Control of a back-to-back converter as a power transfer system using synchronverter approach

This study presents an innovative approach where both sides of a back-to-back (BtB) system are controlled using the synchronverter approach, allowing to control the power transfer through the converters as it would be in a real motor–generator pair system. A novel way to transfer the DC voltage cont...

Full description

Autores:
Quintero Restrepo, Jaime
Posada, Johnny
López Sotelo, Jesús Alfonso
Oñate Portilla, Servio Marcelo
Aredes, Mauricio
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11384
Acceso en línea:
http://hdl.handle.net/10614/11384
Palabra clave:
Transferencia de energía
Energy transfer
AC generators
AC motors
Control system synthesis
Power convertors
Power distribution control
Voltage control
Power supply quality
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_a57a50a7490bf57c6f81542bb1cf66b8
oai_identifier_str oai:red.uao.edu.co:10614/11384
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Control of a back-to-back converter as a power transfer system using synchronverter approach
title Control of a back-to-back converter as a power transfer system using synchronverter approach
spellingShingle Control of a back-to-back converter as a power transfer system using synchronverter approach
Transferencia de energía
Energy transfer
AC generators
AC motors
Control system synthesis
Power convertors
Power distribution control
Voltage control
Power supply quality
title_short Control of a back-to-back converter as a power transfer system using synchronverter approach
title_full Control of a back-to-back converter as a power transfer system using synchronverter approach
title_fullStr Control of a back-to-back converter as a power transfer system using synchronverter approach
title_full_unstemmed Control of a back-to-back converter as a power transfer system using synchronverter approach
title_sort Control of a back-to-back converter as a power transfer system using synchronverter approach
dc.creator.fl_str_mv Quintero Restrepo, Jaime
Posada, Johnny
López Sotelo, Jesús Alfonso
Oñate Portilla, Servio Marcelo
Aredes, Mauricio
dc.contributor.author.none.fl_str_mv Quintero Restrepo, Jaime
Posada, Johnny
López Sotelo, Jesús Alfonso
Oñate Portilla, Servio Marcelo
Aredes, Mauricio
dc.subject.armarc.spa.fl_str_mv Transferencia de energía
topic Transferencia de energía
Energy transfer
AC generators
AC motors
Control system synthesis
Power convertors
Power distribution control
Voltage control
Power supply quality
dc.subject.armarc.eng.fl_str_mv Energy transfer
dc.subject.proposal.eng.fl_str_mv AC generators
AC motors
Control system synthesis
Power convertors
Power distribution control
Voltage control
Power supply quality
description This study presents an innovative approach where both sides of a back-to-back (BtB) system are controlled using the synchronverter approach, allowing to control the power transfer through the converters as it would be in a real motor–generator pair system. A novel way to transfer the DC voltage control loop in the BtB converter is proposed, letting to a softer and less noisy power transferring, as shown in simulation results. The modelling equations of the synchronverter and the traditional dq frame in a BtB converter are presented in this work. In addition, a comparison between these two control approaches using three different performance indexes is done, showing that the power transfer behaviour using the synchronverter approach is significantly improved. Finally, the ability of the BtB converter working as a power balancer system (PBS) to manage congestion between two distribution networks in a test bed case is tested. Results show that it is possible to obtain the PBS power quality benefits without the additional phase-locked loop units and the decoupling process, necessary with the dq frame, resulting in a simpler controller design
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-02-21
dc.date.accessioned.none.fl_str_mv 2019-11-01T20:56:53Z
dc.date.available.none.fl_str_mv 2019-11-01T20:56:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.citation.eng.fl_str_mv Oñate, M., Posada, J., López, J., Quintero, J., & Aredes, M. (2018). Control of a back-to-back converter as a power transfer system using synchronverter approach. IET Generation, Transmission & Distribution, 12(9), 1998-2005
dc.identifier.issn.spa.fl_str_mv 1751-8687
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10614/11384
dc.identifier.doi.none.fl_str_mv 10.1049/iet-gtd.2017.0093
identifier_str_mv Oñate, M., Posada, J., López, J., Quintero, J., & Aredes, M. (2018). Control of a back-to-back converter as a power transfer system using synchronverter approach. IET Generation, Transmission & Distribution, 12(9), 1998-2005
1751-8687
10.1049/iet-gtd.2017.0093
url http://hdl.handle.net/10614/11384
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 2005
dc.relation.citationissue.none.fl_str_mv 9
dc.relation.citationstartpage.none.fl_str_mv 1998
dc.relation.citationvolume.none.fl_str_mv 12
dc.relation.cites.eng.fl_str_mv Oñate, M., Posada, J., López, J., Quintero, J., & Aredes, M. (2018). Control of a back-to-back converter as a power transfer system using synchronverter approach. IET Generation, Transmission & Distribution, 12(9), 1998-2005. https://doi.org/10.1049/iet-gtd.2017.0093
dc.relation.ispartofjournal.eng.fl_str_mv IET Generation, Transmission and Distribution
dc.relation.references.none.fl_str_mv [1] Guerrero, J.M., Vasquez, J.C., Matas, J., et al.: ‘Hierarchical control of droopcontrolled AC and DC microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158–172
[2] Lu, X., Sun, K., Guerrero, J.M., et al.: ‘State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 2804–2815
[3] Van, T.V., Visscher, K., Diaz, J., et al.: ‘Virtual synchronous generator: an element of future grids’. IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 2010, pp. 1–7
[4] Ashabani, M.: ‘Synchronous converter and synchronous-VSC-state of art of universal control strategies for smart grid integration’. Presented at the Smart Grid Conf. (SGC), 2014, pp. 1–8
[5] Han, Y., Li, H., Shen, P., et al.: ‘Review of active and reactive power sharing strategies in hierarchical controlled microgrids’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 2427–2451
[6] Zhang, W., Remon, D., Mir, A., et al.: ‘Comparison of different power loop controllers for synchronous power controlled grid-interactive converters’. Presented at the IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 3780–3787
[7] Benysek, G., Kazmierkowski, M., Popczyk, J., et al.: ‘Power electronic systems as a crucial part of smart grid infrastructure – a survey’, Bull. Pol. Acad. Sci. Tech. Sci., 2011, 59, (4), pp. 1–14
[8] Strzelecki, R. M., Benysek, G. (eds.): Power electronics in smart electrical energy networks (Springer London, London, 2008)
[9] Herskind, C.C.: ‘Grid controlled rectifiers and inverters’, Trans. Am. Inst. Electr. Eng., 1934, 53, (6), pp. 926–935
[10] Cramer, F.W., Morton, L.W., Darling, A.G.: ‘The electronic converter for exchange of power’, Trans. Am. Inst. Electr. Eng., 1944, 63, (12), pp. 1059–1069
[11] Noroozian, M., Edris, A.-A., Kidd, D., et al.: ‘The potential use of voltagesourced converter-based back-to-back tie in load restorations’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 1416–1421
[12] Belloni, F., Chiumeo, R., Gandolfi, C., et al.: ‘Application of back-to-back converters in closed-loop and meshed MV distribution grid’. Presented at the AEIT Annual Conf. – from Research to Industry: the Need for a More Effective Technology Transfer, 2014, pp. 1–6
[13] Holliday, D., Adam, G.P., Williams, B.W., et al.: ‘Modified back-to-back current source converter and its application to wind energy conversión systems’, IET Power Electron., 2015, 8, (1), pp. 103–111
[14] Peyghami, S., Davari, P., Mokhtari, H., et al.: ‘Synchronverter-enabled DC power sharing approach for LVDC microgrids’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 8089–8099
[15] Serban, I., Ion, C.P.: ‘Microgrid control based on a grid-forming invertir operating as virtual synchronous generator with enhanced dynamic response capability’, Int. J. Electr. Power Energy Syst., 2017, 89, (Suppl. C), pp. 94–105
[16] Restrepo, A.J., Aller, J.M., Bueno, A., et al.: ‘Direct power control of a dual converter operating as a synchronous rectifier’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 1410–1417
[17] Liu, J., Yao, L., Tian, D., et al.: ‘Study on the fuzzy control strategy based on back-to-back micro grid connection’. Presented at the Asia-Pacific Power and Energy Engineering Conf., 2012, pp. 1–5
[18] Alcala, J., Cardenas, V., Rosas, E., et al.: ‘Control system design for bidirectional power transfer in single-phase back-to-back converter based on the linear operating region’. Presented at the Applied Power Electronics Conf. and Exposition (APEC), 2010, pp. 1651–1658
[19] Alcala, J., Cardenas, V., Ramirez-Lopez, A.R., et al.: ‘Study of the bidirectional power flow in back - to - back converters by using linear and nonlinear control strategies’. Presented at the IEEE Energy Conversion Congress and Exposition, 2011, pp. 806–813
[20] Brown, E., Weiss, G.: ‘Using synchronverters for power grid stabilization’. Presented at the IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI), 2014, pp. 1–5
[21] van Emmerik, E.L., França, B.W., Aredes, M.: ‘A synchronverter to damp electromechanical oscillations in the Brazilian transmission grid’. Presented at the IEEE 24th Int. Symp. Industrial Electronics (ISIE), 2015, pp. 221–226
[22] Zhong, Q.C.: ‘Power-electronics-enabled autonomous power systems: architecture and technical routes’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 5907–5918
[23] Dong, D., Wen, B., Boroyevich, D., et al.: ‘Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 310–321
[24] França, B.W., de Castro, A.R., Aredes, M.: ‘Wind and photovoltaic power generation integrated to power grid through dc link and synchronverter’. Presented at the IEEE 13th Brazilian Power Electronics Conf. and 1st Southern Power Electronics Conf. (COBEP/SPEC), 2015, pp. 1–6
[25] Zhong, Q.-C., Ma, Z., Ming, W.-L., et al.: ‘Grid-friendly wind power systems based on the synchronverter technology’, Energy Convers. Manag., 2015, 89, pp. 719–726
[26] Carlsson, A.: ‘The back-to-back converter - theory and design’ (IEA – Lund University, Sweden, 1998)
[27] Parkhideh, B., Bhattacharya, S.: ‘A practical approach to controlling the backto-back voltage source converter system’. Presented at the 34th Annual Conf. IEEE Industrial Electronics, 2008 (IECON 2008), 2008, pp. 514–519
[28] Kazmierkowski, M.P., Krishnan, R., Blaabjerg, F., et al.: ‘Control in power electronics: selected problems’ (Academic Press, Amsterdam, New York, 2002)
[29] Sensarma, P.S., Padiyar, K.R., Ramanarayanan, V.: ‘Analysis and performance evaluation of a distribution STATCOM for compensating voltaje fluctuations’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 259–264
[30] Voraphonpiput, N., Chatratana, S.: ‘STATCOM analysis and controller design for power system voltage regulation’. 2005 IEEE/PES Transmission Distribution Conf. Exposition: Asia and Pacific, 2005, pp. 1–6
[31] Nguyen, P.-L., Zhong, Q.-C., Blaabjerg, F., et al.: ‘Synchronverter-based operation of STATCOM to mimic synchronous condensers’, 2012, pp. 942–947
[32] Beck, H.-P., Hesse, R.: ‘Virtual synchronous machine’. Presented at the 9th Int. Conf. Electrical Power Quality and Utilisation, 2007, pp. 1–6
[33] Turschner, D., Hesse, R.: ‘Potentialities of the virtual synchronous machine (VISMA) to improve the quality of the electrical grid’, 10 October 2008. Available at http://www.vsync.eu/project/workshops/workshop1/, accessed 24 September 2016
[34] Driesen, J., Visscher, K.: ‘Virtual synchronous generators’. Presented at the Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–3
[35] Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: a survey and new perspectives’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 244–254
[36] Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 1259–1267
[37] Zhong, Q.-C., Nguyen, P.-L.: ‘Sinusoid-locked loops based on the principles of synchronous machines’. Presented at the 24th Chinese Control and Decision Conf. (CCDC), 2012, pp. 1518–1523
[38] Zhong, Q.C., Nguyen, P.L., Ma, Z., et al.: ‘Self-Synchronized synchronverters: inverters without a dedicated synchronization unit’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 617–630
[39] Alcala, J.: ‘Estudio de convertidores back-to-back’ (Universidad Autónoma de San Luis Potosí, San Luis Potosí, 2012)
[40] Khalil, H.K.: ‘Nonlinear Systems’ (Prentice Hall, New Jersey, 1996, 2nd edn.)
[41] Messina, A.R. (ed.): Inter-area oscillations in power systems (Springer US, Boston, MA, 2009)
[42] Piya, P., Karimi-Ghartemani, M.: ‘A stability analysis and efficiency improvement of synchronverter’. In 2016 IEEE Applied Power Electronics Conf. and Exposition (APEC), 2016, pp. 3165–3171
[43] Natarajan, V., Weiss, G.: ‘Synchronverters with better stability due to virtual inductors, virtual capacitors, and anti-windup’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 5994–6004
[44] Simanjorang, R., Miura, Y., Ise, T., et al.: ‘Application of series type BTB converter for minimizing circulating current and balancing power transformers in loop distribution lines’. Presented at the Power Conversion Conf., 2007, Nagoya, pp. 997–1004
[45] Alcalá, J., Cárdenas, V., Pérez-Ramírez, J., et al.: ‘Improving power flow in transformers using a BTB converter to balance low voltage feeders’. IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 2038–2044
[46] Choudhary, N.P., Pote, X.R.: ‘Controlling of back to back converter for load sharing in microgrid and utility grid’. Presented at the Third Int. Conf. Advances in Computing and Communications (ICACC), 2013, pp. 287–291
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 8 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv The Institution of Engineering and Technology, IET
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/37708531-5b58-4e63-a3c3-922b38b42b38/download
https://red.uao.edu.co/bitstreams/e7d012f6-3253-4c88-980f-de53bf1a1ccf/download
https://red.uao.edu.co/bitstreams/85ce9799-5a51-4623-b5a2-81475e442973/download
https://red.uao.edu.co/bitstreams/1cd88ace-6995-4b23-a97f-e1451fc14c44/download
https://red.uao.edu.co/bitstreams/742ed6d2-398c-463d-a6ed-563b8cbe7d20/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
264f11881d20d4f4214b5d0e2793bf8c
218d854ecea52c73b4e8e8702f03522d
f0b36b18d819e7e716bdd9b1a0f9890c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260177930551296
spelling Quintero Restrepo, Jaimevirtual::4495-1Posada, Johnnyba0b927fb5d5b9e299f7bd413f450adeLópez Sotelo, Jesús Alfonsovirtual::2880-1Oñate Portilla, Servio Marceloa5ccf48608889902ed0f963855cb1738Aredes, Mauricio815d37eb50b29148a5b79f1f8f0cae4bUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-01T20:56:53Z2019-11-01T20:56:53Z2018-02-21Oñate, M., Posada, J., López, J., Quintero, J., & Aredes, M. (2018). Control of a back-to-back converter as a power transfer system using synchronverter approach. IET Generation, Transmission & Distribution, 12(9), 1998-20051751-8687http://hdl.handle.net/10614/1138410.1049/iet-gtd.2017.0093This study presents an innovative approach where both sides of a back-to-back (BtB) system are controlled using the synchronverter approach, allowing to control the power transfer through the converters as it would be in a real motor–generator pair system. A novel way to transfer the DC voltage control loop in the BtB converter is proposed, letting to a softer and less noisy power transferring, as shown in simulation results. The modelling equations of the synchronverter and the traditional dq frame in a BtB converter are presented in this work. In addition, a comparison between these two control approaches using three different performance indexes is done, showing that the power transfer behaviour using the synchronverter approach is significantly improved. Finally, the ability of the BtB converter working as a power balancer system (PBS) to manage congestion between two distribution networks in a test bed case is tested. Results show that it is possible to obtain the PBS power quality benefits without the additional phase-locked loop units and the decoupling process, necessary with the dq frame, resulting in a simpler controller designapplication/pdf8 páginasengThe Institution of Engineering and Technology, IETDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Control of a back-to-back converter as a power transfer system using synchronverter approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Transferencia de energíaEnergy transferAC generatorsAC motorsControl system synthesisPower convertorsPower distribution controlVoltage controlPower supply quality20059199812Oñate, M., Posada, J., López, J., Quintero, J., & Aredes, M. (2018). Control of a back-to-back converter as a power transfer system using synchronverter approach. IET Generation, Transmission & Distribution, 12(9), 1998-2005. https://doi.org/10.1049/iet-gtd.2017.0093IET Generation, Transmission and Distribution[1] Guerrero, J.M., Vasquez, J.C., Matas, J., et al.: ‘Hierarchical control of droopcontrolled AC and DC microgrids – a general approach toward standardization’, IEEE Trans. Ind. Electron., 2011, 58, (1), pp. 158–172[2] Lu, X., Sun, K., Guerrero, J.M., et al.: ‘State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 2804–2815[3] Van, T.V., Visscher, K., Diaz, J., et al.: ‘Virtual synchronous generator: an element of future grids’. IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 2010, pp. 1–7[4] Ashabani, M.: ‘Synchronous converter and synchronous-VSC-state of art of universal control strategies for smart grid integration’. Presented at the Smart Grid Conf. (SGC), 2014, pp. 1–8[5] Han, Y., Li, H., Shen, P., et al.: ‘Review of active and reactive power sharing strategies in hierarchical controlled microgrids’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 2427–2451[6] Zhang, W., Remon, D., Mir, A., et al.: ‘Comparison of different power loop controllers for synchronous power controlled grid-interactive converters’. Presented at the IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 3780–3787[7] Benysek, G., Kazmierkowski, M., Popczyk, J., et al.: ‘Power electronic systems as a crucial part of smart grid infrastructure – a survey’, Bull. Pol. Acad. Sci. Tech. Sci., 2011, 59, (4), pp. 1–14[8] Strzelecki, R. M., Benysek, G. (eds.): Power electronics in smart electrical energy networks (Springer London, London, 2008)[9] Herskind, C.C.: ‘Grid controlled rectifiers and inverters’, Trans. Am. Inst. Electr. Eng., 1934, 53, (6), pp. 926–935[10] Cramer, F.W., Morton, L.W., Darling, A.G.: ‘The electronic converter for exchange of power’, Trans. Am. Inst. Electr. Eng., 1944, 63, (12), pp. 1059–1069[11] Noroozian, M., Edris, A.-A., Kidd, D., et al.: ‘The potential use of voltagesourced converter-based back-to-back tie in load restorations’, IEEE Trans. Power Deliv., 2003, 18, (4), pp. 1416–1421[12] Belloni, F., Chiumeo, R., Gandolfi, C., et al.: ‘Application of back-to-back converters in closed-loop and meshed MV distribution grid’. Presented at the AEIT Annual Conf. – from Research to Industry: the Need for a More Effective Technology Transfer, 2014, pp. 1–6[13] Holliday, D., Adam, G.P., Williams, B.W., et al.: ‘Modified back-to-back current source converter and its application to wind energy conversión systems’, IET Power Electron., 2015, 8, (1), pp. 103–111[14] Peyghami, S., Davari, P., Mokhtari, H., et al.: ‘Synchronverter-enabled DC power sharing approach for LVDC microgrids’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 8089–8099[15] Serban, I., Ion, C.P.: ‘Microgrid control based on a grid-forming invertir operating as virtual synchronous generator with enhanced dynamic response capability’, Int. J. Electr. Power Energy Syst., 2017, 89, (Suppl. C), pp. 94–105[16] Restrepo, A.J., Aller, J.M., Bueno, A., et al.: ‘Direct power control of a dual converter operating as a synchronous rectifier’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 1410–1417[17] Liu, J., Yao, L., Tian, D., et al.: ‘Study on the fuzzy control strategy based on back-to-back micro grid connection’. Presented at the Asia-Pacific Power and Energy Engineering Conf., 2012, pp. 1–5[18] Alcala, J., Cardenas, V., Rosas, E., et al.: ‘Control system design for bidirectional power transfer in single-phase back-to-back converter based on the linear operating region’. Presented at the Applied Power Electronics Conf. and Exposition (APEC), 2010, pp. 1651–1658[19] Alcala, J., Cardenas, V., Ramirez-Lopez, A.R., et al.: ‘Study of the bidirectional power flow in back - to - back converters by using linear and nonlinear control strategies’. Presented at the IEEE Energy Conversion Congress and Exposition, 2011, pp. 806–813[20] Brown, E., Weiss, G.: ‘Using synchronverters for power grid stabilization’. Presented at the IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI), 2014, pp. 1–5[21] van Emmerik, E.L., França, B.W., Aredes, M.: ‘A synchronverter to damp electromechanical oscillations in the Brazilian transmission grid’. Presented at the IEEE 24th Int. Symp. Industrial Electronics (ISIE), 2015, pp. 221–226[22] Zhong, Q.C.: ‘Power-electronics-enabled autonomous power systems: architecture and technical routes’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 5907–5918[23] Dong, D., Wen, B., Boroyevich, D., et al.: ‘Analysis of phase-locked loop low-frequency stability in three-phase grid-connected power converters considering impedance interactions’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 310–321[24] França, B.W., de Castro, A.R., Aredes, M.: ‘Wind and photovoltaic power generation integrated to power grid through dc link and synchronverter’. Presented at the IEEE 13th Brazilian Power Electronics Conf. and 1st Southern Power Electronics Conf. (COBEP/SPEC), 2015, pp. 1–6[25] Zhong, Q.-C., Ma, Z., Ming, W.-L., et al.: ‘Grid-friendly wind power systems based on the synchronverter technology’, Energy Convers. Manag., 2015, 89, pp. 719–726[26] Carlsson, A.: ‘The back-to-back converter - theory and design’ (IEA – Lund University, Sweden, 1998)[27] Parkhideh, B., Bhattacharya, S.: ‘A practical approach to controlling the backto-back voltage source converter system’. Presented at the 34th Annual Conf. IEEE Industrial Electronics, 2008 (IECON 2008), 2008, pp. 514–519[28] Kazmierkowski, M.P., Krishnan, R., Blaabjerg, F., et al.: ‘Control in power electronics: selected problems’ (Academic Press, Amsterdam, New York, 2002)[29] Sensarma, P.S., Padiyar, K.R., Ramanarayanan, V.: ‘Analysis and performance evaluation of a distribution STATCOM for compensating voltaje fluctuations’, IEEE Trans. Power Deliv., 2001, 16, (2), pp. 259–264[30] Voraphonpiput, N., Chatratana, S.: ‘STATCOM analysis and controller design for power system voltage regulation’. 2005 IEEE/PES Transmission Distribution Conf. Exposition: Asia and Pacific, 2005, pp. 1–6[31] Nguyen, P.-L., Zhong, Q.-C., Blaabjerg, F., et al.: ‘Synchronverter-based operation of STATCOM to mimic synchronous condensers’, 2012, pp. 942–947[32] Beck, H.-P., Hesse, R.: ‘Virtual synchronous machine’. Presented at the 9th Int. Conf. Electrical Power Quality and Utilisation, 2007, pp. 1–6[33] Turschner, D., Hesse, R.: ‘Potentialities of the virtual synchronous machine (VISMA) to improve the quality of the electrical grid’, 10 October 2008. Available at http://www.vsync.eu/project/workshops/workshop1/, accessed 24 September 2016[34] Driesen, J., Visscher, K.: ‘Virtual synchronous generators’. Presented at the Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1–3[35] Bevrani, H., Ise, T., Miura, Y.: ‘Virtual synchronous generators: a survey and new perspectives’, Int. J. Electr. Power Energy Syst., 2014, 54, pp. 244–254[36] Zhong, Q.C., Weiss, G.: ‘Synchronverters: inverters that mimic synchronous generators’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 1259–1267[37] Zhong, Q.-C., Nguyen, P.-L.: ‘Sinusoid-locked loops based on the principles of synchronous machines’. Presented at the 24th Chinese Control and Decision Conf. (CCDC), 2012, pp. 1518–1523[38] Zhong, Q.C., Nguyen, P.L., Ma, Z., et al.: ‘Self-Synchronized synchronverters: inverters without a dedicated synchronization unit’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 617–630[39] Alcala, J.: ‘Estudio de convertidores back-to-back’ (Universidad Autónoma de San Luis Potosí, San Luis Potosí, 2012)[40] Khalil, H.K.: ‘Nonlinear Systems’ (Prentice Hall, New Jersey, 1996, 2nd edn.)[41] Messina, A.R. (ed.): Inter-area oscillations in power systems (Springer US, Boston, MA, 2009)[42] Piya, P., Karimi-Ghartemani, M.: ‘A stability analysis and efficiency improvement of synchronverter’. In 2016 IEEE Applied Power Electronics Conf. and Exposition (APEC), 2016, pp. 3165–3171[43] Natarajan, V., Weiss, G.: ‘Synchronverters with better stability due to virtual inductors, virtual capacitors, and anti-windup’, IEEE Trans. Ind. Electron., 2017, 64, (7), pp. 5994–6004[44] Simanjorang, R., Miura, Y., Ise, T., et al.: ‘Application of series type BTB converter for minimizing circulating current and balancing power transformers in loop distribution lines’. Presented at the Power Conversion Conf., 2007, Nagoya, pp. 997–1004[45] Alcalá, J., Cárdenas, V., Pérez-Ramírez, J., et al.: ‘Improving power flow in transformers using a BTB converter to balance low voltage feeders’. IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 2038–2044[46] Choudhary, N.P., Pote, X.R.: ‘Controlling of back to back converter for load sharing in microgrid and utility grid’. Presented at the Third Int. Conf. Advances in Computing and Communications (ICACC), 2013, pp. 287–291Publicationec743e96-6f88-4638-b201-c7c34fc463ebvirtual::4495-1fc227fb1-22ec-47f0-afe7-521c61fddd32virtual::2880-1fc227fb1-22ec-47f0-afe7-521c61fddd32virtual::2880-1ec743e96-6f88-4638-b201-c7c34fc463ebvirtual::4495-1https://scholar.google.com/citations?user=ygqIJSoAAAAJ&hl=envirtual::4495-1https://scholar.google.com.au/citations?user=7PIjh_MAAAAJ&hl=envirtual::2880-10000-0001-8729-6577virtual::4495-10000-0002-9731-8458virtual::2880-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000482960virtual::4495-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000249106virtual::2880-1CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://red.uao.edu.co/bitstreams/37708531-5b58-4e63-a3c3-922b38b42b38/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/e7d012f6-3253-4c88-980f-de53bf1a1ccf/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALControl of a back-to-back converter as a power transfer system using synchronverter approach.pdfControl of a back-to-back converter as a power transfer system using synchronverter approach.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1016627https://red.uao.edu.co/bitstreams/85ce9799-5a51-4623-b5a2-81475e442973/download264f11881d20d4f4214b5d0e2793bf8cMD54TEXTControl of a back-to-back converter as a power transfer system using synchronverter approach.pdf.txtControl of a back-to-back converter as a power transfer system using synchronverter approach.pdf.txtExtracted texttext/plain39708https://red.uao.edu.co/bitstreams/1cd88ace-6995-4b23-a97f-e1451fc14c44/download218d854ecea52c73b4e8e8702f03522dMD55THUMBNAILControl of a back-to-back converter as a power transfer system using synchronverter approach.pdf.jpgControl of a back-to-back converter as a power transfer system using synchronverter approach.pdf.jpgGenerated Thumbnailimage/jpeg18003https://red.uao.edu.co/bitstreams/742ed6d2-398c-463d-a6ed-563b8cbe7d20/downloadf0b36b18d819e7e716bdd9b1a0f9890cMD5610614/11384oai:red.uao.edu.co:10614/113842024-03-14 10:25:42.916https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K