Manufacturing of a transdermal patch in 3D printing
Diabetes mellitus is an endocrine disorder that affects glucose metabolism, making the body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted strong interest from researchers, as it allows minimally invasive and painless insulin administration, showing...
- Autores:
-
Villota, Isabella
Calvo Echeverry, Paulo César
Villarreal Gómez, Luis Jesús
Fonthal Rico, Faruk
Campo Salazar, Oscar Iván
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/14774
- Acceso en línea:
- https://hdl.handle.net/10614/14774
https://red.uao.edu.co/
- Palabra clave:
- Biomedical engineering
Ingeniería biomédica
Microneedles
Transdermal drug delivery
3D printing
Finite element analysis
- Rights
- openAccess
- License
- Derechos Reservados Micromachines
id |
REPOUAO2_a46ec44f3e782ca01e006c4cef058acb |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/14774 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Manufacturing of a transdermal patch in 3D printing |
title |
Manufacturing of a transdermal patch in 3D printing |
spellingShingle |
Manufacturing of a transdermal patch in 3D printing Biomedical engineering Ingeniería biomédica Microneedles Transdermal drug delivery 3D printing Finite element analysis |
title_short |
Manufacturing of a transdermal patch in 3D printing |
title_full |
Manufacturing of a transdermal patch in 3D printing |
title_fullStr |
Manufacturing of a transdermal patch in 3D printing |
title_full_unstemmed |
Manufacturing of a transdermal patch in 3D printing |
title_sort |
Manufacturing of a transdermal patch in 3D printing |
dc.creator.fl_str_mv |
Villota, Isabella Calvo Echeverry, Paulo César Villarreal Gómez, Luis Jesús Fonthal Rico, Faruk Campo Salazar, Oscar Iván |
dc.contributor.author.none.fl_str_mv |
Villota, Isabella Calvo Echeverry, Paulo César Villarreal Gómez, Luis Jesús Fonthal Rico, Faruk Campo Salazar, Oscar Iván |
dc.subject.armarc.eng.fl_str_mv |
Biomedical engineering |
topic |
Biomedical engineering Ingeniería biomédica Microneedles Transdermal drug delivery 3D printing Finite element analysis |
dc.subject.armarc.spa.fl_str_mv |
Ingeniería biomédica |
dc.subject.proposal.eng.fl_str_mv |
Microneedles Transdermal drug delivery 3D printing Finite element analysis |
description |
Diabetes mellitus is an endocrine disorder that affects glucose metabolism, making the body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted strong interest from researchers, as it allows minimally invasive and painless insulin administration, showing advantages over conventional delivery methods. Systems composed of microneedles (MNs) assembled in a transdermal patch provide a unique route of administration, which is innovative with promising results. This paper presents the design of a transdermal patch composed of 25 microneedles manufactured with 3D printing by stereolithography with a class 1 biocompatible resin and a printing angle of 0◦. Finite element analysis with ANSYS software is used to obtain the mechanical behavior of the microneedle (MN). The values obtained through the analysis were: a Von Misses stress of 18.057 MPa, a maximum deformation of 2.179 × 10−3, and a safety factor of 4. Following this, through a flow simulation, we find that a pressure of 1.084 Pa and a fluid velocity of 4.800 m s were necessary to ensure a volumetric flow magnitude of 4.447 × 10−5 cm3 s . Furthermore, the parameters found in this work are of great importance for the future implementation of a transdermal drug delivery device |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-10 |
dc.date.accessioned.none.fl_str_mv |
2023-05-19T15:50:48Z |
dc.date.available.none.fl_str_mv |
2023-05-19T15:50:48Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
2072666X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/14774 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Autónoma de Occidente |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Educativo Digital UAO |
dc.identifier.repourl.spa.fl_str_mv |
https://red.uao.edu.co/ |
identifier_str_mv |
2072666X Universidad Autónoma de Occidente Repositorio Educativo Digital UAO |
url |
https://hdl.handle.net/10614/14774 https://red.uao.edu.co/ |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationissue.spa.fl_str_mv |
12 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
13 |
dc.relation.cites.spa.fl_str_mv |
Villota, I., Calvo Echeverry, P.C., Campo Salazar, O.I., Villarreal Gómez, L.J., Fonthal Rico, F. Manufacturing of a Transdermal Patch in 3D Printing. Micromachines, 13(12), 1-11. https://hdl.handle.net/10614/14774 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Micromachines |
dc.relation.references.none.fl_str_mv |
Aldawood, F.K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021, 13, 2815 Llaguno de Mora, R.I.; Freire López, M.E.; Semanate Bautista, N.M.; Domínguez Freire, M.F.; Domínguez Freire, N.D.; Semanate Bautista, S.D. Complicaciones musculoesqueléticas de la diabetes mellitus. Rev. Cuba. Reumatol. 2019, 21, e47. Makvandi, P.; Jamaledin, R.; Chen, G.; Baghbantaraghdari, Z.; Zare, E.N.; Di Natale, C.; Onesto, V.; Vecchione, R.; Lee, J.; Tay, F.R.; et al. Stimuli-responsive transdermal microneedle patches. Mater. Today 2021, 47, 206–222 Shingade, G.M. Review on: Recent Trend on Transdermal Drug Delivery System. J. Drug Deliv. Ther. 2012, 2, 2012 Battisti, M.; Vecchione, R.; Casale, C.; Pennacchio, F.A.; Lettera, V.; Jamaledin, R.; Profeta, M.; Di Natale, C.; Imparato, G.; Urciuolo, F.; et al. Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Front. Bioeng. Biotechnol. 2019, 7, 1–14 Economidou, S.N.; Pere, C.; Reid, A.; Uddin, M.J.; Windmill, J.; Lamprou, D.A.; Douroumis, D. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater. Sci. Eng. C 2019, 102, 743–755 Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299. Villota, I.; Calvo, P.C.; Campo, O.I.; Fonthal, F. Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules 2022, 27, 6634 Ge, G.; Wang, Q.; Zhang, Y.; Alshareef, H.; Dong, X. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv. Funct. Mater. 2021, 31, 2107437 Janphuang, P.; Laebua, M.; Sriphung, C.; Taweewat, P.; Sirichalarmkul, A.; Sukjantha, K.; Promsawat, N.; Leuasoongnoen, P.; Suphachiaraphan, S.; Phimol, K.; et al. Polymer Based Microneedle Patch Fabricated Using Microinjection Moulding. MATEC Web Conf. 2018, 192, 01039 Sholihah, M.; Sean, W.Y. Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach. Molecules. 2021, 26, 5021. Pettis, R.J.; Harvey, A.J. Microneedle delivery: Clinical studies and emerging medical applications. Ther. Deliv. 2012, 3, 357–371. Giri Nandagopal, M.S.; Antony, R.; Rangabhashiyam, S.; Sreekumar, N.; Selvaraju, N. Overview of microneedle system: A third-generation transdermal drug delivery approach. Microsyst. Technol. 2014, 20, 1249–1272 |
dc.rights.spa.fl_str_mv |
Derechos Reservados Micromachines |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos Reservados Micromachines https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.spa.fl_str_mv |
Basel, Suiza |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://red.uao.edu.co/bitstreams/470f2197-98c5-45d5-8a41-20e3b094c917/download https://red.uao.edu.co/bitstreams/cbbcd2da-65fb-4a3d-97c9-6b749e24aac0/download https://red.uao.edu.co/bitstreams/51f80291-d9ce-4179-9e91-9d436f9532ca/download https://red.uao.edu.co/bitstreams/da297f84-724e-4936-ada4-f113a83e8fe3/download |
bitstream.checksum.fl_str_mv |
c5d200756f9ee1e15efb6f25a55a0bda 20b5ba22b1117f71589c7318baa2c560 b0994f94df45239df2a1c21ba39a12c2 04efa487e38ddedcbae4c9d4ba9849a5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Autonoma de Occidente |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260182043066368 |
spelling |
Villota, Isabella5d30c1b3447b95a34ae75ef1a00a07caCalvo Echeverry, Paulo Césarvirtual::981-1Villarreal Gómez, Luis Jesús34e538876b608765ce1a1b92c2ad5c08Fonthal Rico, Farukvirtual::1744-1Campo Salazar, Oscar Ivánvirtual::146-12023-05-19T15:50:48Z2023-05-19T15:50:48Z2022-12-102072666Xhttps://hdl.handle.net/10614/14774Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/Diabetes mellitus is an endocrine disorder that affects glucose metabolism, making the body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted strong interest from researchers, as it allows minimally invasive and painless insulin administration, showing advantages over conventional delivery methods. Systems composed of microneedles (MNs) assembled in a transdermal patch provide a unique route of administration, which is innovative with promising results. This paper presents the design of a transdermal patch composed of 25 microneedles manufactured with 3D printing by stereolithography with a class 1 biocompatible resin and a printing angle of 0◦. Finite element analysis with ANSYS software is used to obtain the mechanical behavior of the microneedle (MN). The values obtained through the analysis were: a Von Misses stress of 18.057 MPa, a maximum deformation of 2.179 × 10−3, and a safety factor of 4. Following this, through a flow simulation, we find that a pressure of 1.084 Pa and a fluid velocity of 4.800 m s were necessary to ensure a volumetric flow magnitude of 4.447 × 10−5 cm3 s . Furthermore, the parameters found in this work are of great importance for the future implementation of a transdermal drug delivery device 11 páginasapplication/pdfengMDPIBasel, SuizaDerechos Reservados Micromachineshttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Manufacturing of a transdermal patch in 3D printingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Biomedical engineeringIngeniería biomédicaMicroneedlesTransdermal drug delivery3D printingFinite element analysis1112113Villota, I., Calvo Echeverry, P.C., Campo Salazar, O.I., Villarreal Gómez, L.J., Fonthal Rico, F. Manufacturing of a Transdermal Patch in 3D Printing. Micromachines, 13(12), 1-11. https://hdl.handle.net/10614/14774MicromachinesAldawood, F.K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021, 13, 2815Llaguno de Mora, R.I.; Freire López, M.E.; Semanate Bautista, N.M.; Domínguez Freire, M.F.; Domínguez Freire, N.D.; Semanate Bautista, S.D. Complicaciones musculoesqueléticas de la diabetes mellitus. Rev. Cuba. Reumatol. 2019, 21, e47.Makvandi, P.; Jamaledin, R.; Chen, G.; Baghbantaraghdari, Z.; Zare, E.N.; Di Natale, C.; Onesto, V.; Vecchione, R.; Lee, J.; Tay, F.R.; et al. Stimuli-responsive transdermal microneedle patches. Mater. Today 2021, 47, 206–222Shingade, G.M. Review on: Recent Trend on Transdermal Drug Delivery System. J. Drug Deliv. Ther. 2012, 2, 2012Battisti, M.; Vecchione, R.; Casale, C.; Pennacchio, F.A.; Lettera, V.; Jamaledin, R.; Profeta, M.; Di Natale, C.; Imparato, G.; Urciuolo, F.; et al. Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Front. Bioeng. Biotechnol. 2019, 7, 1–14Economidou, S.N.; Pere, C.; Reid, A.; Uddin, M.J.; Windmill, J.; Lamprou, D.A.; Douroumis, D. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater. Sci. Eng. C 2019, 102, 743–755Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299.Villota, I.; Calvo, P.C.; Campo, O.I.; Fonthal, F. Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules 2022, 27, 6634Ge, G.; Wang, Q.; Zhang, Y.; Alshareef, H.; Dong, X. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv. Funct. Mater. 2021, 31, 2107437Janphuang, P.; Laebua, M.; Sriphung, C.; Taweewat, P.; Sirichalarmkul, A.; Sukjantha, K.; Promsawat, N.; Leuasoongnoen, P.; Suphachiaraphan, S.; Phimol, K.; et al. Polymer Based Microneedle Patch Fabricated Using Microinjection Moulding. MATEC Web Conf. 2018, 192, 01039Sholihah, M.; Sean, W.Y. Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach. Molecules. 2021, 26, 5021.Pettis, R.J.; Harvey, A.J. Microneedle delivery: Clinical studies and emerging medical applications. Ther. Deliv. 2012, 3, 357–371.Giri Nandagopal, M.S.; Antony, R.; Rangabhashiyam, S.; Sreekumar, N.; Selvaraju, N. Overview of microneedle system: A third-generation transdermal drug delivery approach. Microsyst. Technol. 2014, 20, 1249–1272Comunidad generalPublication767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::981-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1744-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::146-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::146-1767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::981-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1744-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::1744-1https://scholar.google.com.co/citations?user=selvUiIAAAAJ&hl=envirtual::146-10000-0001-5353-6368virtual::981-10000-0002-9331-0491virtual::1744-1https://orcid.org/0000-0002-5007-9613virtual::146-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000785075virtual::981-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::1744-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142433virtual::146-1ORIGINALManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdfManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdftexto completo del artículoapplication/pdf3138009https://red.uao.edu.co/bitstreams/470f2197-98c5-45d5-8a41-20e3b094c917/downloadc5d200756f9ee1e15efb6f25a55a0bdaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/cbbcd2da-65fb-4a3d-97c9-6b749e24aac0/download20b5ba22b1117f71589c7318baa2c560MD52TEXTManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdf.txtManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdf.txtExtracted texttext/plain49495https://red.uao.edu.co/bitstreams/51f80291-d9ce-4179-9e91-9d436f9532ca/downloadb0994f94df45239df2a1c21ba39a12c2MD53THUMBNAILManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdf.jpgManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdf.jpgGenerated Thumbnailimage/jpeg15698https://red.uao.edu.co/bitstreams/da297f84-724e-4936-ada4-f113a83e8fe3/download04efa487e38ddedcbae4c9d4ba9849a5MD5410614/14774oai:red.uao.edu.co:10614/147742024-04-16 10:06:16.086https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados Micromachinesopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |