Advanced polymeric coatings and their applications: green tribology

In this article, different advanced polymeric coatings and their applications are reviewed. Polymeric coatings have broad properties and functions; herein we discuss the coatings’ deposition methods and three different functional advanced polymeric coatings, namely, tribological coatings, superhydro...

Full description

Autores:
Lan, Pixiang
Polycarpou, Andreas A.
Escobar Nuñez, Emerson
Tipo de recurso:
Part of book
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/13428
Acceso en línea:
https://hdl.handle.net/10614/13428
Palabra clave:
Resistencia de materiales
Revestimientos plásticos
Strength of materials
Advanced polymeric coatings
Anticorrosion
Aromatic thermosetting copolyester (ATSP)
Cryogenic
Green tribology
Hydrophobic
Polyetheretherketone (PEEK)
Polytetrafluoroethylene (PTFE)
Self-healingThermal spray
Rights
openAccess
License
Derechos reservados - Elsiever, 2019
id REPOUAO2_a4989710c3b24d0dfb8a5a915561105f
oai_identifier_str oai:red.uao.edu.co:10614/13428
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Advanced polymeric coatings and their applications: green tribology
title Advanced polymeric coatings and their applications: green tribology
spellingShingle Advanced polymeric coatings and their applications: green tribology
Resistencia de materiales
Revestimientos plásticos
Strength of materials
Advanced polymeric coatings
Anticorrosion
Aromatic thermosetting copolyester (ATSP)
Cryogenic
Green tribology
Hydrophobic
Polyetheretherketone (PEEK)
Polytetrafluoroethylene (PTFE)
Self-healingThermal spray
title_short Advanced polymeric coatings and their applications: green tribology
title_full Advanced polymeric coatings and their applications: green tribology
title_fullStr Advanced polymeric coatings and their applications: green tribology
title_full_unstemmed Advanced polymeric coatings and their applications: green tribology
title_sort Advanced polymeric coatings and their applications: green tribology
dc.creator.fl_str_mv Lan, Pixiang
Polycarpou, Andreas A.
Escobar Nuñez, Emerson
dc.contributor.author.spa.fl_str_mv Lan, Pixiang
Polycarpou, Andreas A.
dc.contributor.author.none.fl_str_mv Escobar Nuñez, Emerson
dc.subject.armarc.spa.fl_str_mv Resistencia de materiales
Revestimientos plásticos
topic Resistencia de materiales
Revestimientos plásticos
Strength of materials
Advanced polymeric coatings
Anticorrosion
Aromatic thermosetting copolyester (ATSP)
Cryogenic
Green tribology
Hydrophobic
Polyetheretherketone (PEEK)
Polytetrafluoroethylene (PTFE)
Self-healingThermal spray
dc.subject.armarc.eng.fl_str_mv Strength of materials
dc.subject.proposal.eng.fl_str_mv Advanced polymeric coatings
Anticorrosion
Aromatic thermosetting copolyester (ATSP)
Cryogenic
Green tribology
Hydrophobic
Polyetheretherketone (PEEK)
Polytetrafluoroethylene (PTFE)
Self-healingThermal spray
description In this article, different advanced polymeric coatings and their applications are reviewed. Polymeric coatings have broad properties and functions; herein we discuss the coatings’ deposition methods and three different functional advanced polymeric coatings, namely, tribological coatings, superhydrophobic coatings and self-healing coatings. Advanced tribological polymeric coatings such as polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), and aromatic thermosetting copolyester (ATSP) exhibited excellent wear resistance and low friction, when sliding against different counter surfaces. Hydrophobic coatings prevent the coatings from water wetting by their surface structure and low surface energy, and self-healing coatings can recover or maintain their functionality after damage
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-01
dc.date.accessioned.none.fl_str_mv 2021-11-11T14:10:11Z
dc.date.available.none.fl_str_mv 2021-11-11T14:10:11Z
dc.type.spa.fl_str_mv Capítulo - Parte de Libro
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_3248
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/bookPart
dc.type.redcol.eng.fl_str_mv https://purl.org/redcol/resource_type/CAP_LIB
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_3248
status_str publishedVersion
dc.identifier.isbn.none.fl_str_mv 9780128035818
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13428
identifier_str_mv 9780128035818
url https://hdl.handle.net/10614/13428
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 14
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.cites.eng.fl_str_mv Lan, P., Núñez, Eecobar. E., Polycar A.A. (2019). Advanced polymeric coatings and their applications: green tribology. Module in materials science and materials engineering. Elsevier. Module in materials science and materials engineering (Capítulo 6). Vol. 4, pp. 345-358. https://www.sciencedirect.com/science/article/pii/B9780128035818114663?via%3Dihub
dc.relation.ispartofbook.eng.fl_str_mv Module in materials science and materials engineering
dc.relation.references.none.fl_str_mv Akram, M.W., Polychronopoulou, K., Polycarpou, A.A., 2014. Tribological performance comparing different refrigerant– lubricant systems: The case of environmentally friendly HFO-1234yf refrigerant. Tribology International 78, 176–186.
Akram, M.W., Polychronopoulou, K., Seeton, C., Polycarpou, A.A., 2013. Tribological performance of environmentally friendly refrigerant HFO-1234 yf under starved lubricated conditions. Wear 304 (1–2), 191–201.
Anand, A., Haq, M.I.U., Vohra, K., Raina, A., Wani, M., 2017. Role of green tribology in sustainability of mechanical systems: A State of the art survey. Materials Today: Proceedings 4 (2), 3659–3665.
Arianpour, F., Farzaneh, M., Jafari, R., 2016. Hydrophobic and ice-phobic properties of self-assembled monolayers (SAMs) coatings on AA6061. Progress in Organic Coatings 93, 41–45.
Assadi, H., Schmidt, T., Richter, H., et al., 2011. On parameter selection in cold spraying. Journal of thermal spray technology 20 (6), 1161–1176.
Bach, F.-W., Möhwald, K., Laarmann, A., Wenz, T., 2006. Modern Surface Technology. John Wiley & Sons.
Bahadur, S., 2000. The development of transfer layers and their role in polymer tribology. Wear 245 (1–2), 92–99.
Barthlott, W., Neinhuis, C., 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202 (1), 1–8.
Berretta, S., Ghita, O., Evans, K.E., 2014. Morphology of polymeric powders in Laser Sintering (LS): From Polyamide to new PEEK powders. European Polymer Journal 59, 218–229.
Cannaday, M., Polycarpou, A., 2006. Advantages of CO2 compared to R410a refrigerant of tribologically tested Aluminum 390-T6 surfaces. Tribology Letters 21 (3), 185–192.
Champagne, V., Helfritch, D., 2014. Mainstreaming cold spray–push for applications. Surface Engineering 30 (6), 396–403.
Cho, S.H., White, S.R., Braun, P.V., 2009. Self‐healing polymer coatings. Advanced Materials 21 (6), 645–649.
Danglad-Flores, J., Eickelmann, S., Riegler, H., 2018. Deposition of polymer films by spin casting: A quantitative analysis. Chemical Engineering Science 179, 257–264.
Dascalescu, D., Polychronopoulou, K., Polycarpou, A., 2009. The significance of tribochemistry on the performance of PTFE-based coatings in CO2 refrigerant environment. Surface and Coatings Technology 204 (3), 319–329.
Davis, J., 2001. Introduction to thermal spray processing. In: Handbook of Thermal Spray Technology. ASM Innternational and Thermal Spray Society.
Demas, N.G., Polycarpou, A.A., 2008. Tribological performance of PTFE-based coatings for air-conditioning compressors. Surface and Coatings Technology 203 (3–4), 307–316.
Demas, N.G., Polycarpou, A.A., Conry, T.F., 2005. Tribological studies on scuffing due to the influence of carbon dioxide used as a refrigerant in compressors. Tribology Transactions 48 (3), 336–342.
Dong, C., Zhang, M., Xiang, T., et al., 2018. Novel self-healing anticorrosion coating based on L-valine and MBT-loaded halloysite nanotubes. Journal of Materials Science 53 (10), 7793–7808.
Dong, H., Cheng, M., Zhang, Y., Wei, H., Shi, F., 2013. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. Journal of Materials Chemistry A 1 (19), 5886–5891.
Donnet, C., Erdemir, A., 2004. Historical developments and new trends in tribological and solid lubricant coatings. Surface and Coatings Technology 180, 76–84.
Fender, T., 1996. Thermal spray high performance polymer coatings. Materials Technology 11 (1), 16–20.
Fenero, M., Palenzuela, J., Azpitarte, I., et al., 2017. Laponite-based surfaces with holistic self-cleaning functionality by combining antistatics and omniphobicity. ACS Applied Materials & Interfaces 9 (44), 39078–39085.
Frich, D., Economy, J., 1997. Thermally stable liquid crystalline thermosets based on aromatic copolyesters: Preparation and properties. Journal of Polymer Science Part A: Polymer Chemistry 35 (6), 1061–1067.
Frich, D., Goranov, K., Schneggenburger, L., Economy, J., 1996. Novel high-temperature aromatic copolyester thermosets: synthesis, characterization, and physical properties. Macromolecules 29 (24), 7734–7739.
Friedrich, K., 2018. Polymer composites for tribological applications. Advanced Industrial and Engineering Polymer Research 1, 3–39.
Friedrich, K., Theiler, G., Klein, P., 2009. Polymer composites for tribological applications in a range between liquid helium and room temperature. Polymer Tribology 375–415.
Gao, X., Hu, M., Fu, Y., et al., 2018. Response of MoS2-Sb2O3 film to low-earth-orbit space environment. Materials Letters 227, 161–164.
Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., 2017. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Applied Materials & Interfaces 9 (12), 11212–11223.
Grill, A., 1993. Review of the tribology of diamond-like carbon. Wear 168 (1–2), 143–153.
Guo, M., Li, W., Han, N., et al., 2018. Novel dual-component microencapsulated hydrophobic amine and microencapsulated isocyanate used for self-healing anti-corrosion coating. Polymers 10 (3), 319.
Hillewaere, X.K., Du Prez, F.E., 2015. Fifteen chemistries for autonomous external self-healing polymers and composites. Progress in Polymer Science 49, 121–153.
Humood, M., Beheshti, A., Polycarpou, A.A., 2017. Surface reliability of annealed and tempered solar protective glasses: Indentation and scratch behavior. Solar Energy 142, 13–25.
Koch, K., Bhushan, B., Jung, Y.C., Barthlott, W., 2009. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5 (7), 1386–1393.
Kondyurina, I., Kondyurin, A., Lauke, B., Vogel, R., Reuter, U., 2006. Polymerisation of composite materials in space environment for development of a Moon base. Advances in Space Research 37 (1), 109–115.
Lan, P., Polycarpou, A.A., 2018. High temperature and high pressure tribological experiments of advanced polymeric coatings in the presence of drilling mud for oil & gas applications. Tribology International 120, 218–225.
Lan, P., Meyer, J.L., Economy, J., Polycarpou, A.A., 2016. Unlubricated tribological performance of aromatic thermosetting polyester (ATSP) coatings under different temperature conditions. Tribology Letters 61 (1), 10.
Lan, P., Polychronopoulou, K., Zhang, Y., Polycarpou, A.A., 2017. Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear 382, 40–50.
Lan, P., Gheisari, R., Meyer, J.L., Polycarpou, A.A., 2018. Tribological performance of aromatic thermosetting polyester (ATSP) coatings under cryogenic conditions. Wear 398, 47–55.
Li, G.L., Schenderlein, M., Men, Y., Möhwald, H., Shchukin, D.G., 2014. Monodisperse polymeric core–shell nanocontainers for organic self‐healing anticorrosion coatings. Advanced Materials Interfaces 1 (1), 1300019.
Michael, P., Rabinowicz, E., Iwasa, Y., 1991. Friction and wear of polymeric materials at 293, 77 and 4.2 K. Cryogenics 31 (8), 695–704.
Mozumder, M.S., Mourad, A.-H.I., Pervez, H., Surkatti, R., 2019. Recent developments in multifunctional coatings for solar panel applications: A review. Solar Energy Materials and Solar Cells 189, 75–102.
Myshkin, N., Petrokovets, M., Kovalev, A., 2005. Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribology International 38 (11–12), 910–921.
Najjar, R., Akbari, M., Mirmohseni, A., Hosseini, M., 2018. Preparation and corrosion performance of healable waterborne polyurethane coatings containing isophoronediisocyanate loaded silica capsules. Journal of the Taiwan Institute of Chemical Engineers
Nazhipkyzy, M., Mansurov, Z., Amirfazli, A., et al., 2016. Influence of superhydrophobic properties on deicing. Journal of Engineering Physics and Thermophysics 89 (6), 1476–1481.
Neinhuis, C., Koch, K., Barthlott, W., 2001. Movement and regeneration of epicuticular waxes through plant cuticles. Planta 213 (3), 427–434.
Nine, M.J., Cole, M.A., Johnson, L., Tran, D.N., Losic, D., 2015. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Applied Materials & Interfaces 7 (51), 28482–28493.
Nine, M.J., Tung, T.T., Alotaibi, F., Tran, D.N., Losic, D., 2017. Facile adhesion-tuning of superhydrophobic surfaces between “lotus” and “petal” effect and their influence on icing and deicing properties. ACS Applied Materials & Interfaces 9 (9), 8393–8402.
Njoku, C.N., Arukalam, I.O., Bai, W., Li, Y., 2018. Optimizing maleic anhydride microcapsules size for use in self‐healing epoxy‐based coatings for corrosion protection of aluminum alloy. Materials and Corrosion 69 (9), 1257–1267.
Nosonovsky, M., Ramachandran, R., 2015. Geometric interpretation of surface tension equilibrium in superhydrophobic systems. Entropy 17 (7), 4684–4700.
Nunez, E.E., Polycarpou, A.A., 2015. The effect of surface roughness on the transfer of polymer films under unlubricated testing conditions. Wear 326, 74–83.
Nunez, E.E., Gheisari, R., Polycarpou, A.A., 2019. Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribology International 129, 92–111.
Nunez, E.E., Demas, N.G., Polychronopoulou, K., Polycarpou, A.A., 2008. Tribological study comparing PAG and POE lubricants used in air-conditioning compressors under the presence of CO2. Tribology Transactions 51 (6), 790–797.
Nunez, E.E., Demas, N.G., Polychronopoulou, K., Polycarpou, A.A., 2010. Comparative scuffing performance and chemical analysis of metallic surfaces for air-conditioning compressors in the presence of environmentally friendly CO2 refrigerant. Wear 268 (5–6), 668–676.
Nunez, E.E., Yeo, S.M., Polychronopoulou, K., Polycarpou, A.A., 2011. Tribological study of high bearing blended polymer-based coatings for air-conditioning and refrigeration compressors. Surface and Coatings Technology 205 (8–9), 2994–3005.
Ovaert, T., Cheng, H., 1991. Counterface topographical effects on the wear of polyetheretherketone and a polyetheretherketone-carbon fiber composite. Wear 150 (1–2), 275–287.
Park, J.H., Braun, P.V., 2010. Coaxial electrospinning of self‐healing coatings. Advanced Materials 22 (4), 496–499.
Petrovicova, E., Schadler, L., 2002. Thermal spraying of polymers. International Materials Reviews 47 (4), 169–190.
Pippin, G., 2003. Space environments and induced damage mechanisms in materials. Progress in Organic Coatings 47 (3–4), 424–431.
Raletz, F., Vardelle, M., Ezo ׳o, G., 2006. Critical particle velocity under cold spray conditions. Surface and Coatings Technology 201 (5), 1942–1947.
Samadzadeh, M., Boura, S.H., Peikari, M., Kasiriha, S., Ashrafi, A., 2010. A review on self-healing coatings based on micro/nanocapsules. Progress in Organic Coatings 68 (3), 159–164.
Sasaki, S., 2010. Environmentally friendly tribology (eco-tribology). Journal of Mechanical Science and Technology 24 (1), 67–71.
Schreiner, C., Scharf, S., Stenzel, V., Rössler, A., 2017. Self-healing through microencapsulated agents for protective coatings. Journal of Coatings Technology and Research 14 (4), 809–816.
Selim, M.S., Shenashen, M.A., Elmarakbi, A., et al., 2017. Synthesis of ultrahydrophobic and thermally stable inorganic–organic nanocomposites for self-cleaning foul release coatings. Chemical Engineering Journal 320, 653–666.
Selim, M.S., Yang, H., Wang, F.Q., et al., 2018. Silicone/Ag@ SiO2 core–shell nanocomposite as a self-cleaning antifouling coating material. RSC Advances 8 (18), 9910–9921.
Selim, M.S., El-Safty, S.A., Fatthallah, N.A., Shenashen, M.A., 2018. Silicone/graphene oxide sheet-alumina nanorod ternary composite for superhydrophobic antifouling coating. Progress in Organic Coatings 121, 160–172.
Shaffer, S., Rogers, M., 2007. Tribological performance of various coatings in unlubricated sliding for use in small arms action components – A case study. Wear 263 (7–12), 1281–1290.
Srinivasan, S., Kleingartner, J.A., Gilbert, J.B., et al., 2015. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces. Physical Review Letters 114 (1), 014501.
Tuteja, A., Choi, W., Mabry, J.M., McKinley, G.H., Cohen, R.E., 2008. Robust omniphobic surfaces. Proceedings of the National Academy of Sciences 105 (47), 18200–18205.
Vyawahare, S.M., 2006. Protective thermal spray coatings for polymer matrix composites, Thesis (M.S.), Wichita State University.
Wang, Q., 1997. Seizure failure of journal-bearing conformal contacts. Wear 210 (1–2), 8–16.
Wang, Q., Zheng, F., Wang, T., 2016. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum. Cryogenics 75, 19–25.
Wong, T.-S., Kang, S.H., Tang, S.K., et al., 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477 (7365), 443.
Xiao, L., Deng, M., Zeng, W., et al., 2017. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide. Industrial & Engineering Chemistry Research 56 (43), 12354–12361.
Yabuki, A., Okumura, K., 2012. Self-healing coatings using superabsorbent polymers for corrosion inhibition in carbon steel. Corrosion Science 59, 258–262.
Yabuki, A., Kawashima, A., Fathona, I.W., 2014. Self-healing polymer coatings with cellulose nanofibers served as pathways for the release of a corrosion inhibitor. Corrosion Science 85, 141–146.
Yabuki, A., Shiraiwa, T., Fathona, I.W., 2016. pH-controlled self-healing polymer coatings with cellulose nanofibers providing an effective release of corrosion inhibitor. Corrosion Science 103, 117–123.
Yabuki, A., Tanabe, S., Fathona, I.W., 2018. Self-healing polymer coating with the microfibers of superabsorbent polymers provides corrosion inhibition in carbon steel. Surface and Coatings Technology 341, 71–77.
Yeo, S.M., Polycarpou, A.A., 2012. Tribological performance of PTFE-and PEEK-based coatings under oil-less compressor conditions. Wear 296 (1–2), 638–647.
Yeo, S.M., Polycarpou, A.A., 2013. Micromechanical properties of polymeric coatings. Tribology International 60, 198–208.
Yeo, S.M., Polycarpou, A.A., 2014. Fretting experiments of advanced polymeric coatings and the effect of transfer films on their tribological behavior. Tribology International 79, 16–25.
Yeo, S.M., Escobar Nunez, E., Polycarpou, A.A., 2010. Tribological performances of polymer-based coating materials designed for compressor applications. In: Advances in Science and Technology. Trans Tech Publication, pp. 33–42.
Zahidah, K.A., Kakooei, S., Ismail, M.C., Raja, P.B., 2017. Halloysite nanotubes as nanocontainer for smart coating application: A review. Progress in Organic Coatings 111, 175–185.
Zhai, W., Lu, W., Zhang, P., et al., 2018. Wear-triggered self-healing behavior on the surface of nanocrystalline nickel aluminum bronze/Ti3SiC2 composites. Applied Surface Science 436, 1038–1049.
Zhang, C., Wang, H., Zhou, Q., 2018. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent. Progress in Organic Coatings 125, 403–410.
Zhang, G., Liao, H., Yu, H., et al., 2006. Deposition of PEEK coatings using a combined flame spraying–laser remelting process. Surface and Coatings Technology 201 (1–2), 243–249.
Zhang, G., Liao, H., Yu, H., et al., 2006. Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. Surface and Coatings Technology 200 (24), 6690–6695.
Zhang, J., 2008. Design of polymer composites with improved adhesion and wear properties, Thesis (Dr.), University of Illinois at Urbana-Champaign.
Zhou, M., Lu, W., Liu, X., et al., 2018. Fretting wear properties of plasma-sprayed Ti3SiC2 coatings with oxidative crack-healing feature. Tribology International 118, 196–207
dc.rights.spa.fl_str_mv Derechos reservados - Elsiever, 2019
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsiever, 2019
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 14 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.source.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/B9780128035818114663
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/ca92d2f5-0e8e-4185-8865-b3eac8e3b91a/download
https://red.uao.edu.co/bitstreams/1314664e-f7bd-41b2-83c3-4d124799fc32/download
https://red.uao.edu.co/bitstreams/1fce0566-1250-48bf-80bb-1cbdf0d7257c/download
https://red.uao.edu.co/bitstreams/1712cf50-9f1a-4959-a8d4-bb7857c1571f/download
bitstream.checksum.fl_str_mv 20b5ba22b1117f71589c7318baa2c560
5a65f041580b3412a297c13e84a4c974
458d6571d3eb408305ca6f1dd6c1f9b1
36c3c644c1970b5e5a2e4e21690911ac
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478781781835776
spelling Lan, Pixiang409462432d065d9baebbd7dc899965b5Polycarpou, Andreas A.b2f2c7eddebb04b8031bf7be227f6819Escobar Nuñez, Emersonvirtual::1581-12021-11-11T14:10:11Z2021-11-11T14:10:11Z2019-019780128035818https://hdl.handle.net/10614/13428In this article, different advanced polymeric coatings and their applications are reviewed. Polymeric coatings have broad properties and functions; herein we discuss the coatings’ deposition methods and three different functional advanced polymeric coatings, namely, tribological coatings, superhydrophobic coatings and self-healing coatings. Advanced tribological polymeric coatings such as polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE), and aromatic thermosetting copolyester (ATSP) exhibited excellent wear resistance and low friction, when sliding against different counter surfaces. Hydrophobic coatings prevent the coatings from water wetting by their surface structure and low surface energy, and self-healing coatings can recover or maintain their functionality after damageAbstract. Keywords. Introduction. Polymer Coating Deposition Techniques for Advanced Tribological Applications. Tribology of Polymer Coatings Under Extreme Working Conditions. Hydrophobic Coatings and Their Applications. Self-Healing Coatings and Their Applications. Conclusions. References14 páginasapplication/pdfengDerechos reservados - Elsiever, 2019https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/B9780128035818114663Advanced polymeric coatings and their applications: green tribologyCapítulo - Parte de Librohttp://purl.org/coar/resource_type/c_3248Textinfo:eu-repo/semantics/bookParthttps://purl.org/redcol/resource_type/CAP_LIBinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Resistencia de materialesRevestimientos plásticosStrength of materialsAdvanced polymeric coatingsAnticorrosionAromatic thermosetting copolyester (ATSP)CryogenicGreen tribologyHydrophobicPolyetheretherketone (PEEK)Polytetrafluoroethylene (PTFE)Self-healingThermal spray141Lan, P., Núñez, Eecobar. E., Polycar A.A. (2019). Advanced polymeric coatings and their applications: green tribology. Module in materials science and materials engineering. Elsevier. Module in materials science and materials engineering (Capítulo 6). Vol. 4, pp. 345-358. https://www.sciencedirect.com/science/article/pii/B9780128035818114663?via%3DihubModule in materials science and materials engineeringAkram, M.W., Polychronopoulou, K., Polycarpou, A.A., 2014. Tribological performance comparing different refrigerant– lubricant systems: The case of environmentally friendly HFO-1234yf refrigerant. Tribology International 78, 176–186.Akram, M.W., Polychronopoulou, K., Seeton, C., Polycarpou, A.A., 2013. Tribological performance of environmentally friendly refrigerant HFO-1234 yf under starved lubricated conditions. Wear 304 (1–2), 191–201.Anand, A., Haq, M.I.U., Vohra, K., Raina, A., Wani, M., 2017. Role of green tribology in sustainability of mechanical systems: A State of the art survey. Materials Today: Proceedings 4 (2), 3659–3665.Arianpour, F., Farzaneh, M., Jafari, R., 2016. Hydrophobic and ice-phobic properties of self-assembled monolayers (SAMs) coatings on AA6061. Progress in Organic Coatings 93, 41–45.Assadi, H., Schmidt, T., Richter, H., et al., 2011. On parameter selection in cold spraying. Journal of thermal spray technology 20 (6), 1161–1176.Bach, F.-W., Möhwald, K., Laarmann, A., Wenz, T., 2006. Modern Surface Technology. John Wiley & Sons.Bahadur, S., 2000. The development of transfer layers and their role in polymer tribology. Wear 245 (1–2), 92–99.Barthlott, W., Neinhuis, C., 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202 (1), 1–8.Berretta, S., Ghita, O., Evans, K.E., 2014. Morphology of polymeric powders in Laser Sintering (LS): From Polyamide to new PEEK powders. European Polymer Journal 59, 218–229.Cannaday, M., Polycarpou, A., 2006. Advantages of CO2 compared to R410a refrigerant of tribologically tested Aluminum 390-T6 surfaces. Tribology Letters 21 (3), 185–192.Champagne, V., Helfritch, D., 2014. Mainstreaming cold spray–push for applications. Surface Engineering 30 (6), 396–403.Cho, S.H., White, S.R., Braun, P.V., 2009. Self‐healing polymer coatings. Advanced Materials 21 (6), 645–649.Danglad-Flores, J., Eickelmann, S., Riegler, H., 2018. Deposition of polymer films by spin casting: A quantitative analysis. Chemical Engineering Science 179, 257–264.Dascalescu, D., Polychronopoulou, K., Polycarpou, A., 2009. The significance of tribochemistry on the performance of PTFE-based coatings in CO2 refrigerant environment. Surface and Coatings Technology 204 (3), 319–329.Davis, J., 2001. Introduction to thermal spray processing. In: Handbook of Thermal Spray Technology. ASM Innternational and Thermal Spray Society.Demas, N.G., Polycarpou, A.A., 2008. Tribological performance of PTFE-based coatings for air-conditioning compressors. Surface and Coatings Technology 203 (3–4), 307–316.Demas, N.G., Polycarpou, A.A., Conry, T.F., 2005. Tribological studies on scuffing due to the influence of carbon dioxide used as a refrigerant in compressors. Tribology Transactions 48 (3), 336–342.Dong, C., Zhang, M., Xiang, T., et al., 2018. Novel self-healing anticorrosion coating based on L-valine and MBT-loaded halloysite nanotubes. Journal of Materials Science 53 (10), 7793–7808.Dong, H., Cheng, M., Zhang, Y., Wei, H., Shi, F., 2013. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed. Journal of Materials Chemistry A 1 (19), 5886–5891.Donnet, C., Erdemir, A., 2004. Historical developments and new trends in tribological and solid lubricant coatings. Surface and Coatings Technology 180, 76–84.Fender, T., 1996. Thermal spray high performance polymer coatings. Materials Technology 11 (1), 16–20.Fenero, M., Palenzuela, J., Azpitarte, I., et al., 2017. Laponite-based surfaces with holistic self-cleaning functionality by combining antistatics and omniphobicity. ACS Applied Materials & Interfaces 9 (44), 39078–39085.Frich, D., Economy, J., 1997. Thermally stable liquid crystalline thermosets based on aromatic copolyesters: Preparation and properties. Journal of Polymer Science Part A: Polymer Chemistry 35 (6), 1061–1067.Frich, D., Goranov, K., Schneggenburger, L., Economy, J., 1996. Novel high-temperature aromatic copolyester thermosets: synthesis, characterization, and physical properties. Macromolecules 29 (24), 7734–7739.Friedrich, K., 2018. Polymer composites for tribological applications. Advanced Industrial and Engineering Polymer Research 1, 3–39.Friedrich, K., Theiler, G., Klein, P., 2009. Polymer composites for tribological applications in a range between liquid helium and room temperature. Polymer Tribology 375–415.Gao, X., Hu, M., Fu, Y., et al., 2018. Response of MoS2-Sb2O3 film to low-earth-orbit space environment. Materials Letters 227, 161–164.Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., 2017. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Applied Materials & Interfaces 9 (12), 11212–11223.Grill, A., 1993. Review of the tribology of diamond-like carbon. Wear 168 (1–2), 143–153.Guo, M., Li, W., Han, N., et al., 2018. Novel dual-component microencapsulated hydrophobic amine and microencapsulated isocyanate used for self-healing anti-corrosion coating. Polymers 10 (3), 319.Hillewaere, X.K., Du Prez, F.E., 2015. Fifteen chemistries for autonomous external self-healing polymers and composites. Progress in Polymer Science 49, 121–153.Humood, M., Beheshti, A., Polycarpou, A.A., 2017. Surface reliability of annealed and tempered solar protective glasses: Indentation and scratch behavior. Solar Energy 142, 13–25.Koch, K., Bhushan, B., Jung, Y.C., Barthlott, W., 2009. Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter 5 (7), 1386–1393.Kondyurina, I., Kondyurin, A., Lauke, B., Vogel, R., Reuter, U., 2006. Polymerisation of composite materials in space environment for development of a Moon base. Advances in Space Research 37 (1), 109–115.Lan, P., Polycarpou, A.A., 2018. High temperature and high pressure tribological experiments of advanced polymeric coatings in the presence of drilling mud for oil & gas applications. Tribology International 120, 218–225.Lan, P., Meyer, J.L., Economy, J., Polycarpou, A.A., 2016. Unlubricated tribological performance of aromatic thermosetting polyester (ATSP) coatings under different temperature conditions. Tribology Letters 61 (1), 10.Lan, P., Polychronopoulou, K., Zhang, Y., Polycarpou, A.A., 2017. Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear 382, 40–50.Lan, P., Gheisari, R., Meyer, J.L., Polycarpou, A.A., 2018. Tribological performance of aromatic thermosetting polyester (ATSP) coatings under cryogenic conditions. Wear 398, 47–55.Li, G.L., Schenderlein, M., Men, Y., Möhwald, H., Shchukin, D.G., 2014. Monodisperse polymeric core–shell nanocontainers for organic self‐healing anticorrosion coatings. Advanced Materials Interfaces 1 (1), 1300019.Michael, P., Rabinowicz, E., Iwasa, Y., 1991. Friction and wear of polymeric materials at 293, 77 and 4.2 K. Cryogenics 31 (8), 695–704.Mozumder, M.S., Mourad, A.-H.I., Pervez, H., Surkatti, R., 2019. Recent developments in multifunctional coatings for solar panel applications: A review. Solar Energy Materials and Solar Cells 189, 75–102.Myshkin, N., Petrokovets, M., Kovalev, A., 2005. Tribology of polymers: adhesion, friction, wear, and mass-transfer. Tribology International 38 (11–12), 910–921.Najjar, R., Akbari, M., Mirmohseni, A., Hosseini, M., 2018. Preparation and corrosion performance of healable waterborne polyurethane coatings containing isophoronediisocyanate loaded silica capsules. Journal of the Taiwan Institute of Chemical EngineersNazhipkyzy, M., Mansurov, Z., Amirfazli, A., et al., 2016. Influence of superhydrophobic properties on deicing. Journal of Engineering Physics and Thermophysics 89 (6), 1476–1481.Neinhuis, C., Koch, K., Barthlott, W., 2001. Movement and regeneration of epicuticular waxes through plant cuticles. Planta 213 (3), 427–434.Nine, M.J., Cole, M.A., Johnson, L., Tran, D.N., Losic, D., 2015. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties. ACS Applied Materials & Interfaces 7 (51), 28482–28493.Nine, M.J., Tung, T.T., Alotaibi, F., Tran, D.N., Losic, D., 2017. Facile adhesion-tuning of superhydrophobic surfaces between “lotus” and “petal” effect and their influence on icing and deicing properties. ACS Applied Materials & Interfaces 9 (9), 8393–8402.Njoku, C.N., Arukalam, I.O., Bai, W., Li, Y., 2018. Optimizing maleic anhydride microcapsules size for use in self‐healing epoxy‐based coatings for corrosion protection of aluminum alloy. Materials and Corrosion 69 (9), 1257–1267.Nosonovsky, M., Ramachandran, R., 2015. Geometric interpretation of surface tension equilibrium in superhydrophobic systems. Entropy 17 (7), 4684–4700.Nunez, E.E., Polycarpou, A.A., 2015. The effect of surface roughness on the transfer of polymer films under unlubricated testing conditions. Wear 326, 74–83.Nunez, E.E., Gheisari, R., Polycarpou, A.A., 2019. Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribology International 129, 92–111.Nunez, E.E., Demas, N.G., Polychronopoulou, K., Polycarpou, A.A., 2008. Tribological study comparing PAG and POE lubricants used in air-conditioning compressors under the presence of CO2. Tribology Transactions 51 (6), 790–797.Nunez, E.E., Demas, N.G., Polychronopoulou, K., Polycarpou, A.A., 2010. Comparative scuffing performance and chemical analysis of metallic surfaces for air-conditioning compressors in the presence of environmentally friendly CO2 refrigerant. Wear 268 (5–6), 668–676.Nunez, E.E., Yeo, S.M., Polychronopoulou, K., Polycarpou, A.A., 2011. Tribological study of high bearing blended polymer-based coatings for air-conditioning and refrigeration compressors. Surface and Coatings Technology 205 (8–9), 2994–3005.Ovaert, T., Cheng, H., 1991. Counterface topographical effects on the wear of polyetheretherketone and a polyetheretherketone-carbon fiber composite. Wear 150 (1–2), 275–287.Park, J.H., Braun, P.V., 2010. Coaxial electrospinning of self‐healing coatings. Advanced Materials 22 (4), 496–499.Petrovicova, E., Schadler, L., 2002. Thermal spraying of polymers. International Materials Reviews 47 (4), 169–190.Pippin, G., 2003. Space environments and induced damage mechanisms in materials. Progress in Organic Coatings 47 (3–4), 424–431.Raletz, F., Vardelle, M., Ezo ׳o, G., 2006. Critical particle velocity under cold spray conditions. Surface and Coatings Technology 201 (5), 1942–1947.Samadzadeh, M., Boura, S.H., Peikari, M., Kasiriha, S., Ashrafi, A., 2010. A review on self-healing coatings based on micro/nanocapsules. Progress in Organic Coatings 68 (3), 159–164.Sasaki, S., 2010. Environmentally friendly tribology (eco-tribology). Journal of Mechanical Science and Technology 24 (1), 67–71.Schreiner, C., Scharf, S., Stenzel, V., Rössler, A., 2017. Self-healing through microencapsulated agents for protective coatings. Journal of Coatings Technology and Research 14 (4), 809–816.Selim, M.S., Shenashen, M.A., Elmarakbi, A., et al., 2017. Synthesis of ultrahydrophobic and thermally stable inorganic–organic nanocomposites for self-cleaning foul release coatings. Chemical Engineering Journal 320, 653–666.Selim, M.S., Yang, H., Wang, F.Q., et al., 2018. Silicone/Ag@ SiO2 core–shell nanocomposite as a self-cleaning antifouling coating material. RSC Advances 8 (18), 9910–9921.Selim, M.S., El-Safty, S.A., Fatthallah, N.A., Shenashen, M.A., 2018. Silicone/graphene oxide sheet-alumina nanorod ternary composite for superhydrophobic antifouling coating. Progress in Organic Coatings 121, 160–172.Shaffer, S., Rogers, M., 2007. Tribological performance of various coatings in unlubricated sliding for use in small arms action components – A case study. Wear 263 (7–12), 1281–1290.Srinivasan, S., Kleingartner, J.A., Gilbert, J.B., et al., 2015. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces. Physical Review Letters 114 (1), 014501.Tuteja, A., Choi, W., Mabry, J.M., McKinley, G.H., Cohen, R.E., 2008. Robust omniphobic surfaces. Proceedings of the National Academy of Sciences 105 (47), 18200–18205.Vyawahare, S.M., 2006. Protective thermal spray coatings for polymer matrix composites, Thesis (M.S.), Wichita State University.Wang, Q., 1997. Seizure failure of journal-bearing conformal contacts. Wear 210 (1–2), 8–16.Wang, Q., Zheng, F., Wang, T., 2016. Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum. Cryogenics 75, 19–25.Wong, T.-S., Kang, S.H., Tang, S.K., et al., 2011. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477 (7365), 443.Xiao, L., Deng, M., Zeng, W., et al., 2017. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide. Industrial & Engineering Chemistry Research 56 (43), 12354–12361.Yabuki, A., Okumura, K., 2012. Self-healing coatings using superabsorbent polymers for corrosion inhibition in carbon steel. Corrosion Science 59, 258–262.Yabuki, A., Kawashima, A., Fathona, I.W., 2014. Self-healing polymer coatings with cellulose nanofibers served as pathways for the release of a corrosion inhibitor. Corrosion Science 85, 141–146.Yabuki, A., Shiraiwa, T., Fathona, I.W., 2016. pH-controlled self-healing polymer coatings with cellulose nanofibers providing an effective release of corrosion inhibitor. Corrosion Science 103, 117–123.Yabuki, A., Tanabe, S., Fathona, I.W., 2018. Self-healing polymer coating with the microfibers of superabsorbent polymers provides corrosion inhibition in carbon steel. Surface and Coatings Technology 341, 71–77.Yeo, S.M., Polycarpou, A.A., 2012. Tribological performance of PTFE-and PEEK-based coatings under oil-less compressor conditions. Wear 296 (1–2), 638–647.Yeo, S.M., Polycarpou, A.A., 2013. Micromechanical properties of polymeric coatings. Tribology International 60, 198–208.Yeo, S.M., Polycarpou, A.A., 2014. Fretting experiments of advanced polymeric coatings and the effect of transfer films on their tribological behavior. Tribology International 79, 16–25.Yeo, S.M., Escobar Nunez, E., Polycarpou, A.A., 2010. Tribological performances of polymer-based coating materials designed for compressor applications. In: Advances in Science and Technology. Trans Tech Publication, pp. 33–42.Zahidah, K.A., Kakooei, S., Ismail, M.C., Raja, P.B., 2017. Halloysite nanotubes as nanocontainer for smart coating application: A review. Progress in Organic Coatings 111, 175–185.Zhai, W., Lu, W., Zhang, P., et al., 2018. Wear-triggered self-healing behavior on the surface of nanocrystalline nickel aluminum bronze/Ti3SiC2 composites. Applied Surface Science 436, 1038–1049.Zhang, C., Wang, H., Zhou, Q., 2018. Preparation and characterization of microcapsules based self-healing coatings containing epoxy ester as healing agent. Progress in Organic Coatings 125, 403–410.Zhang, G., Liao, H., Yu, H., et al., 2006. Deposition of PEEK coatings using a combined flame spraying–laser remelting process. Surface and Coatings Technology 201 (1–2), 243–249.Zhang, G., Liao, H., Yu, H., et al., 2006. Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. Surface and Coatings Technology 200 (24), 6690–6695.Zhang, J., 2008. Design of polymer composites with improved adhesion and wear properties, Thesis (Dr.), University of Illinois at Urbana-Champaign.Zhou, M., Lu, W., Liu, X., et al., 2018. Fretting wear properties of plasma-sprayed Ti3SiC2 coatings with oxidative crack-healing feature. Tribology International 118, 196–207GeneralPublication7e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::1581-17e06127e-a4cd-48a0-b6d9-8fb7fe47d942virtual::1581-1https://scholar.google.com/citations?user=vQ6ZVoIAAAAJ&hl=esvirtual::1581-10000-0002-9582-551Xvirtual::1581-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000151203virtual::1581-1LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/ca92d2f5-0e8e-4185-8865-b3eac8e3b91a/download20b5ba22b1117f71589c7318baa2c560MD52ORIGINALAdvanced polymeric coatings and their applications green tribology.pdfAdvanced polymeric coatings and their applications green tribology.pdfTexto archivo completo del capítulo del libro, PDFapplication/pdf3830412https://red.uao.edu.co/bitstreams/1314664e-f7bd-41b2-83c3-4d124799fc32/download5a65f041580b3412a297c13e84a4c974MD53TEXTAdvanced polymeric coatings and their applications green tribology.pdf.txtAdvanced polymeric coatings and their applications green tribology.pdf.txtExtracted texttext/plain61937https://red.uao.edu.co/bitstreams/1fce0566-1250-48bf-80bb-1cbdf0d7257c/download458d6571d3eb408305ca6f1dd6c1f9b1MD54THUMBNAILAdvanced polymeric coatings and their applications green tribology.pdf.jpgAdvanced polymeric coatings and their applications green tribology.pdf.jpgGenerated Thumbnailimage/jpeg14795https://red.uao.edu.co/bitstreams/1712cf50-9f1a-4959-a8d4-bb7857c1571f/download36c3c644c1970b5e5a2e4e21690911acMD5510614/13428oai:red.uao.edu.co:10614/134282024-03-04 16:28:56.795https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsiever, 2019open.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K