Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method

A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equat...

Full description

Autores:
Lozano Parada, Jaime Humberto
Suescún-Díaz, Daniel
Rasero, Diego
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/11570
Acceso en línea:
http://hdl.handle.net/10614/11570
https://doi.org/10.1080/00223131.2019.1611502
Palabra clave:
Molecular dynamics
Dinámica molecular
Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
Rights
openAccess
License
Derechos Reservados - Universidad Autónoma de Occidente
id REPOUAO2_a491525cd53eccf01fb75a86c00e6285
oai_identifier_str oai:red.uao.edu.co:10614/11570
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
spellingShingle Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
Molecular dynamics
Dinámica molecular
Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
title_short Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title_full Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title_fullStr Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title_full_unstemmed Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
title_sort Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
dc.creator.fl_str_mv Lozano Parada, Jaime Humberto
Suescún-Díaz, Daniel
Rasero, Diego
dc.contributor.author.none.fl_str_mv Lozano Parada, Jaime Humberto
Suescún-Díaz, Daniel
Rasero, Diego
dc.subject.lemb.eng.fl_str_mv Molecular dynamics
topic Molecular dynamics
Dinámica molecular
Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
dc.subject.lemb.spa.fl_str_mv Dinámica molecular
dc.subject.proposal.eng.fl_str_mv Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
description A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational cost
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-25T19:45:26Z
dc.date.available.none.fl_str_mv 2019-11-25T19:45:26Z
dc.date.issued.none.fl_str_mv 2019
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ARTREF
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 0022-3131
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/10614/11570
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1080/00223131.2019.1611502
identifier_str_mv 0022-3131
url http://hdl.handle.net/10614/11570
https://doi.org/10.1080/00223131.2019.1611502
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.none.fl_str_mv 616
dc.relation.citationissue.none.fl_str_mv 7
dc.relation.citationstartpage.none.fl_str_mv 608
dc.relation.citationvolume.none.fl_str_mv 56
dc.relation.cites.eng.fl_str_mv Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616
dc.relation.ispartofjournal.eng.fl_str_mv Journal of Nuclear Science and Technology
dc.relation.references.none.fl_str_mv [1] Shimazu Y, Nakano Y, Tahara Y, Okayama T. Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol. 1987;77:247–254.
[2] Ansari SA. Development of on-line reactivity meter for nuclear reactors. IEEE Trans Nucl Sci. 1991;38:946–952.
[3] Binney SE, Bakir AIM. Design and development of a personal computer based reactivity meter for a nuclear reactor. Nucl Technol. 1989;85:12–21.
[4] Hoogenboom JE, Van Der Sluijs AR. Neutron source strength determination for on-line reactivity measurements. Ann Nucl Energy. 1988;15:553–559.
[5] Tamura S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain. J Nucl SciTechnol. 2003;40:153–157.
[6] Suescún DD, Senra AM, Carvalho Da Silva F. Calculation of reactivity using a finite impulse response filter. Ann Nucl Energy. 2008;35:472–477.
[7] Suescún DD, Senra AM. Finite difference with exponential filtering in the calculation of reactivity. Kerntechnik. 2010;75:210–213.
[8] Malmir H, Vosoughi N. On-line reactivity calculation using Lagrange method. Ann Nucl Energy. 2013;62:463–467.
[9] Suescún DD, Bonilla HFL, Figueroa JJH. Savitzky-Golay filter for reactivity calculation. J Nucl Sci Technol. 2016;53:944–950.
[10] Suescún DD, Rasero CDA, Figueroa JJH. Adams-Bashforth-Moulton method with Savitzky-Golay filter to reduce reactivity fluctuations. Kerntechnik. 2017;82:674–677.
[11] Duderstadt JJ, Hamilton LJ. Nuclear reactor analysis. New York (NY): Wiley; 1976.
[12] Palma DAP, Martinez AS, Gonçalves AC. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor. Ann Nucl Energy. 2009;36:1469–1471.
[13] Haykin S, Veen BV. Signal and system. New York (NY): Wiley; 1999.
[14] Diniz RPS, Da Silva BEA, Netto LS. Digital signal processing: system analysis and design. Cambridge: Cambridge University Press; 2010.
[15] Kitano A, Itagaki M, Narita M. Memorial-indexbased inverse kinetics method for continuous measurement of reactivity and source strength. J Nucl Sci Technol. 2000;37:53–59.
dc.rights.spa.fl_str_mv Derechos Reservados - Universidad Autónoma de Occidente
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados - Universidad Autónoma de Occidente
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.eng.fl_str_mv application/pdf
dc.format.extent.spa.fl_str_mv 9 páginas
dc.coverage.spatial.none.fl_str_mv Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí
dc.publisher.eng.fl_str_mv Taylor and Francis
dc.source.spa.fl_str_mv reponame:Repositorio Institucional UAO
institution Universidad Autónoma de Occidente
reponame_str Repositorio Institucional UAO
collection Repositorio Institucional UAO
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/6616b943-5b6b-4110-b73f-805a252d8c0a/download
https://dspace7-uao.metacatalogo.com/bitstreams/9db73236-5d5c-4d3d-8286-695fa5d206b4/download
https://dspace7-uao.metacatalogo.com/bitstreams/73b6967b-78f8-47f7-bd8f-c40a4431fa5a/download
https://dspace7-uao.metacatalogo.com/bitstreams/1e86136a-7be4-4642-b199-a7e5dd515e2a/download
https://dspace7-uao.metacatalogo.com/bitstreams/ff4c5b86-4e32-4602-8d5a-4f0da2b67570/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
20b5ba22b1117f71589c7318baa2c560
322e60b1324682a6946fab4fe28ccbd2
e173f4089ecf69d738933cbe8651aa8a
a111e296ee1c2732cec4535eb8a59712
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260002851913728
spelling Lozano Parada, Jaime Humberto5e37d5ded4625c6929b3fb6a8753c350Suescún-Díaz, Daniel29eca95d98db655eeb1ef3f95c2c66e9Rasero, Diego86c039a30c118baf0a30fff759f3096eUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-25T19:45:26Z2019-11-25T19:45:26Z20190022-3131http://hdl.handle.net/10614/11570https://doi.org/10.1080/00223131.2019.1611502A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational costapplication/pdf9 páginasengTaylor and FrancisDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAONovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Molecular dynamicsDinámica molecularReactivityNuclear power plantNuclear reactorNumerical simulation616760856Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616Journal of Nuclear Science and Technology[1] Shimazu Y, Nakano Y, Tahara Y, Okayama T. Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol. 1987;77:247–254.[2] Ansari SA. Development of on-line reactivity meter for nuclear reactors. IEEE Trans Nucl Sci. 1991;38:946–952.[3] Binney SE, Bakir AIM. Design and development of a personal computer based reactivity meter for a nuclear reactor. Nucl Technol. 1989;85:12–21.[4] Hoogenboom JE, Van Der Sluijs AR. Neutron source strength determination for on-line reactivity measurements. Ann Nucl Energy. 1988;15:553–559.[5] Tamura S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain. J Nucl SciTechnol. 2003;40:153–157.[6] Suescún DD, Senra AM, Carvalho Da Silva F. Calculation of reactivity using a finite impulse response filter. Ann Nucl Energy. 2008;35:472–477.[7] Suescún DD, Senra AM. Finite difference with exponential filtering in the calculation of reactivity. Kerntechnik. 2010;75:210–213.[8] Malmir H, Vosoughi N. On-line reactivity calculation using Lagrange method. Ann Nucl Energy. 2013;62:463–467.[9] Suescún DD, Bonilla HFL, Figueroa JJH. Savitzky-Golay filter for reactivity calculation. J Nucl Sci Technol. 2016;53:944–950.[10] Suescún DD, Rasero CDA, Figueroa JJH. Adams-Bashforth-Moulton method with Savitzky-Golay filter to reduce reactivity fluctuations. Kerntechnik. 2017;82:674–677.[11] Duderstadt JJ, Hamilton LJ. Nuclear reactor analysis. New York (NY): Wiley; 1976.[12] Palma DAP, Martinez AS, Gonçalves AC. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor. Ann Nucl Energy. 2009;36:1469–1471.[13] Haykin S, Veen BV. Signal and system. New York (NY): Wiley; 1999.[14] Diniz RPS, Da Silva BEA, Netto LS. Digital signal processing: system analysis and design. Cambridge: Cambridge University Press; 2010.[15] Kitano A, Itagaki M, Narita M. Memorial-indexbased inverse kinetics method for continuous measurement of reactivity and source strength. J Nucl Sci Technol. 2000;37:53–59.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/6616b943-5b6b-4110-b73f-805a252d8c0a/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/9db73236-5d5c-4d3d-8286-695fa5d206b4/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdfNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1556308https://dspace7-uao.metacatalogo.com/bitstreams/73b6967b-78f8-47f7-bd8f-c40a4431fa5a/download322e60b1324682a6946fab4fe28ccbd2MD54TEXTNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdf.txtNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdf.txtExtracted texttext/plain31181https://dspace7-uao.metacatalogo.com/bitstreams/1e86136a-7be4-4642-b199-a7e5dd515e2a/downloade173f4089ecf69d738933cbe8651aa8aMD55THUMBNAILNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdf.jpgNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdf.jpgGenerated Thumbnailimage/jpeg17208https://dspace7-uao.metacatalogo.com/bitstreams/ff4c5b86-4e32-4602-8d5a-4f0da2b67570/downloada111e296ee1c2732cec4535eb8a59712MD5610614/11570oai:dspace7-uao.metacatalogo.com:10614/115702024-01-19 16:35:32.921https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K