Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method
A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equat...
- Autores:
-
Lozano Parada, Jaime Humberto
Suescún-Díaz, Daniel
Rasero, Diego
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/11570
- Palabra clave:
- Molecular dynamics
Dinámica molecular
Reactivity
Nuclear power plant
Nuclear reactor
Numerical simulation
- Rights
- openAccess
- License
- Derechos Reservados - Universidad Autónoma de Occidente
id |
REPOUAO2_a491525cd53eccf01fb75a86c00e6285 |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/11570 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
spellingShingle |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method Molecular dynamics Dinámica molecular Reactivity Nuclear power plant Nuclear reactor Numerical simulation |
title_short |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title_full |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title_fullStr |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title_full_unstemmed |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
title_sort |
Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method |
dc.creator.fl_str_mv |
Lozano Parada, Jaime Humberto Suescún-Díaz, Daniel Rasero, Diego |
dc.contributor.author.none.fl_str_mv |
Lozano Parada, Jaime Humberto Suescún-Díaz, Daniel Rasero, Diego |
dc.subject.lemb.eng.fl_str_mv |
Molecular dynamics |
topic |
Molecular dynamics Dinámica molecular Reactivity Nuclear power plant Nuclear reactor Numerical simulation |
dc.subject.lemb.spa.fl_str_mv |
Dinámica molecular |
dc.subject.proposal.eng.fl_str_mv |
Reactivity Nuclear power plant Nuclear reactor Numerical simulation |
description |
A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational cost |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-25T19:45:26Z |
dc.date.available.none.fl_str_mv |
2019-11-25T19:45:26Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ARTREF |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
0022-3131 |
dc.identifier.uri.spa.fl_str_mv |
http://hdl.handle.net/10614/11570 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1080/00223131.2019.1611502 |
identifier_str_mv |
0022-3131 |
url |
http://hdl.handle.net/10614/11570 https://doi.org/10.1080/00223131.2019.1611502 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.none.fl_str_mv |
616 |
dc.relation.citationissue.none.fl_str_mv |
7 |
dc.relation.citationstartpage.none.fl_str_mv |
608 |
dc.relation.citationvolume.none.fl_str_mv |
56 |
dc.relation.cites.eng.fl_str_mv |
Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Journal of Nuclear Science and Technology |
dc.relation.references.none.fl_str_mv |
[1] Shimazu Y, Nakano Y, Tahara Y, Okayama T. Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol. 1987;77:247–254. [2] Ansari SA. Development of on-line reactivity meter for nuclear reactors. IEEE Trans Nucl Sci. 1991;38:946–952. [3] Binney SE, Bakir AIM. Design and development of a personal computer based reactivity meter for a nuclear reactor. Nucl Technol. 1989;85:12–21. [4] Hoogenboom JE, Van Der Sluijs AR. Neutron source strength determination for on-line reactivity measurements. Ann Nucl Energy. 1988;15:553–559. [5] Tamura S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain. J Nucl SciTechnol. 2003;40:153–157. [6] Suescún DD, Senra AM, Carvalho Da Silva F. Calculation of reactivity using a finite impulse response filter. Ann Nucl Energy. 2008;35:472–477. [7] Suescún DD, Senra AM. Finite difference with exponential filtering in the calculation of reactivity. Kerntechnik. 2010;75:210–213. [8] Malmir H, Vosoughi N. On-line reactivity calculation using Lagrange method. Ann Nucl Energy. 2013;62:463–467. [9] Suescún DD, Bonilla HFL, Figueroa JJH. Savitzky-Golay filter for reactivity calculation. J Nucl Sci Technol. 2016;53:944–950. [10] Suescún DD, Rasero CDA, Figueroa JJH. Adams-Bashforth-Moulton method with Savitzky-Golay filter to reduce reactivity fluctuations. Kerntechnik. 2017;82:674–677. [11] Duderstadt JJ, Hamilton LJ. Nuclear reactor analysis. New York (NY): Wiley; 1976. [12] Palma DAP, Martinez AS, Gonçalves AC. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor. Ann Nucl Energy. 2009;36:1469–1471. [13] Haykin S, Veen BV. Signal and system. New York (NY): Wiley; 1999. [14] Diniz RPS, Da Silva BEA, Netto LS. Digital signal processing: system analysis and design. Cambridge: Cambridge University Press; 2010. [15] Kitano A, Itagaki M, Narita M. Memorial-indexbased inverse kinetics method for continuous measurement of reactivity and source strength. J Nucl Sci Technol. 2000;37:53–59. |
dc.rights.spa.fl_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados - Universidad Autónoma de Occidente https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.eng.fl_str_mv |
application/pdf |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.coverage.spatial.none.fl_str_mv |
Universidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí |
dc.publisher.eng.fl_str_mv |
Taylor and Francis |
dc.source.spa.fl_str_mv |
reponame:Repositorio Institucional UAO |
institution |
Universidad Autónoma de Occidente |
reponame_str |
Repositorio Institucional UAO |
collection |
Repositorio Institucional UAO |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/6616b943-5b6b-4110-b73f-805a252d8c0a/download https://dspace7-uao.metacatalogo.com/bitstreams/9db73236-5d5c-4d3d-8286-695fa5d206b4/download https://dspace7-uao.metacatalogo.com/bitstreams/73b6967b-78f8-47f7-bd8f-c40a4431fa5a/download https://dspace7-uao.metacatalogo.com/bitstreams/1e86136a-7be4-4642-b199-a7e5dd515e2a/download https://dspace7-uao.metacatalogo.com/bitstreams/ff4c5b86-4e32-4602-8d5a-4f0da2b67570/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 20b5ba22b1117f71589c7318baa2c560 322e60b1324682a6946fab4fe28ccbd2 e173f4089ecf69d738933cbe8651aa8a a111e296ee1c2732cec4535eb8a59712 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260002851913728 |
spelling |
Lozano Parada, Jaime Humberto5e37d5ded4625c6929b3fb6a8753c350Suescún-Díaz, Daniel29eca95d98db655eeb1ef3f95c2c66e9Rasero, Diego86c039a30c118baf0a30fff759f3096eUniversidad Autónoma de Occidente. Calle 25 115-85. Km 2 vía Cali-Jamundí2019-11-25T19:45:26Z2019-11-25T19:45:26Z20190022-3131http://hdl.handle.net/10614/11570https://doi.org/10.1080/00223131.2019.1611502A new method for calculating nuclear reactivity based on the Discrete Fourier Transform (DFT) – with two filters: a first-order delay low-pass filter and a Savitzky-Golay filter – is presented. The reactivity is calculated from an integrodifferential equation known as the inverse point kinetic equation, which contains the history of neutron population density. The new method can be understood as a convolution between the neutron population density signal and the response to the characteristic impulse of a linear system. The proposed method is based on the discrete Fourier transform (DFT) that performs a circular convolution. The fast Fourier transform algorithm (FFT) with the zero-padding technique is implemented to reduce the computational costapplication/pdf9 páginasengTaylor and FrancisDerechos Reservados - Universidad Autónoma de Occidentehttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2reponame:Repositorio Institucional UAONovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform methodArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTREFinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Molecular dynamicsDinámica molecularReactivityNuclear power plantNuclear reactorNumerical simulation616760856Suescún-Díaz, D., Lozano-Parada, J. H., & Rasero-Causil, D. A. (2019). Novel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method. Journal of Nuclear Science and Technology, 56(7), 608-616Journal of Nuclear Science and Technology[1] Shimazu Y, Nakano Y, Tahara Y, Okayama T. Development of a compact digital reactivity meter and a reactor physics data processor. Nucl Technol. 1987;77:247–254.[2] Ansari SA. Development of on-line reactivity meter for nuclear reactors. IEEE Trans Nucl Sci. 1991;38:946–952.[3] Binney SE, Bakir AIM. Design and development of a personal computer based reactivity meter for a nuclear reactor. Nucl Technol. 1989;85:12–21.[4] Hoogenboom JE, Van Der Sluijs AR. Neutron source strength determination for on-line reactivity measurements. Ann Nucl Energy. 1988;15:553–559.[5] Tamura S. Signal fluctuation and neutron source in inverse kinetics method for reactivity measurement in the sub-critical domain. J Nucl SciTechnol. 2003;40:153–157.[6] Suescún DD, Senra AM, Carvalho Da Silva F. Calculation of reactivity using a finite impulse response filter. Ann Nucl Energy. 2008;35:472–477.[7] Suescún DD, Senra AM. Finite difference with exponential filtering in the calculation of reactivity. Kerntechnik. 2010;75:210–213.[8] Malmir H, Vosoughi N. On-line reactivity calculation using Lagrange method. Ann Nucl Energy. 2013;62:463–467.[9] Suescún DD, Bonilla HFL, Figueroa JJH. Savitzky-Golay filter for reactivity calculation. J Nucl Sci Technol. 2016;53:944–950.[10] Suescún DD, Rasero CDA, Figueroa JJH. Adams-Bashforth-Moulton method with Savitzky-Golay filter to reduce reactivity fluctuations. Kerntechnik. 2017;82:674–677.[11] Duderstadt JJ, Hamilton LJ. Nuclear reactor analysis. New York (NY): Wiley; 1976.[12] Palma DAP, Martinez AS, Gonçalves AC. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor. Ann Nucl Energy. 2009;36:1469–1471.[13] Haykin S, Veen BV. Signal and system. New York (NY): Wiley; 1999.[14] Diniz RPS, Da Silva BEA, Netto LS. Digital signal processing: system analysis and design. Cambridge: Cambridge University Press; 2010.[15] Kitano A, Itagaki M, Narita M. Memorial-indexbased inverse kinetics method for continuous measurement of reactivity and source strength. J Nucl Sci Technol. 2000;37:53–59.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://dspace7-uao.metacatalogo.com/bitstreams/6616b943-5b6b-4110-b73f-805a252d8c0a/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/9db73236-5d5c-4d3d-8286-695fa5d206b4/download20b5ba22b1117f71589c7318baa2c560MD53ORIGINALNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdfNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1556308https://dspace7-uao.metacatalogo.com/bitstreams/73b6967b-78f8-47f7-bd8f-c40a4431fa5a/download322e60b1324682a6946fab4fe28ccbd2MD54TEXTNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdf.txtNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdf.txtExtracted texttext/plain31181https://dspace7-uao.metacatalogo.com/bitstreams/1e86136a-7be4-4642-b199-a7e5dd515e2a/downloade173f4089ecf69d738933cbe8651aa8aMD55THUMBNAILNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdf.jpgNovel fluctuation reduction procedure for nuclear reactivity calculations based on the discrete fourier transform method.pdf.jpgGenerated Thumbnailimage/jpeg17208https://dspace7-uao.metacatalogo.com/bitstreams/ff4c5b86-4e32-4602-8d5a-4f0da2b67570/downloada111e296ee1c2732cec4535eb8a59712MD5610614/11570oai:dspace7-uao.metacatalogo.com:10614/115702024-01-19 16:35:32.921https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados - Universidad Autónoma de Occidenteopen.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |