we propose a dengue transmission model that accounts for the presence of wild Aedes aegypti females and those deliberately infected with wMelPop Wolbachia strain, which is regarded as the best blocker of dengue and other arboviral infections. However, wMelPop strain of Wolbachia considerably reduces the individual fitness of mosquitoes, what makes rather challenging to achieve the gradual extrusion of wild mosquitoes and ensure their posterior replacement by Wolbachia-carriers. Nonetheless, this obstacle have been overcome by employing the optimal control approach for design of specific intervention programs based on daily releases of Wolbachia-carrying mosquitoes. The resulting optimal release programs ensure the population replacement and eventual local extinction of wild mosquitoes in the finite time and also entail a significant reduction in the number of expected dengue infections among human hosts under the long-term settings25 páginasapplication/pdfengElsevierNew YorkDerechos reservados - Elsevier, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Wolbachia-based biocontrol for dengue reduction using dynamic optimization approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Control de vectoresVector controlDengue - Control biológicoDengue - Biological controlWolbachia-based biocontrolDengue transmission modelwMelPop strainAedes aegyptiOptimal controlOptimal release programVolumen 82 (2020)149125Volumen 82Cardona Salgado, D., Campo Duarte, D. E., Sepulveda Salcedo, L.S., Vasilieva O. (2020). Wolbachia based biocontrol for dengue reduction using dynamic optimization approach. Elsevier. Applied Mathematical Modelling (Vol.82), pp. 125-149. https://doi.org/10.1016/j.apm.2020.01.032Applied Mathematical Modelling[1] J. Brown, C. McBride, P. Johnson, S. Ritchie, C. Paupy, H. Bossin, J. Lutomiah, I. Fernandez-Salas, A. Ponlawat, A. Cornel, W. Black, N. Gorro- chotegui-Escalante, L. Urdaneta-Marquez, M. Sylla, M. Slotman, K. Murray, C. Walker, J. Powell, Worldwide patterns of genetic differentiation imply multiple “domestications”of Aedes aegypti, a major vector of human diseases, Proc. R. Soc. B Biol. Sci. 278 (1717) (2011) 2446–2454.[2] A. Clements, The Biology of Mosquitoes: Viral, Arboviral and Bacterial Pathogens, CABI, Cambridge MA, USA, 2011.[3] G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathogens 6 (4) (2010) e10 0 0833.[4] F. Frentiu, T. Zakir, T. Walker, J. Popovici, A. Pyke, A. van den Hurk, E. McGraw, S. O’Neill,Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia, PLoS Negl. Trop. Diseases 8 (2) (2014) 1–10. [5] L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, B. Rocha, S. Hall-Mendelin, A. Day, M. Riegler, L. Hugo, K. Johnson, B. Kay, E. McGraw, A. van den Hurk, P. Ryan, S. O’Neill, Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell 139 (7) (2009) 1268–1278.[6] T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, Y. Leong, Y. Dong, J. Axford, P. Kriesner, A. Lloyd, S. Ritchie, S. O’Neill, A. Hoffmann, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature 476 (7361) (2011) 450–453.[7] Y. Ye, A. Carrasco, F. Frentiu, S. Chenoweth, N. Beebe, A. van den Hurk, C. Simmons, S. O’Neill, E. McGraw, Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti, PLoS Neglected Trop. Diseases 9 (6) (2015) 1–19.[8] I. Dorigatti, C. McCormack, G. Nedjati-Gilani, N. Ferguson, Using Wolbachia for dengue control: Insights from modelling, Trends Parasitol. 34 (2) (2018) 102–113.[9] J. Bull, M. Turelli, Wolbachia versus dengue evolutionary forecasts, Evolut. Med. Public Health 2013 (1) (2013) 197–207.[10] N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, J. Popovici, P. Ryan, S.L. O’Neill, E. McGraw, V. Long, L. Dui, H. Nguyen, N. Chau, B. Wills, C. Simmons, Modeling the impact on virus transmission of Wolbachia -mediated blocking of dengue virus infection of Aedes aegypti, Sci. Translat. Med. 7 (279) (2015) 279ra3.[11] A. Hoffmann, B. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y. Leong, Y. Dong, H. Cook, J. Axford, A. Callahan, N. Kenny, C. Omodei, E. McGraw, P. Ryan, S. Ritchie, M. Turelli, S. O’Neill, Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission, Nature 476 (7361) (2011) 454–457.[12] J. Kamtchum-Tatuene, B. Makepeace, L. Benjamin, M. Baylis, Solomon, The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections, Current Opin. Infect. Diseases 30 (1) (2017) 108.[13] M. Woolfit, I. Iturbe-Ormaetxe, J. Brownlie, T. Walker, M. Riegler, A. Seleznev, E. Popovici J.and Rancès, B. Wee, J. Pavlides, M. Sullivan, S. Beatson, A. Lane, M. Sidhu, C. McMeniman, E. McGraw, S. O’Neill, Genomic evolution of the pathogenic Wolbachia strain, wMelPop, Genome Biol. Evolut. 5 (11) (2013) 2189–2204.[14] C. McMeniman, R. Lane, B. Cass, A. Fong, M. Sidhu, Y. Wang, S. O’Neill, Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science 323 (5910) (2009) 141–144.[15] C. McMeniman, S. O’Neill,A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence, PLoS Negleted Trop. Diseases 4 (7) (2010) e748.[16] S. Ritchie, M. Townsend, C. Paton, A. Callahan, A. Hoffmann, Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti, PLoS Negleted Trop. Diseases 9 (7) (2015) e0 0 03930.[17] P. Ross, N. Endersby, H. Yeap, A. Hoffmann, Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia -infected Aedes aegypti, Am. J. Trop. Med. Hyg. 91 (1) (2014) 198–205.[18] J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, T. Aggarwal, M. Schwemmer, C. Hom, R. Grosberg, S. Schreiber, Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, J. Theor. Biol. 297 (2012) 26–32.[19] T. Nguyen, H. Le Nguyen, T. Nguyen, S. Vu, N. Tran, T. Le, Q. Vien, T. Bui, H. Le, S. Kutcher, T. Hurst, T. Duong, J. Jeffery, J. Darbro, H. Kay, I. Iturbe-Or- maetxe, J. Popovici, B. Montgomery, A. Turley, F. Zigterman, H. Cook, P. Cook, P. Johnson, P. Ryan, C. Paton, S. Ritchie, C. Simmons, S. O’Neill, A. Hoff- mann, Field evaluation of the establishment potential of wMelPop Wolbachia in Australia and Vietnam for dengue control, Paras. Vect. 8 (1) (2015) 563.[20] H. Yeap, J. Axford, J. Popovici, N. Endersby, I. Iturbe-Ormaetxe, S. Ritchie, A. Hoffmann, Assessing quality of life-shortening Wolbachia -infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments, Paras. Vect. 7 (1) (2014) 1.[21] T. Ruang-Areerate, P. Kittayapong, Wolbachia transinfection in Aedes aegypti : a potential gene driver of dengue vectors, Proc. Natl. Acad. Sci. 103 (33) (2006) 12534–12539.[22] N. Bailey, The Mathematical Theory of Infectious Diseases and its Applications, Charles Griffin & Company Ltd, Bucks, U.K., 1975.[23] D. Campo-Duarte, D. Cardona-Salgado, O. Vasilieva, Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach, Appl. Math. Inf. Sci. 11 (4) (2017) 1011–1027.[24] H. Hughes, N. Britton, Modelling the use of Wolbachia to control dengue fever transmission, Bull. Math. Biol. 75 (5) (2013) 796–818.[25] M. Ndii, R. Hickson, D. Allingham, G. Mercer, Modelling the transmission dynamics of dengue in the presence of Wolbachia, Math. Biosci. 262 (2015) 157–166.[26] W. Bock, Y. Jayathunga, Optimal control of a multi-patch dengue model under the influence of Wolbachia bacterium, Math. Biosci. 315 (2019) 108219.[27] J. Liles, Effects of mating or association of the sexes on longevity in Aedes aegypti (L.)., Mosquito News 25 (4) (1965) 434–439.[28] P.-A. Bliman, M.S. Aronna, F.C. Coelho, M.A.H. Da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol. 76 (5) (2018) 1269–1300.[29] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, Optimal control for enhancement of Wolbachia frequency among Aedes aegypti females, Int. J. Pure Appl. Math. 112 (2) (2017) 219–238.[30] D. Campo-Duarte, O. Vasilieva, D. Cardona-Salgado, M. Svinin, Optimal control methods for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, J. Math. Biol. 76 (7) (2018) 1907–1950.[31] J. Farkas, S. Gourley, R. Liu, A.-A. Yakubu, Modelling Wolbachia infection in a sex-structured mosquito population carrying West Nile virus, J. Math. Biol. 75 (3) (2017) 621–647.[32] M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution 64 (1) (2010) 232–241.[33] S. Dobson, C. Fox, F. Jiggins, The effect of Wolbachia -induced cytoplasmic incompatibility on host population size in natural and manipulated systems, Proc. R. Soc. Lond. B Biol. Sci. 269 (1490) (2002) 437–445.[34] N. Britton, Essential Mathematical Biology, Springer Undergraduate Mathematics Series, Springer, London, UK, 2012.[35] M. Grunnill, M. Boots, How important is vertical transmission of dengue viruses by mosquitoes (Diptera: Culicidae)? J. Med. Entomol. 53 (1) (2015) 1–19.[36] E. Barrios, S. Lee, O. Vasilieva, Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia, J. Theoret. Biol. 453 (2018) 14–39.[37] A. Turley, L. Moreira, S. O’Neill, E. McGraw,Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti, PLoS Neglect. Trop. Diseases 3 (9) (2009) e516.[38] J. Putnam, T. Scott, Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti, Am. J. Trop. Med. Hyg. 52 (3) (1995) 225–227.[39] O. Diekmann, J. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, Wiley Series in Mathe- matical & Computational Biology, Wiley, Chichester, UK, 2000.[40] O. Diekmann, J. Heesterbeek, J. Metz, On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol. 28 (4) (1990) 365–382.[41] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (1) (2002) 29–48.[42] M. Martcheva, An introduction to mathematical epidemiology, Texts in Applied Mathematics, 61, Springer, New York, USA, 2015.[43] M. Andraud, N. Hens, C. Marais, P. Beutels, Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches, PloS One 7 (11) (2012) e–49085.[44] D. Kroese, T. Taimre, Z. Botev, Handbook of Monte Carlo Methods, Wiley Series in Probability and Statistics 706, Wiley, Hoboken NJ, USA, 2011.[45] A. Lawson, Statistical Methods in Spatial Epidemiology, Wiley Series in Probability and Statistics, 2 ed., Wiley, Chichester, UK, 2006.[46] L.S. Sepúlveda, O. Vasilieva, Optimal control approach to dengue reduction and prevention in Cali, Colombia, Math. Methods Appl. Sci. 39 (18) (2016) 5475–5496.[47] A. Bryson, Y. Ho, Applied Optimal Control: Optimization, Estimation and Control, Taylor & Francis, USA, 1975.[48] S. Lenhart, J. Workman, Optimal Control Applied to Biological Models, Chapman & Hall/CRC, Boca Raton FL, USA, 2007.[49] W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York, USA, 1975.[50] S. Roberts, J. Shipman, Two-Point Boundary Value Problems: Shooting Methods, Modern analytic and computational methods in science and mathe- matics, 31, Elsevier, New York, USA, 1972.[51] U. Ascher, R. Mattheij, R. Russell, Numerical solution of boundary value problems for ordinary differential equations, Prentice Hall Series in Computa- tional Mathematics, Prentice Hall Inc., Englewood Cliffs NJ, USA, 1988.[52] M. Patterson, A. Rao, GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature col- location methods and sparse nonlinear programming, ACM Trans. Math. Softw. (TOMS) 41 (1) (2014) 1.[53] D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, G. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica 46 (11) (2010) 1843–1851.[54] F. Méndez, M. Barreto, J. Arias, G. Rengifo, J. Muñoz, M. Burbano, B. Parra, Human and mosquito infections by dengue viruses during and after epi- demics in a dengue endemic region of Colombia, Am. J. Trop. Med. Hyg. 74 (4) (2006) 678–683.[55] C. Ocampo, D. Wesson, Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia, Am. J. Trop. Med. Hyg. 71 (4) (2004) 506–513.[56] WHO, World life expectancy: Colombia, 2014, ( http://www.worldlifeexpectancy.com/colombia-life-expectancy ).[57] G. Escobar-Morales (Ed.), Cali en cifras 2010 [Cali in numbers 2010], Departamento Administrativo de Planeación, Alcaldia de Santiago de Cali, 2010.[58] A. Costero, J. Edman, G. Clark, T. Scott, Life table study of aedes aegypti (diptera: Culicidae) in puerto rico fed only human blood versus blood plus sugar, J. Med. Entomol. 35 (5) (1998) 809–813, doi: 10.1093/jmedent/35.5.809.[59] T. Scott, P. Amerasinghe, A. Morrison, L. Lorenz, G. Clark, D. Strickman, P. Kittayapong, J. Edman, Longitudinal studies of Aedes aegypti (Diptera: Culicidae ) in Thailand and Puerto Rico: blood feeding frequency, J. Med. Entomol. 37 (1) (20 0 0) 89–101.[60] T. Scott, A. Morrison, L. Lorenz, G. Clark, D. Strickman, P. Kittayapong, H. Zhou, J. Edman, Longitudinal studies of Aedes aegypti (Diptera: Culicidae ) in Thailand and Puerto Rico: population dynamics, J. Med. Entomol. 37 (1) (20 0 0) 77–88.[61] M. Derouich, A. Boutayeb, E. Twizell, A model of dengue fever, BioMed. Eng. OnLine 2 (1) (2003) 4.[62] J. Suaya, D. Shepard, J. Siqueira, C. Martelli, L. Lum, L. Tan, S. Kongsin, S. Jiamton, F. Garrido, R. Montoya, B. Armien, R. Huy, L. Castillo, M. Caram, B. Sah, R. Sughayyar, K. Tyo, S. Halstead, Cost of dengue cases in eight countries in the Americas and Asia: a prospective study, Am. J. Trop. Med. Hyg. 80 (5) (2009) 846–855.[63] H. Nishiura, Duration of short-lived cross-protective immunity against a clinical attack of dengue: A preliminary estimate, Dengue Bull. 32 (2008) 55–66.[64] G. Snow, B. Haaland, E. Ooi, D. Gubler, Research on dengue during World War II revisited, Am. J. Trop. Med. Hygiene 91 (6) (2014) 1203–1217.Comunidad universitaria en generalPublication72f68479-5914-43da-8996-02353d27d5dcvirtual::1168-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1001-1aeb47892-e365-4668-9322-a97426768e27virtual::4677-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1001-172f68479-5914-43da-8996-02353d27d5dcvirtual::1168-1aeb47892-e365-4668-9322-a97426768e27virtual::4677-1https://scholar.google.com.co/citations?user=KcfKIyEAAAAJ&hl=esvirtual::1168-1https://scholar.google.com/citations?hl=es&user=wyuT448AAAAJvirtual::1001-1https://scholar.google.com.co/citations?user=u2HFR6AAAAAJ&hl=esvirtual::4677-10000-0003-4828-9360virtual::1168-10000-0001-6832-9265virtual::1001-10000-0002-7052-1851virtual::4677-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001474886virtual::1168-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349182virtual::1001-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000277746virtual::4677-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/72863426-1699-4edf-9373-e4ee1d649564/download20b5ba22b1117f71589c7318baa2c560MD52TEXTWolbachia-based biocontrol for dengue reduction using dynamic optimization approach.pdf.txtWolbachia-based biocontrol for dengue reduction using dynamic optimization approach.pdf.txtExtracted texttext/plain99949https://red.uao.edu.co/bitstreams/be8c68f7-7f37-4633-9946-6f1a818be43d/download41a973ece5aa6d40a9bf6a13bbc454fcMD54THUMBNAILWolbachia-based biocontrol for dengue reduction using dynamic optimization approach.pdf.jpgWolbachia-based biocontrol for dengue reduction using dynamic optimization approach.pdf.jpgGenerated Thumbnailimage/jpeg13380https://red.uao.edu.co/bitstreams/2e774564-8d8c-48a4-9ba3-3d727e93301e/downloadf54e349a59363525b27203e97171c86aMD5510614/13290oai:red.uao.edu.co:10614/132902024-03-15 08:54:57.985https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsevier, 2020metadata.onlyhttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K