Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis

This manuscript presents the development of a low-pressure extrinsic Fabry-Perot fiber optic sensor based on a thin polyester film, using a phase signal analysis. The proposed interferometer is controlled by the simple contact interaction between the polymer membrane and a multimode fiber optic tip....

Full description

Autores:
Gutierrez Rivera, Miguel E.
Sierra Hernández, Juan Manuel
Garcia Mina, Diego Felipe
López Dieguez, Yanelis
Rojas Laguna, Roberto
Jauregui Vazquez, Daniel
Estudillo-Ayala, Julián Moisés
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Occidente
Repositorio:
RED: Repositorio Educativo Digital UAO
Idioma:
spa
OAI Identifier:
oai:red.uao.edu.co:10614/13265
Acceso en línea:
https://hdl.handle.net/10614/13265
Palabra clave:
Polímeros
Dispositivos optoelectrónicos
Detectores
Optoelectronic devices
Detectors
Fiber optic sensor
Pressure detection
Polymers
Fabry-Perot interferometers
Rights
openAccess
License
Derechos reservados - Elsiever, 2020
id REPOUAO2_a0f7a81bde814a29b43e887eb9e3222b
oai_identifier_str oai:red.uao.edu.co:10614/13265
network_acronym_str REPOUAO2
network_name_str RED: Repositorio Educativo Digital UAO
repository_id_str
dc.title.eng.fl_str_mv Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
title Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
spellingShingle Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
Polímeros
Dispositivos optoelectrónicos
Detectores
Optoelectronic devices
Detectors
Fiber optic sensor
Pressure detection
Polymers
Fabry-Perot interferometers
title_short Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
title_full Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
title_fullStr Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
title_full_unstemmed Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
title_sort Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
dc.creator.fl_str_mv Gutierrez Rivera, Miguel E.
Sierra Hernández, Juan Manuel
Garcia Mina, Diego Felipe
López Dieguez, Yanelis
Rojas Laguna, Roberto
Jauregui Vazquez, Daniel
Estudillo-Ayala, Julián Moisés
dc.contributor.author.spa.fl_str_mv Gutierrez Rivera, Miguel E.
Sierra Hernández, Juan Manuel
Garcia Mina, Diego Felipe
López Dieguez, Yanelis
Rojas Laguna, Roberto
Jauregui Vazquez, Daniel
Estudillo-Ayala, Julián Moisés
dc.contributor.corporatename.eng.fl_str_mv Elsevier
dc.subject.armarc.spa.fl_str_mv Polímeros
Dispositivos optoelectrónicos
Detectores
topic Polímeros
Dispositivos optoelectrónicos
Detectores
Optoelectronic devices
Detectors
Fiber optic sensor
Pressure detection
Polymers
Fabry-Perot interferometers
dc.subject.armarc.eng.fl_str_mv Optoelectronic devices
Detectors
dc.subject.proposal.eng.fl_str_mv Fiber optic sensor
Pressure detection
Polymers
Fabry-Perot interferometers
description This manuscript presents the development of a low-pressure extrinsic Fabry-Perot fiber optic sensor based on a thin polyester film, using a phase signal analysis. The proposed interferometer is controlled by the simple contact interaction between the polymer membrane and a multimode fiber optic tip. The created cavity was uniformly stressed by applying a pressure varying from 0 to 2 psi. A finite element analysis was performed for these parameters. The stress applied to the membrane was below the yielding point. Thus, a linear study could be performed. The wavelength spectra exhibited a blue shift with a sensitivity of around 10.5 nm/psi. Although the interference spectra presented crosstalk measurements and required an initial set-point calibration, these effects were overcome by examining the spatial frequency components’ phase analysis. The sensors offered a high sensitivity, close to 3.5 rad/psi. Ultimately, this sensor is a high sensitivity and versatile alternative for low-pressure detection
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-11-01
dc.date.accessioned.none.fl_str_mv 2021-09-27T13:54:58Z
dc.date.available.none.fl_str_mv 2021-09-27T13:54:58Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 9244247
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/10614/13265
identifier_str_mv 9244247
url https://hdl.handle.net/10614/13265
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.citationedition.spa.fl_str_mv Volumen 315 (2020)
dc.relation.citationendpage.spa.fl_str_mv 8
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv Volumen 315
dc.relation.cites.spa.fl_str_mv Gutiérrez Rivera, M.E., Jauregui Vazquez, D., Sierra Hernández, J. M., García Mina, D.F., López Dieguez, Y., Estudillo Ayala, J.M., Rojas Laguna, R., García Navarro, S., Roca Blay, L. (2020). Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis. Elsevier, (Vol. 315 (1), pp. 1-8. https://doi.org/10.1016/j.sna.2020.112338
dc.relation.ispartofjournal.eng.fl_str_mv Sensors and Actuators A: Physical
dc.relation.references.eng.fl_str_mv Q. Yu, X. Zhou, Pressure sensor based on the fiber-optic extrinsic fabry-perotinterferometer, Photonic Sens. 1 (2011) 72–83, http://dx.doi.org/10.1007/s13320-010-0017-9.
W.J. Bock, M.S. Nawrocka, W. Urbanczyk, Highly sensitive fiber-optic sensorfor dynamic pressure measurements, IEEE Trans. Instrum. Meas. 50 (2001)1085–1088, http://dx.doi.org/10.1109/19.963163.
W.B. Spillman, Multimode fiber-optic pressure sensor based on thephotoelastic effect, Opt. Lett. 7 (1982) 388, http://dx.doi.org/10.1364/ol.7.000388.
N. Nadarajah, M.A. Corbo, W. Smith, Fiber optic pressure sensor forbiomedical applications, ASAIO J. (1996), Sept. 1996 Poster Sess.#6—Prosthetics/Biomaterials.
J.N. Fields, C.K. Asawa, O.G. Ramer, M.K. Barnoski, Fiber optic pressure sensor,J. Acoust. Soc. Am. 67 (1980) 816–818, http://dx.doi.org/10.1121/1.383957.
K. Totsu, Y. Haga, M. Esashi, Ultra-miniature fiber-optic pressure sensor usingwhite light interferometry, J. Micromech. Microeng. 15 (2005) 71–75, http://dx.doi.org/10.1088/0960-1317/15/1/011.
D. Sindhanaiselvi, Design and analysis of low pressure MEMS sensor,Pondicherry University, 2015.
E. Vorathin, Z.M. Hafizi, N. Ismail, M. Loman, Review of high sensitivityfibre-optic pressure sensors for low pressure sensing, Opt. Laser Technol.(2020), http://dx.doi.org/10.1016/j.optlastec.2019.105841.
X. Qi, S. Wang, J. Jiang, K. Liu, X. Wang, Y. Yang, T. Liu, Fiber optic fabry-perotpressure sensor with embedded MEMS micro-cavity for ultra-high pressuredetection, J. Lightwave Technol. 37 (2019) 2719–2725, http://dx.doi.org/10.1109/JLT.2018.2876717.
Q. Wang, W. Wang, X. Jiang, Q. Yu, Diaphragm-based extrinsic Fabry-Perotinterferometric optical fiber pressure sensor, 5th Int. Symp. Adv. Opt. Manuf.Test Technol. Opt. Test Meas. Technol. Equip. 7656 (2010) 76564V, http://dx.doi.org/10.1117/12.866925.
W. Wang, Q. Yu, F. Li, X. Zhou, X. Jiang, Temperature-insensitive pressuresensor based on all-fused-silica extrinsic fabry-Pérot optical fiberinterferometer, IEEE Sens. J. 12 (2012) 2425–2429, http://dx.doi.org/10.1109/JSEN.2012.2190056.
W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, J. Huang, Adhesive-freebonding homogenous fused-silica Fabry–Perot optical fiber low pressuresensor in harsh environments by CO2 laser welding, Opt. Commun. 435(2019) 97–101, http://dx.doi.org/10.1016/j.optcom.2018.10.064.
J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, M. Han, Tuning operating point ofextrinsic Fabry–Perot interferometric fiber-optic sensors usingmicrostructured fiber and gas pressure, Opt. Lett. 37 (2012) 4672, http://dx.doi.org/10.1364/ol.37.004672.
Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, Z. Ma, Absolute singlecavity length interrogation of fiber-optic compound Fabry–Perot pressuresensors through a white light non-scanning correlation method, Sensors(Switzerland) (2019), http://dx.doi.org/10.3390/s19071628.
C. Lin, F. Xiaomeng, Miniature MEMS Fabry-Perot interferometry pressuresensor and the fabrication system, Proc 2016 10th IEEE Int. Conf.Anti-Counterfeiting, Secur Identification, ASID 2016 3 (2017) 105–108, http://dx.doi.org/10.1109/ICASID.2016.7873927.
G.C. Hill, R. Melamud, F.E. Declercq, A.A. Davenport, I.H. Chan, P.G. Hartwell,B.L. Pruitt, SU-8 MEMS fabry-perot pressure sensor, Sens. Actuators A Phys.138 (2007) 52–62, http://dx.doi.org/10.1016/j.sna.2007.04.047.
I. Padron, A.T. Fiory, N.M. Ravindra, Novel MEMS fabry-perot interferometricpressure sensors, Mater. Sci. Forum 638–642 (2010) 1009–1014, http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.1009.
Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, H. Wei, Enhancing the pressuresensitivity of a Fabry–Perot interferometer using a simplified hollow-corephotonic crystal fiber with a microchannel, Appl. Phys. B 120 (2015) 461–467,http://dx.doi.org/10.1007/s00340-015-6155-4.
J. Ma, J. Ju, L. Jin, W. Jin, A compact fiber-tip micro-cavity sensor forhigh-pressure measurement, IEEE Photonics Technol. Lett. 23 (2011)1561–1563, http://dx.doi.org/10.1109/LPT.2011.2164060.
Y. Zhu, A. Wang, Miniature fiber-optic pressure sensor, IEEE PhotonicsTechnol. Lett. 17 (2005) 447–449, http://dx.doi.org/10.1109/LPT.2004.839002.
L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, W. Ma, S. Wang, J. Hu, A diaphragm-freefiber Fabry-Perot gas pressure sensor, Rev. Sci. Instrum. (2019), http://dx.doi.org/10.1063/1.5055660.
J. Zhu, M. Wang, L. Chen, X. Ni, H. Ni, An optical fiber Fabry–Perot pressuresensor using corrugated diaphragm and angle polished fiber, Opt. FiberTechnol. 34 (2017) 42–46, http://dx.doi.org/10.1016/j.yofte.2016.12.004.
W. Ni, P. Lu, X. Fu, W. Zhang, P.P. Shum, H. Sun, C. Yang, D. Liu, J. Zhang,Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer forultra-wideband fiber optic acoustic sensing, Opt. Express 26 (2018) 20758,http://dx.doi.org/10.1364/oe.26.020758.
X. Jiang, C. Lin, Y. Huang, K. Luo, J. Zhang, Q. Jiang, C. Zhang, Hybrid fiber opticsensor, based on the Fabry–Perot interference, assisted with fluorescentmaterial for the simultaneous measurement of temperature and pressure,Sensors (Switzerland) (2019), http://dx.doi.org/10.3390/s19051097.
R. Oliveira, L. Bilro, R. Nogueira, A.M. Rocha, Adhesive based fabry-pérothydrostatic pressure sensor with improved and controlled sensitivity, J.Lightwave Technol. 37 (2019) 1909–1915, http://dx.doi.org/10.1109/JLT.2019.2894949.
Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang,Y. Wang, High-sensitivity gas-pressure sensor based on fiber-tip PVCdiaphragm fabry–Pérot interferometer, J. Lightwave Technol. 35 (2017)4067–4071, http://dx.doi.org/10.1109/JLT.2017.2710210.
W.P. Chen, D.N. Wang, B. Xu, C.L. Zhao, H.F. Chen, Multimode fiber tipFabry-Perot cavity for highly sensitive pressure measurement, Sci. Rep. 7(2017) 1–6, http://dx.doi.org/10.1038/s41598-017-00300-x.
S. Sidhishwari, M. Basu, S.K. Ghorai, A modal interference-based Fiber opticSensor for dual parameter measurement using an artificial neural network,Opt. Fiber Technol. 50 (2019) 216–224, http://dx.doi.org/10.1016/j.yofte.2019.03.026.
A.J. Thompson, M. Power, G.-Z. Yang, Micro-scale fiber-optic force sensorfabricated using direct laser writing and calibrated using machine learning,Opt. Express 26 (2018) 14186, http://dx.doi.org/10.1364/oe.26.014186.
X. Zhang, D. Liang, J. Zeng, A. Asundi, Genetic algorithm-support vectorregression for high reliability SHM system based on FBG sensor network, Opt.Lasers Eng. 50 (2012) 148–153, http://dx.doi.org/10.1016/j.optlaseng.2011.09.015.
D. Jauregui-Vazquez, J.W. Haus, A.B.H. Negari, J.M. Sierra-Hernandez, K.Hansen, Bitapered fiber sensor: signal analysis, Sens. Actuators B Chem. 218(2015) 105–110, http://dx.doi.org/10.1016/j.snb.2015.04.109.
dc.rights.spa.fl_str_mv Derechos reservados - Elsiever, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Derechos reservados - Elsiever, 2020
https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.eng.fl_str_mv application/pdf
dc.publisher.eng.fl_str_mv Elsevier
dc.source.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/S092442472031654X
institution Universidad Autónoma de Occidente
bitstream.url.fl_str_mv https://dspace7-uao.metacatalogo.com/bitstreams/b2bae548-3b9d-49bd-a4bb-adaeea39970f/download
https://dspace7-uao.metacatalogo.com/bitstreams/c0194a78-515d-4be9-8f68-b0144ef32e7a/download
https://dspace7-uao.metacatalogo.com/bitstreams/7c34f7ae-c60a-4bc9-ad15-c45d3a2c9e83/download
https://dspace7-uao.metacatalogo.com/bitstreams/26db9f6f-d983-466f-83ab-962383cb3795/download
bitstream.checksum.fl_str_mv 820b8248ae52789862684df44d21d999
20b5ba22b1117f71589c7318baa2c560
216cad1860173e16f7222ce919a7bd93
44ad9b48294b5c4efc737f9428f44801
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio UAO
repository.mail.fl_str_mv repositorio@uao.edu.co
_version_ 1814260228031512576
spelling Gutierrez Rivera, Miguel E.d9743a5e5ab964c57f4ae1f34d36d176Sierra Hernández, Juan Manuel55e755f69134d7790d8a320d01720758Garcia Mina, Diego Felipec444e6cc93186e7c24a52a7b8e4a1f2dLópez Dieguez, Yanelis987b1d6450a79fad189040dbaf53c091Rojas Laguna, Roberto4213cb36bc1eaa42436b76ac9e2b4953Jauregui Vazquez, Daniel3ce5462e20573d017fd021baff8504beEstudillo-Ayala, Julián Moisés461f2baa86eadf7985584ff6e523f461Elsevier2021-09-27T13:54:58Z2021-09-27T13:54:58Z2020-11-019244247https://hdl.handle.net/10614/13265This manuscript presents the development of a low-pressure extrinsic Fabry-Perot fiber optic sensor based on a thin polyester film, using a phase signal analysis. The proposed interferometer is controlled by the simple contact interaction between the polymer membrane and a multimode fiber optic tip. The created cavity was uniformly stressed by applying a pressure varying from 0 to 2 psi. A finite element analysis was performed for these parameters. The stress applied to the membrane was below the yielding point. Thus, a linear study could be performed. The wavelength spectra exhibited a blue shift with a sensitivity of around 10.5 nm/psi. Although the interference spectra presented crosstalk measurements and required an initial set-point calibration, these effects were overcome by examining the spatial frequency components’ phase analysis. The sensors offered a high sensitivity, close to 3.5 rad/psi. Ultimately, this sensor is a high sensitivity and versatile alternative for low-pressure detection8 páginasapplication/pdfspaElsevierDerechos reservados - Elsiever, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S092442472031654XLow-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PolímerosDispositivos optoelectrónicosDetectoresOptoelectronic devicesDetectorsFiber optic sensorPressure detectionPolymersFabry-Perot interferometersVolumen 315 (2020)81Volumen 315Gutiérrez Rivera, M.E., Jauregui Vazquez, D., Sierra Hernández, J. M., García Mina, D.F., López Dieguez, Y., Estudillo Ayala, J.M., Rojas Laguna, R., García Navarro, S., Roca Blay, L. (2020). Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis. Elsevier, (Vol. 315 (1), pp. 1-8. https://doi.org/10.1016/j.sna.2020.112338Sensors and Actuators A: PhysicalQ. Yu, X. Zhou, Pressure sensor based on the fiber-optic extrinsic fabry-perotinterferometer, Photonic Sens. 1 (2011) 72–83, http://dx.doi.org/10.1007/s13320-010-0017-9.W.J. Bock, M.S. Nawrocka, W. Urbanczyk, Highly sensitive fiber-optic sensorfor dynamic pressure measurements, IEEE Trans. Instrum. Meas. 50 (2001)1085–1088, http://dx.doi.org/10.1109/19.963163.W.B. Spillman, Multimode fiber-optic pressure sensor based on thephotoelastic effect, Opt. Lett. 7 (1982) 388, http://dx.doi.org/10.1364/ol.7.000388.N. Nadarajah, M.A. Corbo, W. Smith, Fiber optic pressure sensor forbiomedical applications, ASAIO J. (1996), Sept. 1996 Poster Sess.#6—Prosthetics/Biomaterials.J.N. Fields, C.K. Asawa, O.G. Ramer, M.K. Barnoski, Fiber optic pressure sensor,J. Acoust. Soc. Am. 67 (1980) 816–818, http://dx.doi.org/10.1121/1.383957.K. Totsu, Y. Haga, M. Esashi, Ultra-miniature fiber-optic pressure sensor usingwhite light interferometry, J. Micromech. Microeng. 15 (2005) 71–75, http://dx.doi.org/10.1088/0960-1317/15/1/011.D. Sindhanaiselvi, Design and analysis of low pressure MEMS sensor,Pondicherry University, 2015.E. Vorathin, Z.M. Hafizi, N. Ismail, M. Loman, Review of high sensitivityfibre-optic pressure sensors for low pressure sensing, Opt. Laser Technol.(2020), http://dx.doi.org/10.1016/j.optlastec.2019.105841.X. Qi, S. Wang, J. Jiang, K. Liu, X. Wang, Y. Yang, T. Liu, Fiber optic fabry-perotpressure sensor with embedded MEMS micro-cavity for ultra-high pressuredetection, J. Lightwave Technol. 37 (2019) 2719–2725, http://dx.doi.org/10.1109/JLT.2018.2876717.Q. Wang, W. Wang, X. Jiang, Q. Yu, Diaphragm-based extrinsic Fabry-Perotinterferometric optical fiber pressure sensor, 5th Int. Symp. Adv. Opt. Manuf.Test Technol. Opt. Test Meas. Technol. Equip. 7656 (2010) 76564V, http://dx.doi.org/10.1117/12.866925.W. Wang, Q. Yu, F. Li, X. Zhou, X. Jiang, Temperature-insensitive pressuresensor based on all-fused-silica extrinsic fabry-Pérot optical fiberinterferometer, IEEE Sens. J. 12 (2012) 2425–2429, http://dx.doi.org/10.1109/JSEN.2012.2190056.W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, J. Huang, Adhesive-freebonding homogenous fused-silica Fabry–Perot optical fiber low pressuresensor in harsh environments by CO2 laser welding, Opt. Commun. 435(2019) 97–101, http://dx.doi.org/10.1016/j.optcom.2018.10.064.J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, M. Han, Tuning operating point ofextrinsic Fabry–Perot interferometric fiber-optic sensors usingmicrostructured fiber and gas pressure, Opt. Lett. 37 (2012) 4672, http://dx.doi.org/10.1364/ol.37.004672.Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, Z. Ma, Absolute singlecavity length interrogation of fiber-optic compound Fabry–Perot pressuresensors through a white light non-scanning correlation method, Sensors(Switzerland) (2019), http://dx.doi.org/10.3390/s19071628.C. Lin, F. Xiaomeng, Miniature MEMS Fabry-Perot interferometry pressuresensor and the fabrication system, Proc 2016 10th IEEE Int. Conf.Anti-Counterfeiting, Secur Identification, ASID 2016 3 (2017) 105–108, http://dx.doi.org/10.1109/ICASID.2016.7873927.G.C. Hill, R. Melamud, F.E. Declercq, A.A. Davenport, I.H. Chan, P.G. Hartwell,B.L. Pruitt, SU-8 MEMS fabry-perot pressure sensor, Sens. Actuators A Phys.138 (2007) 52–62, http://dx.doi.org/10.1016/j.sna.2007.04.047.I. Padron, A.T. Fiory, N.M. Ravindra, Novel MEMS fabry-perot interferometricpressure sensors, Mater. Sci. Forum 638–642 (2010) 1009–1014, http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.1009.Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, H. Wei, Enhancing the pressuresensitivity of a Fabry–Perot interferometer using a simplified hollow-corephotonic crystal fiber with a microchannel, Appl. Phys. B 120 (2015) 461–467,http://dx.doi.org/10.1007/s00340-015-6155-4.J. Ma, J. Ju, L. Jin, W. Jin, A compact fiber-tip micro-cavity sensor forhigh-pressure measurement, IEEE Photonics Technol. Lett. 23 (2011)1561–1563, http://dx.doi.org/10.1109/LPT.2011.2164060.Y. Zhu, A. Wang, Miniature fiber-optic pressure sensor, IEEE PhotonicsTechnol. Lett. 17 (2005) 447–449, http://dx.doi.org/10.1109/LPT.2004.839002.L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, W. Ma, S. Wang, J. Hu, A diaphragm-freefiber Fabry-Perot gas pressure sensor, Rev. Sci. Instrum. (2019), http://dx.doi.org/10.1063/1.5055660.J. Zhu, M. Wang, L. Chen, X. Ni, H. Ni, An optical fiber Fabry–Perot pressuresensor using corrugated diaphragm and angle polished fiber, Opt. FiberTechnol. 34 (2017) 42–46, http://dx.doi.org/10.1016/j.yofte.2016.12.004.W. Ni, P. Lu, X. Fu, W. Zhang, P.P. Shum, H. Sun, C. Yang, D. Liu, J. Zhang,Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer forultra-wideband fiber optic acoustic sensing, Opt. Express 26 (2018) 20758,http://dx.doi.org/10.1364/oe.26.020758.X. Jiang, C. Lin, Y. Huang, K. Luo, J. Zhang, Q. Jiang, C. Zhang, Hybrid fiber opticsensor, based on the Fabry–Perot interference, assisted with fluorescentmaterial for the simultaneous measurement of temperature and pressure,Sensors (Switzerland) (2019), http://dx.doi.org/10.3390/s19051097.R. Oliveira, L. Bilro, R. Nogueira, A.M. Rocha, Adhesive based fabry-pérothydrostatic pressure sensor with improved and controlled sensitivity, J.Lightwave Technol. 37 (2019) 1909–1915, http://dx.doi.org/10.1109/JLT.2019.2894949.Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang,Y. Wang, High-sensitivity gas-pressure sensor based on fiber-tip PVCdiaphragm fabry–Pérot interferometer, J. Lightwave Technol. 35 (2017)4067–4071, http://dx.doi.org/10.1109/JLT.2017.2710210.W.P. Chen, D.N. Wang, B. Xu, C.L. Zhao, H.F. Chen, Multimode fiber tipFabry-Perot cavity for highly sensitive pressure measurement, Sci. Rep. 7(2017) 1–6, http://dx.doi.org/10.1038/s41598-017-00300-x.S. Sidhishwari, M. Basu, S.K. Ghorai, A modal interference-based Fiber opticSensor for dual parameter measurement using an artificial neural network,Opt. Fiber Technol. 50 (2019) 216–224, http://dx.doi.org/10.1016/j.yofte.2019.03.026.A.J. Thompson, M. Power, G.-Z. Yang, Micro-scale fiber-optic force sensorfabricated using direct laser writing and calibrated using machine learning,Opt. Express 26 (2018) 14186, http://dx.doi.org/10.1364/oe.26.014186.X. Zhang, D. Liang, J. Zeng, A. Asundi, Genetic algorithm-support vectorregression for high reliability SHM system based on FBG sensor network, Opt.Lasers Eng. 50 (2012) 148–153, http://dx.doi.org/10.1016/j.optlaseng.2011.09.015.D. Jauregui-Vazquez, J.W. Haus, A.B.H. Negari, J.M. Sierra-Hernandez, K.Hansen, Bitapered fiber sensor: signal analysis, Sens. Actuators B Chem. 218(2015) 105–110, http://dx.doi.org/10.1016/j.snb.2015.04.109.Comunidad universitaria en generalPublicationORIGINAL00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1137513https://dspace7-uao.metacatalogo.com/bitstreams/b2bae548-3b9d-49bd-a4bb-adaeea39970f/download820b8248ae52789862684df44d21d999MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/c0194a78-515d-4be9-8f68-b0144ef32e7a/download20b5ba22b1117f71589c7318baa2c560MD52TEXT00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf.txt00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf.txtExtracted texttext/plain38347https://dspace7-uao.metacatalogo.com/bitstreams/7c34f7ae-c60a-4bc9-ad15-c45d3a2c9e83/download216cad1860173e16f7222ce919a7bd93MD54THUMBNAIL00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf.jpg00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf.jpgGenerated Thumbnailimage/jpeg15426https://dspace7-uao.metacatalogo.com/bitstreams/26db9f6f-d983-466f-83ab-962383cb3795/download44ad9b48294b5c4efc737f9428f44801MD5510614/13265oai:dspace7-uao.metacatalogo.com:10614/132652024-01-19 17:34:15.268https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsiever, 2020restrictedhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K