Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach

Aedes aegypti females mosquitoes are the principal transmitters of dengue and other arboviral infections. In recent years, it was disclosed that, when deliberately infected with Wolbachia symbiont, this mosquito species loses its vectorial competence and becomes less capable of transmitting the viru...

Full description

Autores:
Cardona Salgado, Daiver
Campo Duarte, Doris Elena
Sepúlveda Salcedo, Lilian Sofía
Vasilieva, Olga
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13290
Acceso en línea:
https://hdl.handle.net/10614/13290
Palabra clave:
Control de vectores
Vector control
Dengue - Control biológico
Dengue - Biological control
Wolbachia-based biocontrol
Dengue transmission model
wMelPop strain
Aedes aegypti
Optimal control
Optimal release program
Rights
openAccess
License
Derechos reservados - Elsevier, 2020
Description
Summary:Aedes aegypti females mosquitoes are the principal transmitters of dengue and other arboviral infections. In recent years, it was disclosed that, when deliberately infected with Wolbachia symbiont, this mosquito species loses its vectorial competence and becomes less capable of transmitting the virus to human hosts. Thanks to this important discovery, Wolbachia-based biocontrol is now accepted as an ecologically friendly and potentially cost-effective method for prevention and control of dengue and other arboviral infections. In this paper, we propose a dengue transmission model that accounts for the presence of wild Aedes aegypti females and those deliberately infected with wMelPop Wolbachia strain, which is regarded as the best blocker of dengue and other arboviral infections. However, wMelPop strain of Wolbachia considerably reduces the individual fitness of mosquitoes, what makes rather challenging to achieve the gradual extrusion of wild mosquitoes and ensure their posterior replacement by Wolbachia-carriers. Nonetheless, this obstacle have been overcome by employing the optimal control approach for design of specific intervention programs based on daily releases of Wolbachia-carrying mosquitoes. The resulting optimal release programs ensure the population replacement and eventual local extinction of wild mosquitoes in the finite time and also entail a significant reduction in the number of expected dengue infections among human hosts under the long-term settings