Optimal operation of grid-connected microgrids with photovoltaic generation and storage
Un motivador clave para un despliegue más amplio de microrredes (pequeñas redes eléctricas con generación distribuida conectada que operan conectadas a niveles de baja y media tensión o en modo aislado) es lograr la descentralización de la generación. Este objetivo se debe a que las microrredes util...
- Autores:
-
Jamaica-Obregón, Jairo
Moreno-Chuquen, Ricardo
Florez-Cediel, Oscar David
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- eng
- OAI Identifier:
- oai:red.uao.edu.co:10614/12921
- Acceso en línea:
- https://hdl.handle.net/10614/12921
- Palabra clave:
- Photovoltaic power generation
Solar energy
Electric networks
Electric power distribution
Generadores de energía fotovoltaica
Redes eléctricas
Distribución de energía eléctrica
Medicina-Aparatos e instrumentos
Distributed generation
Microgrids
Optimal power flow
Photovoltaic
Storage
Tariffs
- Rights
- openAccess
- License
- Copyright © 2021 Praise Worthy Prize S.r.l. - All rights reserved
id |
REPOUAO2_a27376a36d8eaa20148ab772025bba7e |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/12921 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Optimal operation of grid-connected microgrids with photovoltaic generation and storage |
title |
Optimal operation of grid-connected microgrids with photovoltaic generation and storage |
spellingShingle |
Optimal operation of grid-connected microgrids with photovoltaic generation and storage Photovoltaic power generation Solar energy Electric networks Electric power distribution Generadores de energía fotovoltaica Redes eléctricas Distribución de energía eléctrica Medicina-Aparatos e instrumentos Distributed generation Microgrids Optimal power flow Photovoltaic Storage Tariffs |
title_short |
Optimal operation of grid-connected microgrids with photovoltaic generation and storage |
title_full |
Optimal operation of grid-connected microgrids with photovoltaic generation and storage |
title_fullStr |
Optimal operation of grid-connected microgrids with photovoltaic generation and storage |
title_full_unstemmed |
Optimal operation of grid-connected microgrids with photovoltaic generation and storage |
title_sort |
Optimal operation of grid-connected microgrids with photovoltaic generation and storage |
dc.creator.fl_str_mv |
Jamaica-Obregón, Jairo Moreno-Chuquen, Ricardo Florez-Cediel, Oscar David |
dc.contributor.author.none.fl_str_mv |
Jamaica-Obregón, Jairo Moreno-Chuquen, Ricardo Florez-Cediel, Oscar David |
dc.subject.armarc.eng.fl_str_mv |
Photovoltaic power generation Solar energy Electric networks Electric power distribution |
topic |
Photovoltaic power generation Solar energy Electric networks Electric power distribution Generadores de energía fotovoltaica Redes eléctricas Distribución de energía eléctrica Medicina-Aparatos e instrumentos Distributed generation Microgrids Optimal power flow Photovoltaic Storage Tariffs |
dc.subject.armarc.spa.fl_str_mv |
Generadores de energía fotovoltaica Redes eléctricas Distribución de energía eléctrica Medicina-Aparatos e instrumentos |
dc.subject.proposal.eng.fl_str_mv |
Distributed generation Microgrids Optimal power flow Photovoltaic Storage Tariffs |
description |
Un motivador clave para un despliegue más amplio de microrredes (pequeñas redes eléctricas con generación distribuida conectada que operan conectadas a niveles de baja y media tensión o en modo aislado) es lograr la descentralización de la generación. Este objetivo se debe a que las microrredes utilizan fuentes de energía renovables y sistemas de almacenamiento de energía. Sin embargo, la operación de las microrredes representa varios desafíos para las microrredes conectadas a la red sobre los intercambios de energía con la red de distribución. Si la operación se realiza en condiciones óptimas, existen beneficios para la inversión en microrredes. En este trabajo se propone una formulación detallada para operar microrredes con sistemas fotovoltaicos y almacenamiento. El modelo se puede utilizar con múltiples microrredes interconectadas considerando los precios y tarifas de la electricidad. El modelo corresponde a un enfoque de flujo de energía óptimo para microrredes considerando algunos sistemas de almacenamiento de energía. El modelo matemático considera explícitamente las tarifas eléctricas. Los resultados ilustrativos indican el funcionamiento óptimo de las microrredes considerando una curva de carga; específicamente, la microrred está diseñada para operar en diferentes circunstancias operativas. Un caso incluye múltiples microrredes interconectadas a diferentes precios de electricidad. Las tarifas eléctricas determinan los intercambios de energía entre la red de distribución y la microrred. Tales conocimientos sobre el funcionamiento óptimo de las microrredes proporcionan una amplia gama de aplicaciones, especialmente en el funcionamiento y la viabilidad de proyectos. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-04-05T15:48:21Z |
dc.date.available.none.fl_str_mv |
2021-04-05T15:48:21Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
18276660 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/12921 |
identifier_str_mv |
18276660 |
url |
https://hdl.handle.net/10614/12921 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.citationendpage.spa.fl_str_mv |
59 |
dc.relation.citationissue.spa.fl_str_mv |
Número 1 |
dc.relation.citationstartpage.spa.fl_str_mv |
50 |
dc.relation.citationvolume.spa.fl_str_mv |
Volumen 16 |
dc.relation.cites.spa.fl_str_mv |
Jamaica-Obregón, Jairo; Moreno-Chuquen, Ricardo y Flórez-Cediel, Oscar. Optimal Operation of Grid-Connected Microgrids with Photovoltaic Generation and Storage. En: Revista Internacional de Ingeniería Eléctrica (IREE), volumen 16, número 1 (Enero-Febrero, 2021), páginas 50-59. ISSN 1827-6660 |
dc.relation.ispartofjournal.eng.fl_str_mv |
International Review of Electrical Engineering (I.R.E.E.) |
dc.relation.references.spa.fl_str_mv |
[1] D. E. Olivares et al., Trends in Microgrid Control, IEEE Transactions on Smart Grid, vol. 5, n. 4, pp. 1905-1919, July 2014. doi. https://doi.org/10.1109/TSG.2013.2295514 [2] Pinnarelli, A., Barone, G., Brusco, G., Burgio, A., Menniti, D., Sorrentino, N., A power management and control strategy with grid-ancillary services for a microgrid based on DC Bus, (2014) International Review of Electrical Engineering (IREE), 9 (4), pp. 792-802. doi: https://doi.org/10.15866/iree.v9i4.2038 [3] Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132. doi: https://doi.org/10.15866/iree.v14i2.16331 [4] Q. Fu, A. Hamidi, A. Nasiri, V. Bhavaraju, S. B. Krstic and P. Theisen, The Role of Energy Storage in a Microgrid Concept: Examining the opportunities and promise of microgrids, IEEE Electrification Magazine, vol. 1, n. 2, Dec. 2013, pp. 21-29. doi: https://doi.org10.1109/MELE.2013.2294736 [5] F. A. Ramírez, E. R. Trujillo and J. A. Mora, Implementation of an optimal power flow to reduce losses and improve the profiles voltages in electrical microgrids with distributed generation, 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), November 11-13, 2015, Tegucigalpa, pp. 1-6. doi: https://doi.org/10.1109/CONCAPAN.2015.7428496 [6] Y. Levron, J. M. Guerrero and Y. Beck, Optimal Power Flow in Microgrids With Energy Storage, IEEE Transactions on Power Systems, vol. 28, n. 3, Aug. 2013, pp. 3226-3234. doi: https://doi.org/10.1109/TPWRS.2013.2245925 [7] E. Sortomme and M. A. El-Sharkawi, Optimal Power Flow for a System of Microgrids with Controllable Loads and Battery Storage, 2009 IEEE/PES Power Systems Conference and Exposition, March 15-18, 2009, Seattle, WA, pp. 1-5. doi: https://doi.org/10.1109/PSCE.2009.4840050 [8] V. Salehi, A. Mohamed and O. A. Mohammed, Implementation of real-time optimal power flow management system on hybrid AC/DC smart microgrid, 2012 IEEE Industry Applications Society Annual Meeting, October 7-11, 2012, Las Vegas, NV, pp. 1-8. doi: https://doi.org/10.1109/IAS.2012.6374113 [9] A. A. Eajal, E. F. El-Saadany and K. Ponnambalam, Optimal power flow for converter-dominated AC/DC hybrid microgrids, 2017 IEEE International Conference on Industrial Technology (ICIT), March 22-25, 2017, Toronto, ON, pp. 603-608. doi: https://doi.org/10.1109/ICIT.2017.7915427 [10] W. Shi, X. Xie, C. Chu and R. Gadh, Distributed Optimal Energy Management in Microgrids, IEEE Transactions on Smart Grid, vol. 6, n. 3, pp. 1137-1146, May 2015. doi: https://doi.org/10.1109/TSG.2014.2373150 [11] E. Dall'Anese, H. Zhu and G. B. Giannakis, Distributed Optimal Power Flow for Smart Microgrids, IEEE Transactions on Smart Grid, vol. 4, n. 3, pp. 1464-1475, Sept. 2013. doi: https://doi.org/10.1109/TSG.2013.2248175 [12] Obando-Ceron, J. S., Moreno-Chuquen, R., Impacts of Demand Response Under Wind Power Uncertainty in NetworkConstrained Electricity Markets. In IEEE 2018 IEEE ANDESCON, pp. 1-5. doi: https://doi.org/10.1109/ANDESCON.2018.8564707 [13] Obando-Ceron, J. S., Moreno-Chuquen, R., Quantification of Operating Reserves with Wind Power in Day-Ahead Dispatching. In IEEE 2018 IEEE ANDESCON, pp. 1-5. doi: https://doi.org/10.1109/ANDESCON.2018.8564589 [14] B. V. Solanki, K. Bhattacharya and C. A. Cañizares, Integrated energy management system for isolated microgrids, 2016 Power Systems Computation Conference (PSCC), June 20-24, 2016, Genoa, pp. 1-7. doi: https://doi.org/10.1109/PSCC.2016.7540832 [15] S. You, Y. Zong, H. W. Bindner, J. Lin, Y. Cai and Y. Song, Optimal dispatch of battery storage in an industrial microgrid with a mixed portfolio of renewables, 2014 International Conference on Power System Technology, October 22-24, 2014, Chengdu, pp. 3378-3383. doi: https://doi.org/10.1109/POWERCON.2014.6993971 [16] M. Göransson, N. Larsson, L. A. Tuan and D. Steen, Cost-benefit analysis of battery storage investment for microgrid of Chalmers university campus using μ-OPF framework, 2017 IEEE Manchester PowerTech, June 18-22, 2017, Manchester, pp. 1-6. doi: https://doi.org/10.1109/PTC.2017.7981160 [17] H. Laaksonen and K. Kauhaniemi, Synchronized re-connection of island operated LV microgrid back to utility grid, 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), October 11-13, 2010, Gothenberg, pp. 1-8. doi: https:///doi.org/10.1109/ISGTEUROPE.2010.5638911 [18] Hassoune, A., Khafallah, M., Mesbahi, A., Benaaouinate, L., ouragba, T., Control Strategies of a Smart Topology of EVs Charging Station Based Grid Tied RES-Battery, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 385-396. doi: https://doi.org/10.15866/iree.v13i5.15520 [19] Bhargavi, K., Jayalakshmi, N., Power Management of Heterogeneous Autonomous DC Microgrid System with EVs Using Modified SoC Reference Based DC Bus Voltage Control, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 404-414. doi: https://doi.org/10.15866/iree.v13i5.15725 [20] Zerrahn, A., Schill, W. P., Kemfert, C. On the economics of electrical storage for variable renewable energy sources. European Economic Review (2018), 108, 259-279. doi: https://doi.org/10.1016/j.euroecorev.2018.07.004 [21] Kerdphol, T., Qudaih, Y., Hongesombut, K., Watanabe, M., Mitani, Y., Intelligent Determination of a Battery Energy Storage System Size and Location Based on RBF Neural Networks for Microgrids, (2016) International Review of Electrical Engineering (IREE), 11 (1), pp. 78-87. doi: https://doi.org/10.15866/iree.v11i1.7718 [22] Kerdphol, T., Qudaih, Y., Mitani, Y., Optimal Battery Energy Storage Size Using Particle Swarm Optimization for Microgrid System, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 277-285. doi: https://doi.org/10.15866/iree.v10i2.5350 [23] Elmahni, L., Bouhouch, L., Alaoui, R., Moudden, A., Modeling and Control of a Hybrid Microgrid by Multi-Agent System, (2015) International Review of Electrical Engineering (IREE), 10 (1), pp. 145-153. doi: https://doi.org/10.15866/iree.v10i1.5176 [24] Rostom, D., Hasanien, H., El Amary, N., Abdelaziz, A., Adaptive PI Control Strategy for Microgrid Performance Enhancement, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 82-92. doi: https://doi.org/10.15866/irecon.v7i3.17327 [25] Panjaitan, S., Sanjaya, B., Kurnianto, R., Fuzzy-IP Controller for Voltage Regulation in a Stand-Alone Microgrid System, (2018) International Review of Automatic Control (IREACO), 11 (3), pp. 143-150. doi: https://doi.org/10.15866/ireaco.v11i3.13849 [26] Mumtaz, F., Bayram, I. S., Planning, operation, and protection of microgrids: An overview, (2017) Energy Procedia, 107, 94-100. doi: https://doi.org/10.1016/j.egypro.2016.12.137 [27] Laaksonen, H., Protection Scheme for Island Operated MediumVoltage Microgrid, (2015) International Review of Electrical Engineering (IREE), 10 (4), pp. 510-519. doi: https://doi.org/10.15866/iree.v10i4.7131 [28] E. Sortomme, S. S. Venkata, J. Mitra, Microgrid Protection Using Communication-Assisted Digital Relays, IEEE Transactions on Power Delivery, 25, October 2010, pp. 2789– 2796. doi: http://dx.doi.org/10.1109/tpwrd.2009.2035810 [29] Viitanen, J., Amogpai, A., Puolakka, M., Halonen, L., Photovoltaic Production Possibilities and its Utilization in Office Buildings in Finland, (2019) International Journal on Engineering Applications (IREA), 7 (1), pp. 9-16. doi: https://doi.org/10.15866/irea.v7i1.17186 [30] Attia, H., Artificial Neural Networks Based Maximum Power Point Tracking Photovoltaic System for Remote Park LED Lighting Applications, (2018) International Review on Modelling and Simulations (IREMOS), 11 (6), pp. 396-405. doi: https://doi.org/10.15866/iremos.v11i6.16165 [31] Omar, A., Hasanien, H., Al-Durra, A., El-Hameed, W., Water Cycle Algorithm for Parameters Estimation of Solar Photovoltaic Model, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 117-125. doi: https://doi.org/10.15866/irecon.v7i3.16187 [32] Moreno, R., Detailed modelling and simulation of photovoltaic systems, In 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1-5. doi: https://doi.org/10.1109/PEPQA.2017.7981689 [33] Bahri, H., Aboulfatah, M., Guisser, M., Abdelmounim, E., El Malah, M., Sliding Mode Control of a Three Phase Grid Connected Photovoltaic System with a Nonlinear Load, (2018) International Review of Automatic Control (IREACO), 11 (6), pp. 293-303. doi: https://doi.org/10.15866/ireaco.v11i6.11686 [34] Bouali, C., Marouani, R., Schulte, H., mami, A., Photovoltaic System Enhancing Power Quality of Electrical Network, (2019) International Journal on Energy Conversion (IRECON), 7 (1), pp. 1-11. doi: https://doi.org/10.15866/irecon.v7i1.16085 [35] Adam, K., Miyauchi, H., Optimization of a Photovoltaic Hybrid Energy Storage System Using Energy Storage Peak Shaving, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 8-18. doi: https://doi.org/10.15866/iree.v14i1.16162 [36] J. Patiño, J. Tello, J. Hernández, C. A. Arredondo and G. Gordillo, Development and Implementation of a Hybrid Photovoltaic System for Energy Back-up, (2010), 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 2010, pp. 002338-002341. doi: https://doi.org/10.1109/PVSC.2010.5614433 [37] J. C. Lopes, T. Sousa, R. da Silva Benedito, F. B. M. Trigoso and D. O. Garzón Medina, Application of Battery Energy Storage System in Photovoltaic Power Plants Connected to the Distribution Grid, 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Gramado, Brazil, 2019, pp. 1-6. doi: https://doi.org/10.1109/ISGT-LA.2019.8895431 [38] H. J. Khasawneh, M. B. Mustafa, A. Al-Salaymeh and M. Saidan, Techno-Economic Evaluation of On-Grid Battery Energy Storage System in Jordan using Homer Pro, 2019 AEIT International Annual Conference (AEIT), Florence, Italy, 2019, pp. 1-6. doi: https://doi.org/10.23919/AEIT.2019.8893416 [39] N. Zhou, N. Liu and J. Zhang, Multi-scenarios PV-based microgrids investment decision considering feed-in-tariff regulation, 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, 2016, pp. 2311-2316. doi: https://doi.org/10.1109/ICIEA.2016.7603977 [40] Khemmook, P., Khomfoi, S., Transient Stability Improvement Using Coordinated Control of Solar PVs and Solid State Transformers, (2018) International Review of Electrical Engineering (IREE), 13 (6), pp. 486-494. doi: https://doi.org/10.15866/iree.v13i6.15869 [41] R. D., Zimmerman, C. E., Murillo-Sánchez., R. J. Thomas., MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education, (2010) IEEE Transactions on Power Systems, 26(1), 12-19. doi: |
dc.rights.eng.fl_str_mv |
Copyright © 2021 Praise Worthy Prize S.r.l. - All rights reserved |
dc.rights.spa.fl_str_mv |
Energía solar |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright © 2021 Praise Worthy Prize S.r.l. - All rights reserved Energía solar http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
10 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/a0eeb6c5-276f-451a-8247-7b5d7e259add/download https://dspace7-uao.metacatalogo.com/bitstreams/0a535327-e5b8-4137-a249-c207eb42f92d/download https://dspace7-uao.metacatalogo.com/bitstreams/28f93a09-14c3-4c03-8776-0c6a2768020e/download https://dspace7-uao.metacatalogo.com/bitstreams/05dabd25-1bee-44ec-9c95-0f00d46b1296/download |
bitstream.checksum.fl_str_mv |
08c49bad2f431bacabf91f6e3faedc20 20b5ba22b1117f71589c7318baa2c560 d2c181524f2389f0d89c24706a6517b1 2fc5d41d6dec9e3370c7c27310f00f86 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814259909949128704 |
spelling |
Jamaica-Obregón, Jairo0cfafd7cc3ca46e69657a608debd3022Moreno-Chuquen, Ricardo3529d64b6cb8f4b63523eb51d5054f92Florez-Cediel, Oscar David7ef7c5be460f161b9245fdc99f03464b2021-04-05T15:48:21Z2021-04-05T15:48:21Z202118276660https://hdl.handle.net/10614/12921Un motivador clave para un despliegue más amplio de microrredes (pequeñas redes eléctricas con generación distribuida conectada que operan conectadas a niveles de baja y media tensión o en modo aislado) es lograr la descentralización de la generación. Este objetivo se debe a que las microrredes utilizan fuentes de energía renovables y sistemas de almacenamiento de energía. Sin embargo, la operación de las microrredes representa varios desafíos para las microrredes conectadas a la red sobre los intercambios de energía con la red de distribución. Si la operación se realiza en condiciones óptimas, existen beneficios para la inversión en microrredes. En este trabajo se propone una formulación detallada para operar microrredes con sistemas fotovoltaicos y almacenamiento. El modelo se puede utilizar con múltiples microrredes interconectadas considerando los precios y tarifas de la electricidad. El modelo corresponde a un enfoque de flujo de energía óptimo para microrredes considerando algunos sistemas de almacenamiento de energía. El modelo matemático considera explícitamente las tarifas eléctricas. Los resultados ilustrativos indican el funcionamiento óptimo de las microrredes considerando una curva de carga; específicamente, la microrred está diseñada para operar en diferentes circunstancias operativas. Un caso incluye múltiples microrredes interconectadas a diferentes precios de electricidad. Las tarifas eléctricas determinan los intercambios de energía entre la red de distribución y la microrred. Tales conocimientos sobre el funcionamiento óptimo de las microrredes proporcionan una amplia gama de aplicaciones, especialmente en el funcionamiento y la viabilidad de proyectos.A key motivator for wider deployment of microgrids (small electric networks with distributed generation connected that operate either connected at low and medium voltage levels or isolated mode) is to bring about the decentralization of the generation. This goal is because microgrids use renewable power sources and storage energy systems. However, the microgrids operation represents various challenges for grid-connected microgrids about the power interchanges with the distribution network. If the operation is performed under optimal conditions, there are benefits for microgrid investment. This paper proposes a detailed formulation to operate microgrids with photovoltaic systems and storage. The model can be used with multiple microgrids interconnected considering electricity prices and tariffs. The model corresponds to an optimal power flow approach for microgrids considering some energy storage systems. The mathematical model considers explicitly electricity tariffs. Illustrative results indicate the optimal operation of microgrids considering a load curve; specifically, the microgrid is designed to operate at different operational circumstances. A case includes multiple microgrids interconnected at different electricity prices. The electricity tariffs determine the power interchanges between the distribution network and the microgrid. Such insights about the optimal operation of microgrids provide a wide range of applications, particularly in operation and feasibility of projects.10 páginasapplication/pdfengCopyright © 2021 Praise Worthy Prize S.r.l. - All rights reservedEnergía solarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Optimal operation of grid-connected microgrids with photovoltaic generation and storageArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Photovoltaic power generationSolar energyElectric networksElectric power distributionGeneradores de energía fotovoltaicaRedes eléctricasDistribución de energía eléctricaMedicina-Aparatos e instrumentosDistributed generationMicrogridsOptimal power flowPhotovoltaicStorageTariffs59Número 150Volumen 16Jamaica-Obregón, Jairo; Moreno-Chuquen, Ricardo y Flórez-Cediel, Oscar. Optimal Operation of Grid-Connected Microgrids with Photovoltaic Generation and Storage. En: Revista Internacional de Ingeniería Eléctrica (IREE), volumen 16, número 1 (Enero-Febrero, 2021), páginas 50-59. ISSN 1827-6660International Review of Electrical Engineering (I.R.E.E.)[1] D. E. Olivares et al., Trends in Microgrid Control, IEEE Transactions on Smart Grid, vol. 5, n. 4, pp. 1905-1919, July 2014. doi. https://doi.org/10.1109/TSG.2013.2295514[2] Pinnarelli, A., Barone, G., Brusco, G., Burgio, A., Menniti, D., Sorrentino, N., A power management and control strategy with grid-ancillary services for a microgrid based on DC Bus, (2014) International Review of Electrical Engineering (IREE), 9 (4), pp. 792-802. doi: https://doi.org/10.15866/iree.v9i4.2038[3] Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132. doi: https://doi.org/10.15866/iree.v14i2.16331[4] Q. Fu, A. Hamidi, A. Nasiri, V. Bhavaraju, S. B. Krstic and P. Theisen, The Role of Energy Storage in a Microgrid Concept: Examining the opportunities and promise of microgrids, IEEE Electrification Magazine, vol. 1, n. 2, Dec. 2013, pp. 21-29. doi: https://doi.org10.1109/MELE.2013.2294736[5] F. A. Ramírez, E. R. Trujillo and J. A. Mora, Implementation of an optimal power flow to reduce losses and improve the profiles voltages in electrical microgrids with distributed generation, 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), November 11-13, 2015, Tegucigalpa, pp. 1-6. doi: https://doi.org/10.1109/CONCAPAN.2015.7428496[6] Y. Levron, J. M. Guerrero and Y. Beck, Optimal Power Flow in Microgrids With Energy Storage, IEEE Transactions on Power Systems, vol. 28, n. 3, Aug. 2013, pp. 3226-3234. doi: https://doi.org/10.1109/TPWRS.2013.2245925[7] E. Sortomme and M. A. El-Sharkawi, Optimal Power Flow for a System of Microgrids with Controllable Loads and Battery Storage, 2009 IEEE/PES Power Systems Conference and Exposition, March 15-18, 2009, Seattle, WA, pp. 1-5. doi: https://doi.org/10.1109/PSCE.2009.4840050[8] V. Salehi, A. Mohamed and O. A. Mohammed, Implementation of real-time optimal power flow management system on hybrid AC/DC smart microgrid, 2012 IEEE Industry Applications Society Annual Meeting, October 7-11, 2012, Las Vegas, NV, pp. 1-8. doi: https://doi.org/10.1109/IAS.2012.6374113[9] A. A. Eajal, E. F. El-Saadany and K. Ponnambalam, Optimal power flow for converter-dominated AC/DC hybrid microgrids, 2017 IEEE International Conference on Industrial Technology (ICIT), March 22-25, 2017, Toronto, ON, pp. 603-608. doi: https://doi.org/10.1109/ICIT.2017.7915427[10] W. Shi, X. Xie, C. Chu and R. Gadh, Distributed Optimal Energy Management in Microgrids, IEEE Transactions on Smart Grid, vol. 6, n. 3, pp. 1137-1146, May 2015. doi: https://doi.org/10.1109/TSG.2014.2373150[11] E. Dall'Anese, H. Zhu and G. B. Giannakis, Distributed Optimal Power Flow for Smart Microgrids, IEEE Transactions on Smart Grid, vol. 4, n. 3, pp. 1464-1475, Sept. 2013. doi: https://doi.org/10.1109/TSG.2013.2248175[12] Obando-Ceron, J. S., Moreno-Chuquen, R., Impacts of Demand Response Under Wind Power Uncertainty in NetworkConstrained Electricity Markets. In IEEE 2018 IEEE ANDESCON, pp. 1-5. doi: https://doi.org/10.1109/ANDESCON.2018.8564707[13] Obando-Ceron, J. S., Moreno-Chuquen, R., Quantification of Operating Reserves with Wind Power in Day-Ahead Dispatching. In IEEE 2018 IEEE ANDESCON, pp. 1-5. doi: https://doi.org/10.1109/ANDESCON.2018.8564589[14] B. V. Solanki, K. Bhattacharya and C. A. Cañizares, Integrated energy management system for isolated microgrids, 2016 Power Systems Computation Conference (PSCC), June 20-24, 2016, Genoa, pp. 1-7. doi: https://doi.org/10.1109/PSCC.2016.7540832[15] S. You, Y. Zong, H. W. Bindner, J. Lin, Y. Cai and Y. Song, Optimal dispatch of battery storage in an industrial microgrid with a mixed portfolio of renewables, 2014 International Conference on Power System Technology, October 22-24, 2014, Chengdu, pp. 3378-3383. doi: https://doi.org/10.1109/POWERCON.2014.6993971[16] M. Göransson, N. Larsson, L. A. Tuan and D. Steen, Cost-benefit analysis of battery storage investment for microgrid of Chalmers university campus using μ-OPF framework, 2017 IEEE Manchester PowerTech, June 18-22, 2017, Manchester, pp. 1-6. doi: https://doi.org/10.1109/PTC.2017.7981160[17] H. Laaksonen and K. Kauhaniemi, Synchronized re-connection of island operated LV microgrid back to utility grid, 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), October 11-13, 2010, Gothenberg, pp. 1-8. doi: https:///doi.org/10.1109/ISGTEUROPE.2010.5638911[18] Hassoune, A., Khafallah, M., Mesbahi, A., Benaaouinate, L., ouragba, T., Control Strategies of a Smart Topology of EVs Charging Station Based Grid Tied RES-Battery, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 385-396. doi: https://doi.org/10.15866/iree.v13i5.15520[19] Bhargavi, K., Jayalakshmi, N., Power Management of Heterogeneous Autonomous DC Microgrid System with EVs Using Modified SoC Reference Based DC Bus Voltage Control, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 404-414. doi: https://doi.org/10.15866/iree.v13i5.15725[20] Zerrahn, A., Schill, W. P., Kemfert, C. On the economics of electrical storage for variable renewable energy sources. European Economic Review (2018), 108, 259-279. doi: https://doi.org/10.1016/j.euroecorev.2018.07.004[21] Kerdphol, T., Qudaih, Y., Hongesombut, K., Watanabe, M., Mitani, Y., Intelligent Determination of a Battery Energy Storage System Size and Location Based on RBF Neural Networks for Microgrids, (2016) International Review of Electrical Engineering (IREE), 11 (1), pp. 78-87. doi: https://doi.org/10.15866/iree.v11i1.7718[22] Kerdphol, T., Qudaih, Y., Mitani, Y., Optimal Battery Energy Storage Size Using Particle Swarm Optimization for Microgrid System, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 277-285. doi: https://doi.org/10.15866/iree.v10i2.5350[23] Elmahni, L., Bouhouch, L., Alaoui, R., Moudden, A., Modeling and Control of a Hybrid Microgrid by Multi-Agent System, (2015) International Review of Electrical Engineering (IREE), 10 (1), pp. 145-153. doi: https://doi.org/10.15866/iree.v10i1.5176[24] Rostom, D., Hasanien, H., El Amary, N., Abdelaziz, A., Adaptive PI Control Strategy for Microgrid Performance Enhancement, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 82-92. doi: https://doi.org/10.15866/irecon.v7i3.17327[25] Panjaitan, S., Sanjaya, B., Kurnianto, R., Fuzzy-IP Controller for Voltage Regulation in a Stand-Alone Microgrid System, (2018) International Review of Automatic Control (IREACO), 11 (3), pp. 143-150. doi: https://doi.org/10.15866/ireaco.v11i3.13849[26] Mumtaz, F., Bayram, I. S., Planning, operation, and protection of microgrids: An overview, (2017) Energy Procedia, 107, 94-100. doi: https://doi.org/10.1016/j.egypro.2016.12.137[27] Laaksonen, H., Protection Scheme for Island Operated MediumVoltage Microgrid, (2015) International Review of Electrical Engineering (IREE), 10 (4), pp. 510-519. doi: https://doi.org/10.15866/iree.v10i4.7131[28] E. Sortomme, S. S. Venkata, J. Mitra, Microgrid Protection Using Communication-Assisted Digital Relays, IEEE Transactions on Power Delivery, 25, October 2010, pp. 2789– 2796. doi: http://dx.doi.org/10.1109/tpwrd.2009.2035810[29] Viitanen, J., Amogpai, A., Puolakka, M., Halonen, L., Photovoltaic Production Possibilities and its Utilization in Office Buildings in Finland, (2019) International Journal on Engineering Applications (IREA), 7 (1), pp. 9-16. doi: https://doi.org/10.15866/irea.v7i1.17186[30] Attia, H., Artificial Neural Networks Based Maximum Power Point Tracking Photovoltaic System for Remote Park LED Lighting Applications, (2018) International Review on Modelling and Simulations (IREMOS), 11 (6), pp. 396-405. doi: https://doi.org/10.15866/iremos.v11i6.16165[31] Omar, A., Hasanien, H., Al-Durra, A., El-Hameed, W., Water Cycle Algorithm for Parameters Estimation of Solar Photovoltaic Model, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 117-125. doi: https://doi.org/10.15866/irecon.v7i3.16187[32] Moreno, R., Detailed modelling and simulation of photovoltaic systems, In 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1-5. doi: https://doi.org/10.1109/PEPQA.2017.7981689[33] Bahri, H., Aboulfatah, M., Guisser, M., Abdelmounim, E., El Malah, M., Sliding Mode Control of a Three Phase Grid Connected Photovoltaic System with a Nonlinear Load, (2018) International Review of Automatic Control (IREACO), 11 (6), pp. 293-303. doi: https://doi.org/10.15866/ireaco.v11i6.11686[34] Bouali, C., Marouani, R., Schulte, H., mami, A., Photovoltaic System Enhancing Power Quality of Electrical Network, (2019) International Journal on Energy Conversion (IRECON), 7 (1), pp. 1-11. doi: https://doi.org/10.15866/irecon.v7i1.16085[35] Adam, K., Miyauchi, H., Optimization of a Photovoltaic Hybrid Energy Storage System Using Energy Storage Peak Shaving, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 8-18. doi: https://doi.org/10.15866/iree.v14i1.16162[36] J. Patiño, J. Tello, J. Hernández, C. A. Arredondo and G. Gordillo, Development and Implementation of a Hybrid Photovoltaic System for Energy Back-up, (2010), 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 2010, pp. 002338-002341. doi: https://doi.org/10.1109/PVSC.2010.5614433[37] J. C. Lopes, T. Sousa, R. da Silva Benedito, F. B. M. Trigoso and D. O. Garzón Medina, Application of Battery Energy Storage System in Photovoltaic Power Plants Connected to the Distribution Grid, 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Gramado, Brazil, 2019, pp. 1-6. doi: https://doi.org/10.1109/ISGT-LA.2019.8895431[38] H. J. Khasawneh, M. B. Mustafa, A. Al-Salaymeh and M. Saidan, Techno-Economic Evaluation of On-Grid Battery Energy Storage System in Jordan using Homer Pro, 2019 AEIT International Annual Conference (AEIT), Florence, Italy, 2019, pp. 1-6. doi: https://doi.org/10.23919/AEIT.2019.8893416[39] N. Zhou, N. Liu and J. Zhang, Multi-scenarios PV-based microgrids investment decision considering feed-in-tariff regulation, 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, 2016, pp. 2311-2316. doi: https://doi.org/10.1109/ICIEA.2016.7603977[40] Khemmook, P., Khomfoi, S., Transient Stability Improvement Using Coordinated Control of Solar PVs and Solid State Transformers, (2018) International Review of Electrical Engineering (IREE), 13 (6), pp. 486-494. doi: https://doi.org/10.15866/iree.v13i6.15869[41] R. D., Zimmerman, C. E., Murillo-Sánchez., R. J. Thomas., MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education, (2010) IEEE Transactions on Power Systems, 26(1), 12-19. doi:Comunidad universitaria en generalPublicationORIGINALA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdfA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdfTexto completo del artículoapplication/pdf487425https://dspace7-uao.metacatalogo.com/bitstreams/a0eeb6c5-276f-451a-8247-7b5d7e259add/download08c49bad2f431bacabf91f6e3faedc20MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/0a535327-e5b8-4137-a249-c207eb42f92d/download20b5ba22b1117f71589c7318baa2c560MD52TEXTA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdf.txtA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdf.txtExtracted texttext/plain39988https://dspace7-uao.metacatalogo.com/bitstreams/28f93a09-14c3-4c03-8776-0c6a2768020e/downloadd2c181524f2389f0d89c24706a6517b1MD53THUMBNAILA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdf.jpgA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdf.jpgGenerated Thumbnailimage/jpeg15256https://dspace7-uao.metacatalogo.com/bitstreams/05dabd25-1bee-44ec-9c95-0f00d46b1296/download2fc5d41d6dec9e3370c7c27310f00f86MD5410614/12921oai:dspace7-uao.metacatalogo.com:10614/129212024-01-19 16:10:26.968open.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |