Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains

In this paper, we propose a dengue transmission model of SIR(S)-SI type that accounts for two sex-structured mosquito populations: the wild mosquitoes (males and females that are Wol- bachia-free), and those deliberately infected with either wMel or wMelPop strain of Wolbachia. This epidemiological...

Full description

Autores:
Cardona Salgado, Daiver
Campo Duarte, Doris Elena
Sepúlveda Salcedo, Lilian Sofía
Vasilieva, Olga
Svinin, Mikhail
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13901
Acceso en línea:
https://hdl.handle.net/10614/13901
https://red.uao.edu.co/
Palabra clave:
Virus del dengue
Modelos matemáticos
Dengue viruses
Mathematical models
Aedes aegypti mosquitoes
Sex-structured model
Dengue transmission model
Wolbachia-based biocontrol
wMelPop and wMel strains
Optimal control
Optimal release program
Rights
openAccess
License
Derechos reservados - AIMS Press, 2021
id REPOUAO2_ad4ee5cc4b8b9157738ccb8d1bdaba1f
oai_identifier_str oai:red.uao.edu.co:10614/13901
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains
title Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains
spellingShingle Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains
Virus del dengue
Modelos matemáticos
Dengue viruses
Mathematical models
Aedes aegypti mosquitoes
Sex-structured model
Dengue transmission model
Wolbachia-based biocontrol
wMelPop and wMel strains
Optimal control
Optimal release program
title_short Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains
title_full Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains
title_fullStr Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains
title_full_unstemmed Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains
title_sort Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strains
dc.creator.fl_str_mv Cardona Salgado, Daiver
Campo Duarte, Doris Elena
Sepúlveda Salcedo, Lilian Sofía
Vasilieva, Olga
Svinin, Mikhail
dc.contributor.author.none.fl_str_mv Cardona Salgado, Daiver
Campo Duarte, Doris Elena
Sepúlveda Salcedo, Lilian Sofía
Vasilieva, Olga
Svinin, Mikhail
dc.subject.armarc.spa.fl_str_mv Virus del dengue
Modelos matemáticos
topic Virus del dengue
Modelos matemáticos
Dengue viruses
Mathematical models
Aedes aegypti mosquitoes
Sex-structured model
Dengue transmission model
Wolbachia-based biocontrol
wMelPop and wMel strains
Optimal control
Optimal release program
dc.subject.armarc.eng.fl_str_mv Dengue viruses
Mathematical models
dc.subject.proposal.eng.fl_str_mv Aedes aegypti mosquitoes
Sex-structured model
Dengue transmission model
Wolbachia-based biocontrol
wMelPop and wMel strains
Optimal control
Optimal release program
description In this paper, we propose a dengue transmission model of SIR(S)-SI type that accounts for two sex-structured mosquito populations: the wild mosquitoes (males and females that are Wol- bachia-free), and those deliberately infected with either wMel or wMelPop strain of Wolbachia. This epidemiological model has four possible outcomes: with or without Wolbachia and with or without dengue. To reach the desired outcome, with Wolbachia and without dengue, we employ the dynamic optimization approach and then design optimal programs for releasing Wolbachia-carrying male and female mosquitoes. Our discussion is focused on advantages and drawbacks of two Wolbachia strains, wMelPop and wMel, that are recommended for dengue prevention and control. On the one hand, the wMel strain guarantees a faster population replacement, ensures durable Wolbachia persistence in the wild mosquito population, and requiters fewer releases. On the other hand, the wMelPop strain displays better results for averting dengue infections in the human population
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-03
dc.date.accessioned.none.fl_str_mv 2022-05-20T17:19:53Z
dc.date.available.none.fl_str_mv 2022-05-20T17:19:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 15471063
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13901
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 15471063
Universidad Autónoma de Occidente
Repositorio Educativo Digital
url https://hdl.handle.net/10614/13901
https://red.uao.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 2990
dc.relation.citationissue.spa.fl_str_mv 3
dc.relation.citationstartpage.spa.fl_str_mv 2952
dc.relation.citationvolume.spa.fl_str_mv 18
dc.relation.cites.spa.fl_str_mv Cardona Salgado, D., Campo Duarte, D. E., Sepúlveda Salcedo, L. S., Vasilieva, O., Svinin, M. (2021). Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains. Mathematical Biosciences and Engineering. Vol 18 (3), pp. 2952-2990.
dc.relation.ispartofjournal.eng.fl_str_mv Mathematical Biosciences and Engineering
dc.relation.references.none.fl_str_mv 1. G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6 (2010), e1000833.
2. J. Kamtchum-Tatuene, B. Makepeace, L. Benjamin, M. Baylis, T. Solomon, The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections, Current Opin. Infect. Diseases, 30 (2017), 108.
3. L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, et al., A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell, 139 (2009), 1268–1278.
4. T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453.
5. I. Dorigatti, C. McCormack, G. Nedjati-Gilani, N. Ferguson, Using Wolbachia for dengue control: Insights from modelling, Trends Parasitol., 34 (2018), 102–113.
6. Scott A Ritchie, Michael Townsend, Chris J Paton, Ashley G Callahan, Ary A Hoffmann, Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti, PLoS Negl. Trop Dis., 9 (2015), e0003930.
7. N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, et al., Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Translat. Med., 7 (2015), 279ra37.
8. M. Woolfit, I. Iturbe-Ormaetxe, J. Brownlie, T. Walker, M. Riegler, A. Seleznev, et al., Genomic evolution of the pathogenic Wolbachia strain, wMelPop, Genome Biol. Evolut., 5 (2013), 2189– 2204.
9. Doris E. Campo-Duarte, Olga Vasilieva, Daiver Cardona-Salgado, Mikhail Svinin, Optimal control methods for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, J. Math. Biol., 76 (2018), 1907–1950.
10. Daiver Cardona-Salgado, Doris E. Campo-Duarte, Lilian S. Sepulveda-Salcedo, Olga Vasilieva, Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach, Appl. Math. Model., 82 (2020), 125–149.
11. H. Hughes, N. Britton. Modelling the use of Wolbachia to control dengue fever transmission, Bullet. Math. Biol.,75 (2013), 796–818.
12. Meksianis Ndii, Roslyn Hickson, David Allingham, G. N. Mercer. Modelling the transmission dynamics of dengue in the presence of Wolbachia, Math. Biosci., 262 (2015),157–166.
13. N. Bailey, The mathematical theory of infectious diseases and its applications, Charles Griffin & Company Ltd, Bucks, U.K., 1975.
14. Hal Caswell, Daniel E. Weeks. Two-sex models: Chaos, extinction, and other dynamic consequences of sex, Am. Natural., 128 (1986), 707–735.
15. J. N. Liles, Effects of mating or association of the sexes on longevity in Aedes aegypti (L.), Mosquito News, 25 (1965), 434–439.
16. J. Werren, L. Baldo, M. Clark. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6 (2008), 741.
17. L. Almeida, A. Haddon, C. Kermorvant, A. Leculier, Y. Privat, M. Strugarek, et al., Optimal ´ release of mosquitoes to control dengue transmission, ESAIM Proceed. Surveys, 67 (2020), 16– 29.
18. J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, et al., Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, J. Theoret. Biol., 297 (2012), 26–32.
19. M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232–241.
20. L. Almeida, M. Duprez, Y. Privat, N. Vauchelet. Mosquito population control strategies for fighting against arboviruses, Math. Biosci. Eng., 16 (2019), 6274–6297.
21. L. Almeida, Y. Privat, M. Strugarek, N. Vauchelet. Optimal releases for population replacement strategies: Application to Wolbachia, SIAM J. Math. Anal., 51 (2019), 3170–3194.
22. P.-A. Bliman, M. S. Aronna, F. C. Coelho, Moacyr A. H. Da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol., 76 (2018), 1269–1300.
23. Doris E. Campo-Duarte, Daiver Cardona-Salgado, Olga Vasilieva, Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach, Appl. Math. Inform. Sci., 11 (2017), 1011–1027.
24. Dana Contreras-Julio, Pablo Aguirre, Jose Mujica, Olga Vasilieva. Finding strategies to regulate propagation and containment of dengue via invariant manifold analysis, SIAM J. Appl. Dynam. Systems, 19 (2020), 1392–1437.
25. Oscar E. Escobar-Lasso, Olga Vasilieva. A simplified monotone model of Wolbachia invasion encompassing Aedes aegypti mosquitoes, Studies Appl. Math., 146 (2021), 565–585.
26. L. Xue, C. Manore, P. Thongsripong, J. Hyman. Two-sex mosquito model for the persistence of Wolbachia, J Biol. Dynam., 11 (2017), 216–237.
27. N. Britton, Essential Mathematical Biology, Springer Undergraduate Mathematics Series. Springer, London, UK, 2012.
28. Lilian S. Sepulveda, Olga Vasilieva. Optimal control approach to dengue reduction and prevention ´ in Cali, Colombia, Math. Methods Appl. Sci., 39 (2016), 5475–5496.
29. E. Barrios, S. Lee, O. Vasilieva, Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia, J. Theor. Biol., 45 (2018), 14–39.
30. M. Grunnill, M. Boots. How important is vertical transmission of dengue viruses by mosquitoes (Diptera: Culicidae)? J. Med. Entomol., 53 (2015), 1–19.
31. J. Putnam, T. Scott. Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti, Am. J. Trop. Med. Hyg., 52 (1995), 225–227.
32. M.-J. Lau, N. Endersby-Harshman, J. Axford, S. Ritchie, A. Hoffmann, P. Ross, Measuring the host-seeking ability of Aedes aegypti destined for field release, Am. J. Trop. Med. Hyg., 102 (2020), 223–231.
33. A. Turley, R. Smallegange, W. Takken, M. Zalucki, S. O’Neill, E. McGraw. Wolbachia infection does not alter attraction of the mosquito Aedes (stegomyia) aegypti to human odours, Med. Veter. Entomol., 28 (2014), 457–460.
34. M. Martcheva, An introduction to mathematical epidemiology, volume 61 of Texts in Applied Mathematics, Springer, New York, USA, 2015.
35. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
36. D. Kroese, T. Taimre, Z. Botev. Handbook of Monte Carlo Methods, volume 706 of Wiley Series in Probability and Statistics, Wiley, 2011.
37. A. Lawson, Statistical Methods in Spatial Epidemiology, volume 657 of Wiley Series in Probability and Statistics, Wiley, 2nd edition edition, 2006.
38. W. Fleming, R. Rishel. Deterministic and stochastic optimal control, Springer, New York, USA, 1975.
39. S. Lenhart, J. Workman, Optimal control applied to biological models, Chapman & Hall/CRC, Boca Raton, FL, 2007.
40. M. Patterson, A. Rao, GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming, ACM Transact. Math. Software (TOMS), 41 (2014), 1.
41. Anil V Rao, David A Benson, Christopher Darby, Michael A Patterson, Camila Francolin, Ilyssa Sanders, et al., Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method, ACM Transact. Math. Software (TOMS), 37 (2010), 22.
42. D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, G. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica, 46 (2010), 1843–1851.
43. F. Mendez, M. Barreto, J. Arias, G. Rengifo, J. Mu ´ noz, M. Burbano, B. Parra, Human and ˜ mosquito infections by dengue viruses during and after epidemics in a dengue endemic region of Colombia. Am. J. Trop. Med. Hyg., 74 (2006), 678–683.
44. C. Ocampo, D. Wesson, Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia, Am. J. Trop. Med. Hyg., 71 (2004), 506–513.
45. Lilian S. Sepulveda-Salcedo, Olga Vasilieva, Mikhail Svinin. Optimal control of dengue epidemic outbreaks under limited resources, Studies Appl. Math., 144 (2020), 185–212.
46. G. Escobar-Morales, Cali en cifras 2010 [Cali in numbers 2010], Departamento Administrativo de Planeacion. Alcaldia de Santiago de Cali, 2010.
47. WHO, World life expectancy: Colombia, https://www.worldlifeexpectancy.com/colombia-lifeexpectancy; , 2018. accessed on March 8, 2021.
48. P. Hancock, S. Sinkins, H. Godfray, Population dynamic models of the spread of Wolbachia. Am. Natural., 177 (2011), 323–333.
49. L. Styer, S. Minnick, A. Sun, T. Scott. Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood, Vector-borne Zoonot. Diseases, 7 (2007), 86–98.
50. R. Maciel-de Freitas, W. Marques, R. Peres, S. Cunha, R. Lourenc¸o-de Oliveira, Variation in Aedes aegypti (Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons, Mem´orias do Instituto Oswaldo Cruz, 102 (2007), 489–496.
51. I. Tovar-Zamora, J. Caraveo-Patino, R. Penilla-Navarro, V. Serrano-Pinto, J. M ˜ endez-Galv ´ an, ´ A. Mart´ınez, et al., Seasonal variation in abundance of dengue vector in the southern part of the Baja California Peninsula, Mexico, Southwestern Entomol., 44 (2019), 885–895.
52. Juddy Heliana Arias-Castro, Hector Jairo Martinez-Romero, Olga Vasilieva, Biological and chemical control of mosquito population by optimal control approach, Games, 11 (2020), 62.
53. Emilene Pliego-Pliego, Olga Vasilieva, Jorge Velazquez-Castro, Andres Fraguela-Collar, Control ´ strategies for a population dynamics model of Aedes aegypti with seasonal variability and their effects on dengue incidence, Appl. Math. Model., 81 (2020), 296–319.
dc.rights.spa.fl_str_mv Derechos reservados - AIMS Press, 2021
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - AIMS Press, 2021
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 39 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv AIMS Press
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/6f04c08a-0f81-4b20-a9ae-63ce22fcaf86/download
https://red.uao.edu.co/bitstreams/e8c08aa2-00d5-431b-9e67-0e748cf45176/download
https://red.uao.edu.co/bitstreams/226e7478-0d62-4db0-ace0-e8b01c6e3463/download
https://red.uao.edu.co/bitstreams/111c640b-d2d7-4071-a456-81016cba9963/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
3d08f843403a44e451c4c85b4d5f762d
2a60f2f23521a33a18219ef84537cdc2
78fc4cf889ca957252fd8d5c43f7b280
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814259773634248704
spelling Cardona Salgado, Daivervirtual::1169-1Campo Duarte, Doris Elenavirtual::1000-1Sepúlveda Salcedo, Lilian Sofíavirtual::4683-1Vasilieva, Olga31f6a4db00254953edddbca148e36487Svinin, Mikhailcebfbd9cdab50bbe6233c8c30761320e2022-05-20T17:19:53Z2022-05-20T17:19:53Z2021-0315471063https://hdl.handle.net/10614/13901Universidad Autónoma de OccidenteRepositorio Educativo Digitalhttps://red.uao.edu.co/In this paper, we propose a dengue transmission model of SIR(S)-SI type that accounts for two sex-structured mosquito populations: the wild mosquitoes (males and females that are Wol- bachia-free), and those deliberately infected with either wMel or wMelPop strain of Wolbachia. This epidemiological model has four possible outcomes: with or without Wolbachia and with or without dengue. To reach the desired outcome, with Wolbachia and without dengue, we employ the dynamic optimization approach and then design optimal programs for releasing Wolbachia-carrying male and female mosquitoes. Our discussion is focused on advantages and drawbacks of two Wolbachia strains, wMelPop and wMel, that are recommended for dengue prevention and control. On the one hand, the wMel strain guarantees a faster population replacement, ensures durable Wolbachia persistence in the wild mosquito population, and requiters fewer releases. On the other hand, the wMelPop strain displays better results for averting dengue infections in the human population39 páginasapplication/pdfengAIMS PressDerechos reservados - AIMS Press, 2021https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Optimal release programs for dengue prevention using aedes aegypti mosquitoes transinfected with wmel or wmelpop wolbachia strainsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Virus del dengueModelos matemáticosDengue virusesMathematical modelsAedes aegypti mosquitoesSex-structured modelDengue transmission modelWolbachia-based biocontrolwMelPop and wMel strainsOptimal controlOptimal release program29903295218Cardona Salgado, D., Campo Duarte, D. E., Sepúlveda Salcedo, L. S., Vasilieva, O., Svinin, M. (2021). Optimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains. Mathematical Biosciences and Engineering. Vol 18 (3), pp. 2952-2990.Mathematical Biosciences and Engineering1. G. Bian, Y. Xu, P. Lu, Y. Xie, Z. Xi, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6 (2010), e1000833.2. J. Kamtchum-Tatuene, B. Makepeace, L. Benjamin, M. Baylis, T. Solomon, The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections, Current Opin. Infect. Diseases, 30 (2017), 108.3. L. Moreira, I. Iturbe-Ormaetxe, J. Jeffery, G. Lu, A. Pyke, L. Hedges, et al., A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and plasmodium, Cell, 139 (2009), 1268–1278.4. T. Walker, P. Johnson, L. Moreira, I. Iturbe-Ormaetxe, F. Frentiu, C. McMeniman, et al., The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476 (2011), 450–453.5. I. Dorigatti, C. McCormack, G. Nedjati-Gilani, N. Ferguson, Using Wolbachia for dengue control: Insights from modelling, Trends Parasitol., 34 (2018), 102–113.6. Scott A Ritchie, Michael Townsend, Chris J Paton, Ashley G Callahan, Ary A Hoffmann, Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti, PLoS Negl. Trop Dis., 9 (2015), e0003930.7. N. Ferguson, D. Kien, H. Clapham, R. Aguas, V. Trung, T. Chau, et al., Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Translat. Med., 7 (2015), 279ra37.8. M. Woolfit, I. Iturbe-Ormaetxe, J. Brownlie, T. Walker, M. Riegler, A. Seleznev, et al., Genomic evolution of the pathogenic Wolbachia strain, wMelPop, Genome Biol. Evolut., 5 (2013), 2189– 2204.9. Doris E. Campo-Duarte, Olga Vasilieva, Daiver Cardona-Salgado, Mikhail Svinin, Optimal control methods for establishing wMelPop Wolbachia infection among wild Aedes aegypti populations, J. Math. Biol., 76 (2018), 1907–1950.10. Daiver Cardona-Salgado, Doris E. Campo-Duarte, Lilian S. Sepulveda-Salcedo, Olga Vasilieva, Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach, Appl. Math. Model., 82 (2020), 125–149.11. H. Hughes, N. Britton. Modelling the use of Wolbachia to control dengue fever transmission, Bullet. Math. Biol.,75 (2013), 796–818.12. Meksianis Ndii, Roslyn Hickson, David Allingham, G. N. Mercer. Modelling the transmission dynamics of dengue in the presence of Wolbachia, Math. Biosci., 262 (2015),157–166.13. N. Bailey, The mathematical theory of infectious diseases and its applications, Charles Griffin & Company Ltd, Bucks, U.K., 1975.14. Hal Caswell, Daniel E. Weeks. Two-sex models: Chaos, extinction, and other dynamic consequences of sex, Am. Natural., 128 (1986), 707–735.15. J. N. Liles, Effects of mating or association of the sexes on longevity in Aedes aegypti (L.), Mosquito News, 25 (1965), 434–439.16. J. Werren, L. Baldo, M. Clark. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol., 6 (2008), 741.17. L. Almeida, A. Haddon, C. Kermorvant, A. Leculier, Y. Privat, M. Strugarek, et al., Optimal ´ release of mosquitoes to control dengue transmission, ESAIM Proceed. Surveys, 67 (2020), 16– 29.18. J. Schraiber, A. Kaczmarczyk, R. Kwok, M. Park, R. Silverstein, F. Rutaganira, et al., Constraints on the use of lifespan-shortening Wolbachia to control dengue fever, J. Theoret. Biol., 297 (2012), 26–32.19. M. Turelli, Cytoplasmic incompatibility in populations with overlapping generations, Evolution, 64 (2010), 232–241.20. L. Almeida, M. Duprez, Y. Privat, N. Vauchelet. Mosquito population control strategies for fighting against arboviruses, Math. Biosci. Eng., 16 (2019), 6274–6297.21. L. Almeida, Y. Privat, M. Strugarek, N. Vauchelet. Optimal releases for population replacement strategies: Application to Wolbachia, SIAM J. Math. Anal., 51 (2019), 3170–3194.22. P.-A. Bliman, M. S. Aronna, F. C. Coelho, Moacyr A. H. Da Silva, Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control, J. Math. Biol., 76 (2018), 1269–1300.23. Doris E. Campo-Duarte, Daiver Cardona-Salgado, Olga Vasilieva, Establishing wMelPop Wolbachia infection among wild Aedes aegypti females by optimal control approach, Appl. Math. Inform. Sci., 11 (2017), 1011–1027.24. Dana Contreras-Julio, Pablo Aguirre, Jose Mujica, Olga Vasilieva. Finding strategies to regulate propagation and containment of dengue via invariant manifold analysis, SIAM J. Appl. Dynam. Systems, 19 (2020), 1392–1437.25. Oscar E. Escobar-Lasso, Olga Vasilieva. A simplified monotone model of Wolbachia invasion encompassing Aedes aegypti mosquitoes, Studies Appl. Math., 146 (2021), 565–585.26. L. Xue, C. Manore, P. Thongsripong, J. Hyman. Two-sex mosquito model for the persistence of Wolbachia, J Biol. Dynam., 11 (2017), 216–237.27. N. Britton, Essential Mathematical Biology, Springer Undergraduate Mathematics Series. Springer, London, UK, 2012.28. Lilian S. Sepulveda, Olga Vasilieva. Optimal control approach to dengue reduction and prevention ´ in Cali, Colombia, Math. Methods Appl. Sci., 39 (2016), 5475–5496.29. E. Barrios, S. Lee, O. Vasilieva, Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia, J. Theor. Biol., 45 (2018), 14–39.30. M. Grunnill, M. Boots. How important is vertical transmission of dengue viruses by mosquitoes (Diptera: Culicidae)? J. Med. Entomol., 53 (2015), 1–19.31. J. Putnam, T. Scott. Blood-feeding behavior of dengue-2 virus-infected Aedes aegypti, Am. J. Trop. Med. Hyg., 52 (1995), 225–227.32. M.-J. Lau, N. Endersby-Harshman, J. Axford, S. Ritchie, A. Hoffmann, P. Ross, Measuring the host-seeking ability of Aedes aegypti destined for field release, Am. J. Trop. Med. Hyg., 102 (2020), 223–231.33. A. Turley, R. Smallegange, W. Takken, M. Zalucki, S. O’Neill, E. McGraw. Wolbachia infection does not alter attraction of the mosquito Aedes (stegomyia) aegypti to human odours, Med. Veter. Entomol., 28 (2014), 457–460.34. M. Martcheva, An introduction to mathematical epidemiology, volume 61 of Texts in Applied Mathematics, Springer, New York, USA, 2015.35. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.36. D. Kroese, T. Taimre, Z. Botev. Handbook of Monte Carlo Methods, volume 706 of Wiley Series in Probability and Statistics, Wiley, 2011.37. A. Lawson, Statistical Methods in Spatial Epidemiology, volume 657 of Wiley Series in Probability and Statistics, Wiley, 2nd edition edition, 2006.38. W. Fleming, R. Rishel. Deterministic and stochastic optimal control, Springer, New York, USA, 1975.39. S. Lenhart, J. Workman, Optimal control applied to biological models, Chapman & Hall/CRC, Boca Raton, FL, 2007.40. M. Patterson, A. Rao, GPOPS-II: A MATLAB software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming, ACM Transact. Math. Software (TOMS), 41 (2014), 1.41. Anil V Rao, David A Benson, Christopher Darby, Michael A Patterson, Camila Francolin, Ilyssa Sanders, et al., Algorithm 902: GPOPS, a MATLAB software for solving multiple-phase optimal control problems using the Gauss pseudospectral method, ACM Transact. Math. Software (TOMS), 37 (2010), 22.42. D. Garg, M. Patterson, W. Hager, A. Rao, D. Benson, G. Huntington, A unified framework for the numerical solution of optimal control problems using pseudospectral methods, Automatica, 46 (2010), 1843–1851.43. F. Mendez, M. Barreto, J. Arias, G. Rengifo, J. Mu ´ noz, M. Burbano, B. Parra, Human and ˜ mosquito infections by dengue viruses during and after epidemics in a dengue endemic region of Colombia. Am. J. Trop. Med. Hyg., 74 (2006), 678–683.44. C. Ocampo, D. Wesson, Population dynamics of Aedes aegypti from a dengue hyperendemic urban setting in Colombia, Am. J. Trop. Med. Hyg., 71 (2004), 506–513.45. Lilian S. Sepulveda-Salcedo, Olga Vasilieva, Mikhail Svinin. Optimal control of dengue epidemic outbreaks under limited resources, Studies Appl. Math., 144 (2020), 185–212.46. G. Escobar-Morales, Cali en cifras 2010 [Cali in numbers 2010], Departamento Administrativo de Planeacion. Alcaldia de Santiago de Cali, 2010.47. WHO, World life expectancy: Colombia, https://www.worldlifeexpectancy.com/colombia-lifeexpectancy; , 2018. accessed on March 8, 2021.48. P. Hancock, S. Sinkins, H. Godfray, Population dynamic models of the spread of Wolbachia. Am. Natural., 177 (2011), 323–333.49. L. Styer, S. Minnick, A. Sun, T. Scott. Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood, Vector-borne Zoonot. Diseases, 7 (2007), 86–98.50. R. Maciel-de Freitas, W. Marques, R. Peres, S. Cunha, R. Lourenc¸o-de Oliveira, Variation in Aedes aegypti (Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons, Mem´orias do Instituto Oswaldo Cruz, 102 (2007), 489–496.51. I. Tovar-Zamora, J. Caraveo-Patino, R. Penilla-Navarro, V. Serrano-Pinto, J. M ˜ endez-Galv ´ an, ´ A. Mart´ınez, et al., Seasonal variation in abundance of dengue vector in the southern part of the Baja California Peninsula, Mexico, Southwestern Entomol., 44 (2019), 885–895.52. Juddy Heliana Arias-Castro, Hector Jairo Martinez-Romero, Olga Vasilieva, Biological and chemical control of mosquito population by optimal control approach, Games, 11 (2020), 62.53. Emilene Pliego-Pliego, Olga Vasilieva, Jorge Velazquez-Castro, Andres Fraguela-Collar, Control ´ strategies for a population dynamics model of Aedes aegypti with seasonal variability and their effects on dengue incidence, Appl. Math. Model., 81 (2020), 296–319.Comunidad generalPublication72f68479-5914-43da-8996-02353d27d5dcvirtual::1169-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1000-1aeb47892-e365-4668-9322-a97426768e27virtual::4683-15d52813a-b7be-448d-bc24-492faea43f0fvirtual::1000-172f68479-5914-43da-8996-02353d27d5dcvirtual::1169-1aeb47892-e365-4668-9322-a97426768e27virtual::4683-1https://scholar.google.com.co/citations?user=KcfKIyEAAAAJ&hl=esvirtual::1169-1https://scholar.google.com/citations?hl=es&user=wyuT448AAAAJvirtual::1000-1https://scholar.google.com.co/citations?user=u2HFR6AAAAAJ&hl=esvirtual::4683-10000-0003-4828-9360virtual::1169-10000-0001-6832-9265virtual::1000-10000-0002-7052-1851virtual::4683-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001474886virtual::1169-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001349182virtual::1000-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000277746virtual::4683-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/6f04c08a-0f81-4b20-a9ae-63ce22fcaf86/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALOptimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains.pdfOptimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf2995289https://red.uao.edu.co/bitstreams/e8c08aa2-00d5-431b-9e67-0e748cf45176/download3d08f843403a44e451c4c85b4d5f762dMD53TEXTOptimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains.pdf.txtOptimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains.pdf.txtExtracted texttext/plain111335https://red.uao.edu.co/bitstreams/226e7478-0d62-4db0-ace0-e8b01c6e3463/download2a60f2f23521a33a18219ef84537cdc2MD54THUMBNAILOptimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains.pdf.jpgOptimal release programs for dengue prevention using Aedes aegypti mosquitoes transinfected with wMel or wMelPop Wolbachia strains.pdf.jpgGenerated Thumbnailimage/jpeg14819https://red.uao.edu.co/bitstreams/111c640b-d2d7-4071-a456-81016cba9963/download78fc4cf889ca957252fd8d5c43f7b280MD5510614/13901oai:red.uao.edu.co:10614/139012024-03-15 08:58:22.364https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - AIMS Press, 2021open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K