Optimal operation of grid-connected microgrids with photovoltaic generation and storage

Un motivador clave para un despliegue más amplio de microrredes (pequeñas redes eléctricas con generación distribuida conectada que operan conectadas a niveles de baja y media tensión o en modo aislado) es lograr la descentralización de la generación. Este objetivo se debe a que las microrredes util...

Full description

Autores:
Jamaica-Obregón, Jairo
Moreno-Chuquen, Ricardo
Florez-Cediel, Oscar David
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
eng
OAI Identifier:
oai:red.uao.edu.co:10614/12921
Acceso en línea:
https://hdl.handle.net/10614/12921
Palabra clave:
Photovoltaic power generation
Solar energy
Electric networks
Electric power distribution
Generadores de energía fotovoltaica
Redes eléctricas
Distribución de energía eléctrica
Medicina-Aparatos e instrumentos
Distributed generation
Microgrids
Optimal power flow
Photovoltaic
Storage
Tariffs
Rights
openAccess
License
Copyright © 2021 Praise Worthy Prize S.r.l. - All rights reserved
id REPOUAO2_a27376a36d8eaa20148ab772025bba7e
oai_identifier_str oai:red.uao.edu.co:10614/12921
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Optimal operation of grid-connected microgrids with photovoltaic generation and storage
title Optimal operation of grid-connected microgrids with photovoltaic generation and storage
spellingShingle Optimal operation of grid-connected microgrids with photovoltaic generation and storage
Photovoltaic power generation
Solar energy
Electric networks
Electric power distribution
Generadores de energía fotovoltaica
Redes eléctricas
Distribución de energía eléctrica
Medicina-Aparatos e instrumentos
Distributed generation
Microgrids
Optimal power flow
Photovoltaic
Storage
Tariffs
title_short Optimal operation of grid-connected microgrids with photovoltaic generation and storage
title_full Optimal operation of grid-connected microgrids with photovoltaic generation and storage
title_fullStr Optimal operation of grid-connected microgrids with photovoltaic generation and storage
title_full_unstemmed Optimal operation of grid-connected microgrids with photovoltaic generation and storage
title_sort Optimal operation of grid-connected microgrids with photovoltaic generation and storage
dc.creator.fl_str_mv Jamaica-Obregón, Jairo
Moreno-Chuquen, Ricardo
Florez-Cediel, Oscar David
dc.contributor.author.none.fl_str_mv Jamaica-Obregón, Jairo
Moreno-Chuquen, Ricardo
Florez-Cediel, Oscar David
dc.subject.armarc.eng.fl_str_mv Photovoltaic power generation
Solar energy
Electric networks
Electric power distribution
topic Photovoltaic power generation
Solar energy
Electric networks
Electric power distribution
Generadores de energía fotovoltaica
Redes eléctricas
Distribución de energía eléctrica
Medicina-Aparatos e instrumentos
Distributed generation
Microgrids
Optimal power flow
Photovoltaic
Storage
Tariffs
dc.subject.armarc.spa.fl_str_mv Generadores de energía fotovoltaica
Redes eléctricas
Distribución de energía eléctrica
Medicina-Aparatos e instrumentos
dc.subject.proposal.eng.fl_str_mv Distributed generation
Microgrids
Optimal power flow
Photovoltaic
Storage
Tariffs
description Un motivador clave para un despliegue más amplio de microrredes (pequeñas redes eléctricas con generación distribuida conectada que operan conectadas a niveles de baja y media tensión o en modo aislado) es lograr la descentralización de la generación. Este objetivo se debe a que las microrredes utilizan fuentes de energía renovables y sistemas de almacenamiento de energía. Sin embargo, la operación de las microrredes representa varios desafíos para las microrredes conectadas a la red sobre los intercambios de energía con la red de distribución. Si la operación se realiza en condiciones óptimas, existen beneficios para la inversión en microrredes. En este trabajo se propone una formulación detallada para operar microrredes con sistemas fotovoltaicos y almacenamiento. El modelo se puede utilizar con múltiples microrredes interconectadas considerando los precios y tarifas de la electricidad. El modelo corresponde a un enfoque de flujo de energía óptimo para microrredes considerando algunos sistemas de almacenamiento de energía. El modelo matemático considera explícitamente las tarifas eléctricas. Los resultados ilustrativos indican el funcionamiento óptimo de las microrredes considerando una curva de carga; específicamente, la microrred está diseñada para operar en diferentes circunstancias operativas. Un caso incluye múltiples microrredes interconectadas a diferentes precios de electricidad. Las tarifas eléctricas determinan los intercambios de energía entre la red de distribución y la microrred. Tales conocimientos sobre el funcionamiento óptimo de las microrredes proporcionan una amplia gama de aplicaciones, especialmente en el funcionamiento y la viabilidad de proyectos.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-04-05T15:48:21Z
dc.date.available.none.fl_str_mv 2021-04-05T15:48:21Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 18276660
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/12921
identifier_str_mv 18276660
url https://hdl.handle.net/10614/12921
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.citationendpage.spa.fl_str_mv 59
dc.relation.citationissue.spa.fl_str_mv Número 1
dc.relation.citationstartpage.spa.fl_str_mv 50
dc.relation.citationvolume.spa.fl_str_mv Volumen 16
dc.relation.cites.spa.fl_str_mv Jamaica-Obregón, Jairo; Moreno-Chuquen, Ricardo y Flórez-Cediel, Oscar. Optimal Operation of Grid-Connected Microgrids with Photovoltaic Generation and Storage. En: Revista Internacional de Ingeniería Eléctrica (IREE), volumen 16, número 1 (Enero-Febrero, 2021), páginas 50-59. ISSN 1827-6660
dc.relation.ispartofjournal.eng.fl_str_mv International Review of Electrical Engineering (I.R.E.E.)
dc.relation.references.spa.fl_str_mv [1] D. E. Olivares et al., Trends in Microgrid Control, IEEE Transactions on Smart Grid, vol. 5, n. 4, pp. 1905-1919, July 2014. doi. https://doi.org/10.1109/TSG.2013.2295514
[2] Pinnarelli, A., Barone, G., Brusco, G., Burgio, A., Menniti, D., Sorrentino, N., A power management and control strategy with grid-ancillary services for a microgrid based on DC Bus, (2014) International Review of Electrical Engineering (IREE), 9 (4), pp. 792-802. doi: https://doi.org/10.15866/iree.v9i4.2038
[3] Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132. doi: https://doi.org/10.15866/iree.v14i2.16331
[4] Q. Fu, A. Hamidi, A. Nasiri, V. Bhavaraju, S. B. Krstic and P. Theisen, The Role of Energy Storage in a Microgrid Concept: Examining the opportunities and promise of microgrids, IEEE Electrification Magazine, vol. 1, n. 2, Dec. 2013, pp. 21-29. doi: https://doi.org10.1109/MELE.2013.2294736
[5] F. A. Ramírez, E. R. Trujillo and J. A. Mora, Implementation of an optimal power flow to reduce losses and improve the profiles voltages in electrical microgrids with distributed generation, 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), November 11-13, 2015, Tegucigalpa, pp. 1-6. doi: https://doi.org/10.1109/CONCAPAN.2015.7428496
[6] Y. Levron, J. M. Guerrero and Y. Beck, Optimal Power Flow in Microgrids With Energy Storage, IEEE Transactions on Power Systems, vol. 28, n. 3, Aug. 2013, pp. 3226-3234. doi: https://doi.org/10.1109/TPWRS.2013.2245925
[7] E. Sortomme and M. A. El-Sharkawi, Optimal Power Flow for a System of Microgrids with Controllable Loads and Battery Storage, 2009 IEEE/PES Power Systems Conference and Exposition, March 15-18, 2009, Seattle, WA, pp. 1-5. doi: https://doi.org/10.1109/PSCE.2009.4840050
[8] V. Salehi, A. Mohamed and O. A. Mohammed, Implementation of real-time optimal power flow management system on hybrid AC/DC smart microgrid, 2012 IEEE Industry Applications Society Annual Meeting, October 7-11, 2012, Las Vegas, NV, pp. 1-8. doi: https://doi.org/10.1109/IAS.2012.6374113
[9] A. A. Eajal, E. F. El-Saadany and K. Ponnambalam, Optimal power flow for converter-dominated AC/DC hybrid microgrids, 2017 IEEE International Conference on Industrial Technology (ICIT), March 22-25, 2017, Toronto, ON, pp. 603-608. doi: https://doi.org/10.1109/ICIT.2017.7915427
[10] W. Shi, X. Xie, C. Chu and R. Gadh, Distributed Optimal Energy Management in Microgrids, IEEE Transactions on Smart Grid, vol. 6, n. 3, pp. 1137-1146, May 2015. doi: https://doi.org/10.1109/TSG.2014.2373150
[11] E. Dall'Anese, H. Zhu and G. B. Giannakis, Distributed Optimal Power Flow for Smart Microgrids, IEEE Transactions on Smart Grid, vol. 4, n. 3, pp. 1464-1475, Sept. 2013. doi: https://doi.org/10.1109/TSG.2013.2248175
[12] Obando-Ceron, J. S., Moreno-Chuquen, R., Impacts of Demand Response Under Wind Power Uncertainty in NetworkConstrained Electricity Markets. In IEEE 2018 IEEE ANDESCON, pp. 1-5. doi: https://doi.org/10.1109/ANDESCON.2018.8564707
[13] Obando-Ceron, J. S., Moreno-Chuquen, R., Quantification of Operating Reserves with Wind Power in Day-Ahead Dispatching. In IEEE 2018 IEEE ANDESCON, pp. 1-5. doi: https://doi.org/10.1109/ANDESCON.2018.8564589
[14] B. V. Solanki, K. Bhattacharya and C. A. Cañizares, Integrated energy management system for isolated microgrids, 2016 Power Systems Computation Conference (PSCC), June 20-24, 2016, Genoa, pp. 1-7. doi: https://doi.org/10.1109/PSCC.2016.7540832
[15] S. You, Y. Zong, H. W. Bindner, J. Lin, Y. Cai and Y. Song, Optimal dispatch of battery storage in an industrial microgrid with a mixed portfolio of renewables, 2014 International Conference on Power System Technology, October 22-24, 2014, Chengdu, pp. 3378-3383. doi: https://doi.org/10.1109/POWERCON.2014.6993971
[16] M. Göransson, N. Larsson, L. A. Tuan and D. Steen, Cost-benefit analysis of battery storage investment for microgrid of Chalmers university campus using μ-OPF framework, 2017 IEEE Manchester PowerTech, June 18-22, 2017, Manchester, pp. 1-6. doi: https://doi.org/10.1109/PTC.2017.7981160
[17] H. Laaksonen and K. Kauhaniemi, Synchronized re-connection of island operated LV microgrid back to utility grid, 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), October 11-13, 2010, Gothenberg, pp. 1-8. doi: https:///doi.org/10.1109/ISGTEUROPE.2010.5638911
[18] Hassoune, A., Khafallah, M., Mesbahi, A., Benaaouinate, L., ouragba, T., Control Strategies of a Smart Topology of EVs Charging Station Based Grid Tied RES-Battery, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 385-396. doi: https://doi.org/10.15866/iree.v13i5.15520
[19] Bhargavi, K., Jayalakshmi, N., Power Management of Heterogeneous Autonomous DC Microgrid System with EVs Using Modified SoC Reference Based DC Bus Voltage Control, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 404-414. doi: https://doi.org/10.15866/iree.v13i5.15725
[20] Zerrahn, A., Schill, W. P., Kemfert, C. On the economics of electrical storage for variable renewable energy sources. European Economic Review (2018), 108, 259-279. doi: https://doi.org/10.1016/j.euroecorev.2018.07.004
[21] Kerdphol, T., Qudaih, Y., Hongesombut, K., Watanabe, M., Mitani, Y., Intelligent Determination of a Battery Energy Storage System Size and Location Based on RBF Neural Networks for Microgrids, (2016) International Review of Electrical Engineering (IREE), 11 (1), pp. 78-87. doi: https://doi.org/10.15866/iree.v11i1.7718
[22] Kerdphol, T., Qudaih, Y., Mitani, Y., Optimal Battery Energy Storage Size Using Particle Swarm Optimization for Microgrid System, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 277-285. doi: https://doi.org/10.15866/iree.v10i2.5350
[23] Elmahni, L., Bouhouch, L., Alaoui, R., Moudden, A., Modeling and Control of a Hybrid Microgrid by Multi-Agent System, (2015) International Review of Electrical Engineering (IREE), 10 (1), pp. 145-153. doi: https://doi.org/10.15866/iree.v10i1.5176
[24] Rostom, D., Hasanien, H., El Amary, N., Abdelaziz, A., Adaptive PI Control Strategy for Microgrid Performance Enhancement, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 82-92. doi: https://doi.org/10.15866/irecon.v7i3.17327
[25] Panjaitan, S., Sanjaya, B., Kurnianto, R., Fuzzy-IP Controller for Voltage Regulation in a Stand-Alone Microgrid System, (2018) International Review of Automatic Control (IREACO), 11 (3), pp. 143-150. doi: https://doi.org/10.15866/ireaco.v11i3.13849
[26] Mumtaz, F., Bayram, I. S., Planning, operation, and protection of microgrids: An overview, (2017) Energy Procedia, 107, 94-100. doi: https://doi.org/10.1016/j.egypro.2016.12.137
[27] Laaksonen, H., Protection Scheme for Island Operated MediumVoltage Microgrid, (2015) International Review of Electrical Engineering (IREE), 10 (4), pp. 510-519. doi: https://doi.org/10.15866/iree.v10i4.7131
[28] E. Sortomme, S. S. Venkata, J. Mitra, Microgrid Protection Using Communication-Assisted Digital Relays, IEEE Transactions on Power Delivery, 25, October 2010, pp. 2789– 2796. doi: http://dx.doi.org/10.1109/tpwrd.2009.2035810
[29] Viitanen, J., Amogpai, A., Puolakka, M., Halonen, L., Photovoltaic Production Possibilities and its Utilization in Office Buildings in Finland, (2019) International Journal on Engineering Applications (IREA), 7 (1), pp. 9-16. doi: https://doi.org/10.15866/irea.v7i1.17186
[30] Attia, H., Artificial Neural Networks Based Maximum Power Point Tracking Photovoltaic System for Remote Park LED Lighting Applications, (2018) International Review on Modelling and Simulations (IREMOS), 11 (6), pp. 396-405. doi: https://doi.org/10.15866/iremos.v11i6.16165
[31] Omar, A., Hasanien, H., Al-Durra, A., El-Hameed, W., Water Cycle Algorithm for Parameters Estimation of Solar Photovoltaic Model, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 117-125. doi: https://doi.org/10.15866/irecon.v7i3.16187
[32] Moreno, R., Detailed modelling and simulation of photovoltaic systems, In 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1-5. doi: https://doi.org/10.1109/PEPQA.2017.7981689
[33] Bahri, H., Aboulfatah, M., Guisser, M., Abdelmounim, E., El Malah, M., Sliding Mode Control of a Three Phase Grid Connected Photovoltaic System with a Nonlinear Load, (2018) International Review of Automatic Control (IREACO), 11 (6), pp. 293-303. doi: https://doi.org/10.15866/ireaco.v11i6.11686
[34] Bouali, C., Marouani, R., Schulte, H., mami, A., Photovoltaic System Enhancing Power Quality of Electrical Network, (2019) International Journal on Energy Conversion (IRECON), 7 (1), pp. 1-11. doi: https://doi.org/10.15866/irecon.v7i1.16085
[35] Adam, K., Miyauchi, H., Optimization of a Photovoltaic Hybrid Energy Storage System Using Energy Storage Peak Shaving, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 8-18. doi: https://doi.org/10.15866/iree.v14i1.16162
[36] J. Patiño, J. Tello, J. Hernández, C. A. Arredondo and G. Gordillo, Development and Implementation of a Hybrid Photovoltaic System for Energy Back-up, (2010), 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 2010, pp. 002338-002341. doi: https://doi.org/10.1109/PVSC.2010.5614433
[37] J. C. Lopes, T. Sousa, R. da Silva Benedito, F. B. M. Trigoso and D. O. Garzón Medina, Application of Battery Energy Storage System in Photovoltaic Power Plants Connected to the Distribution Grid, 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Gramado, Brazil, 2019, pp. 1-6. doi: https://doi.org/10.1109/ISGT-LA.2019.8895431
[38] H. J. Khasawneh, M. B. Mustafa, A. Al-Salaymeh and M. Saidan, Techno-Economic Evaluation of On-Grid Battery Energy Storage System in Jordan using Homer Pro, 2019 AEIT International Annual Conference (AEIT), Florence, Italy, 2019, pp. 1-6. doi: https://doi.org/10.23919/AEIT.2019.8893416
[39] N. Zhou, N. Liu and J. Zhang, Multi-scenarios PV-based microgrids investment decision considering feed-in-tariff regulation, 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, 2016, pp. 2311-2316. doi: https://doi.org/10.1109/ICIEA.2016.7603977
[40] Khemmook, P., Khomfoi, S., Transient Stability Improvement Using Coordinated Control of Solar PVs and Solid State Transformers, (2018) International Review of Electrical Engineering (IREE), 13 (6), pp. 486-494. doi: https://doi.org/10.15866/iree.v13i6.15869
[41] R. D., Zimmerman, C. E., Murillo-Sánchez., R. J. Thomas., MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education, (2010) IEEE Transactions on Power Systems, 26(1), 12-19. doi:
dc.rights.eng.fl_str_mv Copyright © 2021 Praise Worthy Prize S.r.l. - All rights reserved
dc.rights.spa.fl_str_mv Energía solar
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright © 2021 Praise Worthy Prize S.r.l. - All rights reserved
Energía solar
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/a0eeb6c5-276f-451a-8247-7b5d7e259add/download
https://dspace7-uao.metacatalogo.com/bitstreams/0a535327-e5b8-4137-a249-c207eb42f92d/download
https://dspace7-uao.metacatalogo.com/bitstreams/28f93a09-14c3-4c03-8776-0c6a2768020e/download
https://dspace7-uao.metacatalogo.com/bitstreams/05dabd25-1bee-44ec-9c95-0f00d46b1296/download
bitstream.checksum.fl_str_mv 08c49bad2f431bacabf91f6e3faedc20
20b5ba22b1117f71589c7318baa2c560
d2c181524f2389f0d89c24706a6517b1
2fc5d41d6dec9e3370c7c27310f00f86
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1808478775014326272
spelling Jamaica-Obregón, Jairo0cfafd7cc3ca46e69657a608debd3022Moreno-Chuquen, Ricardo3529d64b6cb8f4b63523eb51d5054f92Florez-Cediel, Oscar David7ef7c5be460f161b9245fdc99f03464b2021-04-05T15:48:21Z2021-04-05T15:48:21Z202118276660https://hdl.handle.net/10614/12921Un motivador clave para un despliegue más amplio de microrredes (pequeñas redes eléctricas con generación distribuida conectada que operan conectadas a niveles de baja y media tensión o en modo aislado) es lograr la descentralización de la generación. Este objetivo se debe a que las microrredes utilizan fuentes de energía renovables y sistemas de almacenamiento de energía. Sin embargo, la operación de las microrredes representa varios desafíos para las microrredes conectadas a la red sobre los intercambios de energía con la red de distribución. Si la operación se realiza en condiciones óptimas, existen beneficios para la inversión en microrredes. En este trabajo se propone una formulación detallada para operar microrredes con sistemas fotovoltaicos y almacenamiento. El modelo se puede utilizar con múltiples microrredes interconectadas considerando los precios y tarifas de la electricidad. El modelo corresponde a un enfoque de flujo de energía óptimo para microrredes considerando algunos sistemas de almacenamiento de energía. El modelo matemático considera explícitamente las tarifas eléctricas. Los resultados ilustrativos indican el funcionamiento óptimo de las microrredes considerando una curva de carga; específicamente, la microrred está diseñada para operar en diferentes circunstancias operativas. Un caso incluye múltiples microrredes interconectadas a diferentes precios de electricidad. Las tarifas eléctricas determinan los intercambios de energía entre la red de distribución y la microrred. Tales conocimientos sobre el funcionamiento óptimo de las microrredes proporcionan una amplia gama de aplicaciones, especialmente en el funcionamiento y la viabilidad de proyectos.A key motivator for wider deployment of microgrids (small electric networks with distributed generation connected that operate either connected at low and medium voltage levels or isolated mode) is to bring about the decentralization of the generation. This goal is because microgrids use renewable power sources and storage energy systems. However, the microgrids operation represents various challenges for grid-connected microgrids about the power interchanges with the distribution network. If the operation is performed under optimal conditions, there are benefits for microgrid investment. This paper proposes a detailed formulation to operate microgrids with photovoltaic systems and storage. The model can be used with multiple microgrids interconnected considering electricity prices and tariffs. The model corresponds to an optimal power flow approach for microgrids considering some energy storage systems. The mathematical model considers explicitly electricity tariffs. Illustrative results indicate the optimal operation of microgrids considering a load curve; specifically, the microgrid is designed to operate at different operational circumstances. A case includes multiple microgrids interconnected at different electricity prices. The electricity tariffs determine the power interchanges between the distribution network and the microgrid. Such insights about the optimal operation of microgrids provide a wide range of applications, particularly in operation and feasibility of projects.10 páginasapplication/pdfengCopyright © 2021 Praise Worthy Prize S.r.l. - All rights reservedEnergía solarinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Optimal operation of grid-connected microgrids with photovoltaic generation and storageArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Photovoltaic power generationSolar energyElectric networksElectric power distributionGeneradores de energía fotovoltaicaRedes eléctricasDistribución de energía eléctricaMedicina-Aparatos e instrumentosDistributed generationMicrogridsOptimal power flowPhotovoltaicStorageTariffs59Número 150Volumen 16Jamaica-Obregón, Jairo; Moreno-Chuquen, Ricardo y Flórez-Cediel, Oscar. Optimal Operation of Grid-Connected Microgrids with Photovoltaic Generation and Storage. En: Revista Internacional de Ingeniería Eléctrica (IREE), volumen 16, número 1 (Enero-Febrero, 2021), páginas 50-59. ISSN 1827-6660International Review of Electrical Engineering (I.R.E.E.)[1] D. E. Olivares et al., Trends in Microgrid Control, IEEE Transactions on Smart Grid, vol. 5, n. 4, pp. 1905-1919, July 2014. doi. https://doi.org/10.1109/TSG.2013.2295514[2] Pinnarelli, A., Barone, G., Brusco, G., Burgio, A., Menniti, D., Sorrentino, N., A power management and control strategy with grid-ancillary services for a microgrid based on DC Bus, (2014) International Review of Electrical Engineering (IREE), 9 (4), pp. 792-802. doi: https://doi.org/10.15866/iree.v9i4.2038[3] Khongkhachat, S., Khomfoi, S., A Sliding Mode Control Strategy for a Grid-Supporting and Grid-Forming Power Converter in Autonomous AC Microgrids, (2019) International Review of Electrical Engineering (IREE), 14 (2), pp. 118-132. doi: https://doi.org/10.15866/iree.v14i2.16331[4] Q. Fu, A. Hamidi, A. Nasiri, V. Bhavaraju, S. B. Krstic and P. Theisen, The Role of Energy Storage in a Microgrid Concept: Examining the opportunities and promise of microgrids, IEEE Electrification Magazine, vol. 1, n. 2, Dec. 2013, pp. 21-29. doi: https://doi.org10.1109/MELE.2013.2294736[5] F. A. Ramírez, E. R. Trujillo and J. A. Mora, Implementation of an optimal power flow to reduce losses and improve the profiles voltages in electrical microgrids with distributed generation, 2015 IEEE Thirty Fifth Central American and Panama Convention (CONCAPAN XXXV), November 11-13, 2015, Tegucigalpa, pp. 1-6. doi: https://doi.org/10.1109/CONCAPAN.2015.7428496[6] Y. Levron, J. M. Guerrero and Y. Beck, Optimal Power Flow in Microgrids With Energy Storage, IEEE Transactions on Power Systems, vol. 28, n. 3, Aug. 2013, pp. 3226-3234. doi: https://doi.org/10.1109/TPWRS.2013.2245925[7] E. Sortomme and M. A. El-Sharkawi, Optimal Power Flow for a System of Microgrids with Controllable Loads and Battery Storage, 2009 IEEE/PES Power Systems Conference and Exposition, March 15-18, 2009, Seattle, WA, pp. 1-5. doi: https://doi.org/10.1109/PSCE.2009.4840050[8] V. Salehi, A. Mohamed and O. A. Mohammed, Implementation of real-time optimal power flow management system on hybrid AC/DC smart microgrid, 2012 IEEE Industry Applications Society Annual Meeting, October 7-11, 2012, Las Vegas, NV, pp. 1-8. doi: https://doi.org/10.1109/IAS.2012.6374113[9] A. A. Eajal, E. F. El-Saadany and K. Ponnambalam, Optimal power flow for converter-dominated AC/DC hybrid microgrids, 2017 IEEE International Conference on Industrial Technology (ICIT), March 22-25, 2017, Toronto, ON, pp. 603-608. doi: https://doi.org/10.1109/ICIT.2017.7915427[10] W. Shi, X. Xie, C. Chu and R. Gadh, Distributed Optimal Energy Management in Microgrids, IEEE Transactions on Smart Grid, vol. 6, n. 3, pp. 1137-1146, May 2015. doi: https://doi.org/10.1109/TSG.2014.2373150[11] E. Dall'Anese, H. Zhu and G. B. Giannakis, Distributed Optimal Power Flow for Smart Microgrids, IEEE Transactions on Smart Grid, vol. 4, n. 3, pp. 1464-1475, Sept. 2013. doi: https://doi.org/10.1109/TSG.2013.2248175[12] Obando-Ceron, J. S., Moreno-Chuquen, R., Impacts of Demand Response Under Wind Power Uncertainty in NetworkConstrained Electricity Markets. In IEEE 2018 IEEE ANDESCON, pp. 1-5. doi: https://doi.org/10.1109/ANDESCON.2018.8564707[13] Obando-Ceron, J. S., Moreno-Chuquen, R., Quantification of Operating Reserves with Wind Power in Day-Ahead Dispatching. In IEEE 2018 IEEE ANDESCON, pp. 1-5. doi: https://doi.org/10.1109/ANDESCON.2018.8564589[14] B. V. Solanki, K. Bhattacharya and C. A. Cañizares, Integrated energy management system for isolated microgrids, 2016 Power Systems Computation Conference (PSCC), June 20-24, 2016, Genoa, pp. 1-7. doi: https://doi.org/10.1109/PSCC.2016.7540832[15] S. You, Y. Zong, H. W. Bindner, J. Lin, Y. Cai and Y. Song, Optimal dispatch of battery storage in an industrial microgrid with a mixed portfolio of renewables, 2014 International Conference on Power System Technology, October 22-24, 2014, Chengdu, pp. 3378-3383. doi: https://doi.org/10.1109/POWERCON.2014.6993971[16] M. Göransson, N. Larsson, L. A. Tuan and D. Steen, Cost-benefit analysis of battery storage investment for microgrid of Chalmers university campus using μ-OPF framework, 2017 IEEE Manchester PowerTech, June 18-22, 2017, Manchester, pp. 1-6. doi: https://doi.org/10.1109/PTC.2017.7981160[17] H. Laaksonen and K. Kauhaniemi, Synchronized re-connection of island operated LV microgrid back to utility grid, 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), October 11-13, 2010, Gothenberg, pp. 1-8. doi: https:///doi.org/10.1109/ISGTEUROPE.2010.5638911[18] Hassoune, A., Khafallah, M., Mesbahi, A., Benaaouinate, L., ouragba, T., Control Strategies of a Smart Topology of EVs Charging Station Based Grid Tied RES-Battery, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 385-396. doi: https://doi.org/10.15866/iree.v13i5.15520[19] Bhargavi, K., Jayalakshmi, N., Power Management of Heterogeneous Autonomous DC Microgrid System with EVs Using Modified SoC Reference Based DC Bus Voltage Control, (2018) International Review of Electrical Engineering (IREE), 13 (5), pp. 404-414. doi: https://doi.org/10.15866/iree.v13i5.15725[20] Zerrahn, A., Schill, W. P., Kemfert, C. On the economics of electrical storage for variable renewable energy sources. European Economic Review (2018), 108, 259-279. doi: https://doi.org/10.1016/j.euroecorev.2018.07.004[21] Kerdphol, T., Qudaih, Y., Hongesombut, K., Watanabe, M., Mitani, Y., Intelligent Determination of a Battery Energy Storage System Size and Location Based on RBF Neural Networks for Microgrids, (2016) International Review of Electrical Engineering (IREE), 11 (1), pp. 78-87. doi: https://doi.org/10.15866/iree.v11i1.7718[22] Kerdphol, T., Qudaih, Y., Mitani, Y., Optimal Battery Energy Storage Size Using Particle Swarm Optimization for Microgrid System, (2015) International Review of Electrical Engineering (IREE), 10 (2), pp. 277-285. doi: https://doi.org/10.15866/iree.v10i2.5350[23] Elmahni, L., Bouhouch, L., Alaoui, R., Moudden, A., Modeling and Control of a Hybrid Microgrid by Multi-Agent System, (2015) International Review of Electrical Engineering (IREE), 10 (1), pp. 145-153. doi: https://doi.org/10.15866/iree.v10i1.5176[24] Rostom, D., Hasanien, H., El Amary, N., Abdelaziz, A., Adaptive PI Control Strategy for Microgrid Performance Enhancement, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 82-92. doi: https://doi.org/10.15866/irecon.v7i3.17327[25] Panjaitan, S., Sanjaya, B., Kurnianto, R., Fuzzy-IP Controller for Voltage Regulation in a Stand-Alone Microgrid System, (2018) International Review of Automatic Control (IREACO), 11 (3), pp. 143-150. doi: https://doi.org/10.15866/ireaco.v11i3.13849[26] Mumtaz, F., Bayram, I. S., Planning, operation, and protection of microgrids: An overview, (2017) Energy Procedia, 107, 94-100. doi: https://doi.org/10.1016/j.egypro.2016.12.137[27] Laaksonen, H., Protection Scheme for Island Operated MediumVoltage Microgrid, (2015) International Review of Electrical Engineering (IREE), 10 (4), pp. 510-519. doi: https://doi.org/10.15866/iree.v10i4.7131[28] E. Sortomme, S. S. Venkata, J. Mitra, Microgrid Protection Using Communication-Assisted Digital Relays, IEEE Transactions on Power Delivery, 25, October 2010, pp. 2789– 2796. doi: http://dx.doi.org/10.1109/tpwrd.2009.2035810[29] Viitanen, J., Amogpai, A., Puolakka, M., Halonen, L., Photovoltaic Production Possibilities and its Utilization in Office Buildings in Finland, (2019) International Journal on Engineering Applications (IREA), 7 (1), pp. 9-16. doi: https://doi.org/10.15866/irea.v7i1.17186[30] Attia, H., Artificial Neural Networks Based Maximum Power Point Tracking Photovoltaic System for Remote Park LED Lighting Applications, (2018) International Review on Modelling and Simulations (IREMOS), 11 (6), pp. 396-405. doi: https://doi.org/10.15866/iremos.v11i6.16165[31] Omar, A., Hasanien, H., Al-Durra, A., El-Hameed, W., Water Cycle Algorithm for Parameters Estimation of Solar Photovoltaic Model, (2019) International Journal on Energy Conversion (IRECON), 7 (3), pp. 117-125. doi: https://doi.org/10.15866/irecon.v7i3.16187[32] Moreno, R., Detailed modelling and simulation of photovoltaic systems, In 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), pp. 1-5. doi: https://doi.org/10.1109/PEPQA.2017.7981689[33] Bahri, H., Aboulfatah, M., Guisser, M., Abdelmounim, E., El Malah, M., Sliding Mode Control of a Three Phase Grid Connected Photovoltaic System with a Nonlinear Load, (2018) International Review of Automatic Control (IREACO), 11 (6), pp. 293-303. doi: https://doi.org/10.15866/ireaco.v11i6.11686[34] Bouali, C., Marouani, R., Schulte, H., mami, A., Photovoltaic System Enhancing Power Quality of Electrical Network, (2019) International Journal on Energy Conversion (IRECON), 7 (1), pp. 1-11. doi: https://doi.org/10.15866/irecon.v7i1.16085[35] Adam, K., Miyauchi, H., Optimization of a Photovoltaic Hybrid Energy Storage System Using Energy Storage Peak Shaving, (2019) International Review of Electrical Engineering (IREE), 14 (1), pp. 8-18. doi: https://doi.org/10.15866/iree.v14i1.16162[36] J. Patiño, J. Tello, J. Hernández, C. A. Arredondo and G. Gordillo, Development and Implementation of a Hybrid Photovoltaic System for Energy Back-up, (2010), 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 2010, pp. 002338-002341. doi: https://doi.org/10.1109/PVSC.2010.5614433[37] J. C. Lopes, T. Sousa, R. da Silva Benedito, F. B. M. Trigoso and D. O. Garzón Medina, Application of Battery Energy Storage System in Photovoltaic Power Plants Connected to the Distribution Grid, 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Gramado, Brazil, 2019, pp. 1-6. doi: https://doi.org/10.1109/ISGT-LA.2019.8895431[38] H. J. Khasawneh, M. B. Mustafa, A. Al-Salaymeh and M. Saidan, Techno-Economic Evaluation of On-Grid Battery Energy Storage System in Jordan using Homer Pro, 2019 AEIT International Annual Conference (AEIT), Florence, Italy, 2019, pp. 1-6. doi: https://doi.org/10.23919/AEIT.2019.8893416[39] N. Zhou, N. Liu and J. Zhang, Multi-scenarios PV-based microgrids investment decision considering feed-in-tariff regulation, 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, 2016, pp. 2311-2316. doi: https://doi.org/10.1109/ICIEA.2016.7603977[40] Khemmook, P., Khomfoi, S., Transient Stability Improvement Using Coordinated Control of Solar PVs and Solid State Transformers, (2018) International Review of Electrical Engineering (IREE), 13 (6), pp. 486-494. doi: https://doi.org/10.15866/iree.v13i6.15869[41] R. D., Zimmerman, C. E., Murillo-Sánchez., R. J. Thomas., MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education, (2010) IEEE Transactions on Power Systems, 26(1), 12-19. doi:Comunidad universitaria en generalPublicationORIGINALA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdfA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdfTexto completo del artículoapplication/pdf487425https://dspace7-uao.metacatalogo.com/bitstreams/a0eeb6c5-276f-451a-8247-7b5d7e259add/download08c49bad2f431bacabf91f6e3faedc20MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/0a535327-e5b8-4137-a249-c207eb42f92d/download20b5ba22b1117f71589c7318baa2c560MD52TEXTA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdf.txtA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdf.txtExtracted texttext/plain39988https://dspace7-uao.metacatalogo.com/bitstreams/28f93a09-14c3-4c03-8776-0c6a2768020e/downloadd2c181524f2389f0d89c24706a6517b1MD53THUMBNAILA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdf.jpgA0270_Optimal_Operation_of_Grid-Connected_Microgrids_with_Photovoltaic_Generation.pdf.jpgGenerated Thumbnailimage/jpeg15256https://dspace7-uao.metacatalogo.com/bitstreams/05dabd25-1bee-44ec-9c95-0f00d46b1296/download2fc5d41d6dec9e3370c7c27310f00f86MD5410614/12921oai:dspace7-uao.metacatalogo.com:10614/129212024-01-19 16:10:26.968open.accesshttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K