Manufacturing of a transdermal patch in 3D printing

Diabetes mellitus is an endocrine disorder that affects glucose metabolism, making the body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted strong interest from researchers, as it allows minimally invasive and painless insulin administration, showing...

Full description

Autores:
Villota, Isabella
Calvo Echeverry, Paulo César
Villarreal Gómez, Luis Jesús
Fonthal Rico, Faruk
Campo Salazar, Oscar Iván
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/14774
Acceso en línea:
https://hdl.handle.net/10614/14774
https://red.uao.edu.co/
Palabra clave:
Biomedical engineering
Ingeniería biomédica
Microneedles
Transdermal drug delivery
3D printing
Finite element analysis
Rights
openAccess
License
Derechos Reservados Micromachines
id REPOUAO2_a46ec44f3e782ca01e006c4cef058acb
oai_identifier_str oai:red.uao.edu.co:10614/14774
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Manufacturing of a transdermal patch in 3D printing
title Manufacturing of a transdermal patch in 3D printing
spellingShingle Manufacturing of a transdermal patch in 3D printing
Biomedical engineering
Ingeniería biomédica
Microneedles
Transdermal drug delivery
3D printing
Finite element analysis
title_short Manufacturing of a transdermal patch in 3D printing
title_full Manufacturing of a transdermal patch in 3D printing
title_fullStr Manufacturing of a transdermal patch in 3D printing
title_full_unstemmed Manufacturing of a transdermal patch in 3D printing
title_sort Manufacturing of a transdermal patch in 3D printing
dc.creator.fl_str_mv Villota, Isabella
Calvo Echeverry, Paulo César
Villarreal Gómez, Luis Jesús
Fonthal Rico, Faruk
Campo Salazar, Oscar Iván
dc.contributor.author.none.fl_str_mv Villota, Isabella
Calvo Echeverry, Paulo César
Villarreal Gómez, Luis Jesús
Fonthal Rico, Faruk
Campo Salazar, Oscar Iván
dc.subject.armarc.eng.fl_str_mv Biomedical engineering
topic Biomedical engineering
Ingeniería biomédica
Microneedles
Transdermal drug delivery
3D printing
Finite element analysis
dc.subject.armarc.spa.fl_str_mv Ingeniería biomédica
dc.subject.proposal.eng.fl_str_mv Microneedles
Transdermal drug delivery
3D printing
Finite element analysis
description Diabetes mellitus is an endocrine disorder that affects glucose metabolism, making the body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted strong interest from researchers, as it allows minimally invasive and painless insulin administration, showing advantages over conventional delivery methods. Systems composed of microneedles (MNs) assembled in a transdermal patch provide a unique route of administration, which is innovative with promising results. This paper presents the design of a transdermal patch composed of 25 microneedles manufactured with 3D printing by stereolithography with a class 1 biocompatible resin and a printing angle of 0◦. Finite element analysis with ANSYS software is used to obtain the mechanical behavior of the microneedle (MN). The values obtained through the analysis were: a Von Misses stress of 18.057 MPa, a maximum deformation of 2.179 × 10−3, and a safety factor of 4. Following this, through a flow simulation, we find that a pressure of 1.084 Pa and a fluid velocity of 4.800 m s were necessary to ensure a volumetric flow magnitude of 4.447 × 10−5 cm3 s . Furthermore, the parameters found in this work are of great importance for the future implementation of a transdermal drug delivery device
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-10
dc.date.accessioned.none.fl_str_mv 2023-05-19T15:50:48Z
dc.date.available.none.fl_str_mv 2023-05-19T15:50:48Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.spa.fl_str_mv 2072666X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/14774
dc.identifier.instname.spa.fl_str_mv Universidad Autónoma de Occidente
dc.identifier.reponame.spa.fl_str_mv Repositorio Educativo Digital UAO
dc.identifier.repourl.spa.fl_str_mv https://red.uao.edu.co/
identifier_str_mv 2072666X
Universidad Autónoma de Occidente
Repositorio Educativo Digital UAO
url https://hdl.handle.net/10614/14774
https://red.uao.edu.co/
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 11
dc.relation.citationissue.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.cites.spa.fl_str_mv Villota, I., Calvo Echeverry, P.C., Campo Salazar, O.I., Villarreal Gómez, L.J., Fonthal Rico, F. Manufacturing of a Transdermal Patch in 3D Printing. Micromachines, 13(12), 1-11. https://hdl.handle.net/10614/14774
dc.relation.ispartofjournal.eng.fl_str_mv Micromachines
dc.relation.references.none.fl_str_mv Aldawood, F.K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021, 13, 2815
Llaguno de Mora, R.I.; Freire López, M.E.; Semanate Bautista, N.M.; Domínguez Freire, M.F.; Domínguez Freire, N.D.; Semanate Bautista, S.D. Complicaciones musculoesqueléticas de la diabetes mellitus. Rev. Cuba. Reumatol. 2019, 21, e47.
Makvandi, P.; Jamaledin, R.; Chen, G.; Baghbantaraghdari, Z.; Zare, E.N.; Di Natale, C.; Onesto, V.; Vecchione, R.; Lee, J.; Tay, F.R.; et al. Stimuli-responsive transdermal microneedle patches. Mater. Today 2021, 47, 206–222
Shingade, G.M. Review on: Recent Trend on Transdermal Drug Delivery System. J. Drug Deliv. Ther. 2012, 2, 2012
Battisti, M.; Vecchione, R.; Casale, C.; Pennacchio, F.A.; Lettera, V.; Jamaledin, R.; Profeta, M.; Di Natale, C.; Imparato, G.; Urciuolo, F.; et al. Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Front. Bioeng. Biotechnol. 2019, 7, 1–14
Economidou, S.N.; Pere, C.; Reid, A.; Uddin, M.J.; Windmill, J.; Lamprou, D.A.; Douroumis, D. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater. Sci. Eng. C 2019, 102, 743–755
Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299.
Villota, I.; Calvo, P.C.; Campo, O.I.; Fonthal, F. Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules 2022, 27, 6634
Ge, G.; Wang, Q.; Zhang, Y.; Alshareef, H.; Dong, X. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv. Funct. Mater. 2021, 31, 2107437
Janphuang, P.; Laebua, M.; Sriphung, C.; Taweewat, P.; Sirichalarmkul, A.; Sukjantha, K.; Promsawat, N.; Leuasoongnoen, P.; Suphachiaraphan, S.; Phimol, K.; et al. Polymer Based Microneedle Patch Fabricated Using Microinjection Moulding. MATEC Web Conf. 2018, 192, 01039
Sholihah, M.; Sean, W.Y. Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach. Molecules. 2021, 26, 5021.
Pettis, R.J.; Harvey, A.J. Microneedle delivery: Clinical studies and emerging medical applications. Ther. Deliv. 2012, 3, 357–371.
Giri Nandagopal, M.S.; Antony, R.; Rangabhashiyam, S.; Sreekumar, N.; Selvaraju, N. Overview of microneedle system: A third-generation transdermal drug delivery approach. Microsyst. Technol. 2014, 20, 1249–1272
dc.rights.spa.fl_str_mv Derechos Reservados Micromachines
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos Reservados Micromachines
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 11 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv MDPI
dc.publisher.place.spa.fl_str_mv Basel, Suiza
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://red.uao.edu.co/bitstreams/470f2197-98c5-45d5-8a41-20e3b094c917/download
https://red.uao.edu.co/bitstreams/cbbcd2da-65fb-4a3d-97c9-6b749e24aac0/download
https://red.uao.edu.co/bitstreams/51f80291-d9ce-4179-9e91-9d436f9532ca/download
https://red.uao.edu.co/bitstreams/da297f84-724e-4936-ada4-f113a83e8fe3/download
bitstream.checksum.fl_str_mv c5d200756f9ee1e15efb6f25a55a0bda
20b5ba22b1117f71589c7318baa2c560
b0994f94df45239df2a1c21ba39a12c2
04efa487e38ddedcbae4c9d4ba9849a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Autonoma de Occidente
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260182043066368
spelling Villota, Isabella5d30c1b3447b95a34ae75ef1a00a07caCalvo Echeverry, Paulo Césarvirtual::981-1Villarreal Gómez, Luis Jesús34e538876b608765ce1a1b92c2ad5c08Fonthal Rico, Farukvirtual::1744-1Campo Salazar, Oscar Ivánvirtual::146-12023-05-19T15:50:48Z2023-05-19T15:50:48Z2022-12-102072666Xhttps://hdl.handle.net/10614/14774Universidad Autónoma de OccidenteRepositorio Educativo Digital UAOhttps://red.uao.edu.co/Diabetes mellitus is an endocrine disorder that affects glucose metabolism, making the body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted strong interest from researchers, as it allows minimally invasive and painless insulin administration, showing advantages over conventional delivery methods. Systems composed of microneedles (MNs) assembled in a transdermal patch provide a unique route of administration, which is innovative with promising results. This paper presents the design of a transdermal patch composed of 25 microneedles manufactured with 3D printing by stereolithography with a class 1 biocompatible resin and a printing angle of 0◦. Finite element analysis with ANSYS software is used to obtain the mechanical behavior of the microneedle (MN). The values obtained through the analysis were: a Von Misses stress of 18.057 MPa, a maximum deformation of 2.179 × 10−3, and a safety factor of 4. Following this, through a flow simulation, we find that a pressure of 1.084 Pa and a fluid velocity of 4.800 m s were necessary to ensure a volumetric flow magnitude of 4.447 × 10−5 cm3 s . Furthermore, the parameters found in this work are of great importance for the future implementation of a transdermal drug delivery device 11 páginasapplication/pdfengMDPIBasel, SuizaDerechos Reservados Micromachineshttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Manufacturing of a transdermal patch in 3D printingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Biomedical engineeringIngeniería biomédicaMicroneedlesTransdermal drug delivery3D printingFinite element analysis1112113Villota, I., Calvo Echeverry, P.C., Campo Salazar, O.I., Villarreal Gómez, L.J., Fonthal Rico, F. Manufacturing of a Transdermal Patch in 3D Printing. Micromachines, 13(12), 1-11. https://hdl.handle.net/10614/14774MicromachinesAldawood, F.K.; Andar, A.; Desai, S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers 2021, 13, 2815Llaguno de Mora, R.I.; Freire López, M.E.; Semanate Bautista, N.M.; Domínguez Freire, M.F.; Domínguez Freire, N.D.; Semanate Bautista, S.D. Complicaciones musculoesqueléticas de la diabetes mellitus. Rev. Cuba. Reumatol. 2019, 21, e47.Makvandi, P.; Jamaledin, R.; Chen, G.; Baghbantaraghdari, Z.; Zare, E.N.; Di Natale, C.; Onesto, V.; Vecchione, R.; Lee, J.; Tay, F.R.; et al. Stimuli-responsive transdermal microneedle patches. Mater. Today 2021, 47, 206–222Shingade, G.M. Review on: Recent Trend on Transdermal Drug Delivery System. J. Drug Deliv. Ther. 2012, 2, 2012Battisti, M.; Vecchione, R.; Casale, C.; Pennacchio, F.A.; Lettera, V.; Jamaledin, R.; Profeta, M.; Di Natale, C.; Imparato, G.; Urciuolo, F.; et al. Non-invasive Production of Multi-Compartmental Biodegradable Polymer Microneedles for Controlled Intradermal Drug Release of Labile Molecules. Front. Bioeng. Biotechnol. 2019, 7, 1–14Economidou, S.N.; Pere, C.; Reid, A.; Uddin, M.J.; Windmill, J.; Lamprou, D.A.; Douroumis, D. 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery. Mater. Sci. Eng. C 2019, 102, 743–755Wu, M.; Zhang, Y.; Huang, H.; Li, J.; Liu, H.; Guo, Z.; Xue, L.; Liu, S.; Lei, Y. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater. Sci. Eng. C 2020, 117, 111299.Villota, I.; Calvo, P.C.; Campo, O.I.; Fonthal, F. Microneedles: One-Plane Bevel-Tipped Fabrication by 3D-Printing Processes. Molecules 2022, 27, 6634Ge, G.; Wang, Q.; Zhang, Y.; Alshareef, H.; Dong, X. 3D Printing of Hydrogels for Stretchable Ionotronic Devices. Adv. Funct. Mater. 2021, 31, 2107437Janphuang, P.; Laebua, M.; Sriphung, C.; Taweewat, P.; Sirichalarmkul, A.; Sukjantha, K.; Promsawat, N.; Leuasoongnoen, P.; Suphachiaraphan, S.; Phimol, K.; et al. Polymer Based Microneedle Patch Fabricated Using Microinjection Moulding. MATEC Web Conf. 2018, 192, 01039Sholihah, M.; Sean, W.Y. Numerical Simulation on the Dissociation, Formation, and Recovery of Gas Hydrates on Microscale Approach. Molecules. 2021, 26, 5021.Pettis, R.J.; Harvey, A.J. Microneedle delivery: Clinical studies and emerging medical applications. Ther. Deliv. 2012, 3, 357–371.Giri Nandagopal, M.S.; Antony, R.; Rangabhashiyam, S.; Sreekumar, N.; Selvaraju, N. Overview of microneedle system: A third-generation transdermal drug delivery approach. Microsyst. Technol. 2014, 20, 1249–1272Comunidad generalPublication767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::981-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1744-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::146-1a358342d-0532-401b-97fa-4986de22c9cdvirtual::146-1767bff32-1019-4cc1-a2d8-a8baf8b48240virtual::981-12bf30a66-1e41-42a5-8415-189ea7ccdfa8virtual::1744-1https://scholar.google.com/citations?user=zxVYtU0AAAAJ&hl=envirtual::1744-1https://scholar.google.com.co/citations?user=selvUiIAAAAJ&hl=envirtual::146-10000-0001-5353-6368virtual::981-10000-0002-9331-0491virtual::1744-1https://orcid.org/0000-0002-5007-9613virtual::146-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000785075virtual::981-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000895857virtual::1744-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000142433virtual::146-1ORIGINALManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdfManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdftexto completo del artículoapplication/pdf3138009https://red.uao.edu.co/bitstreams/470f2197-98c5-45d5-8a41-20e3b094c917/downloadc5d200756f9ee1e15efb6f25a55a0bdaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://red.uao.edu.co/bitstreams/cbbcd2da-65fb-4a3d-97c9-6b749e24aac0/download20b5ba22b1117f71589c7318baa2c560MD52TEXTManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdf.txtManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdf.txtExtracted texttext/plain49495https://red.uao.edu.co/bitstreams/51f80291-d9ce-4179-9e91-9d436f9532ca/downloadb0994f94df45239df2a1c21ba39a12c2MD53THUMBNAILManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdf.jpgManufacturing_ of_a_Transdermal_Patch_in_3D_Printing.pdf.jpgGenerated Thumbnailimage/jpeg15698https://red.uao.edu.co/bitstreams/da297f84-724e-4936-ada4-f113a83e8fe3/download04efa487e38ddedcbae4c9d4ba9849a5MD5410614/14774oai:red.uao.edu.co:10614/147742024-04-16 10:06:16.086https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos Reservados Micromachinesopen.accesshttps://red.uao.edu.coRepositorio Digital Universidad Autonoma de Occidenterepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K