Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis
This manuscript presents the development of a low-pressure extrinsic Fabry-Perot fiber optic sensor based on a thin polyester film, using a phase signal analysis. The proposed interferometer is controlled by the simple contact interaction between the polymer membrane and a multimode fiber optic tip....
- Autores:
-
Gutierrez Rivera, Miguel E.
Sierra Hernández, Juan Manuel
Garcia Mina, Diego Felipe
López Dieguez, Yanelis
Rojas Laguna, Roberto
Jauregui Vazquez, Daniel
Estudillo-Ayala, Julián Moisés
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Occidente
- Repositorio:
- RED: Repositorio Educativo Digital UAO
- Idioma:
- spa
- OAI Identifier:
- oai:red.uao.edu.co:10614/13265
- Acceso en línea:
- https://hdl.handle.net/10614/13265
- Palabra clave:
- Polímeros
Dispositivos optoelectrónicos
Detectores
Optoelectronic devices
Detectors
Fiber optic sensor
Pressure detection
Polymers
Fabry-Perot interferometers
- Rights
- openAccess
- License
- Derechos reservados - Elsiever, 2020
id |
REPOUAO2_a0f7a81bde814a29b43e887eb9e3222b |
---|---|
oai_identifier_str |
oai:red.uao.edu.co:10614/13265 |
network_acronym_str |
REPOUAO2 |
network_name_str |
RED: Repositorio Educativo Digital UAO |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis |
title |
Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis |
spellingShingle |
Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis Polímeros Dispositivos optoelectrónicos Detectores Optoelectronic devices Detectors Fiber optic sensor Pressure detection Polymers Fabry-Perot interferometers |
title_short |
Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis |
title_full |
Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis |
title_fullStr |
Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis |
title_full_unstemmed |
Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis |
title_sort |
Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis |
dc.creator.fl_str_mv |
Gutierrez Rivera, Miguel E. Sierra Hernández, Juan Manuel Garcia Mina, Diego Felipe López Dieguez, Yanelis Rojas Laguna, Roberto Jauregui Vazquez, Daniel Estudillo-Ayala, Julián Moisés |
dc.contributor.author.spa.fl_str_mv |
Gutierrez Rivera, Miguel E. Sierra Hernández, Juan Manuel Garcia Mina, Diego Felipe López Dieguez, Yanelis Rojas Laguna, Roberto Jauregui Vazquez, Daniel Estudillo-Ayala, Julián Moisés |
dc.contributor.corporatename.eng.fl_str_mv |
Elsevier |
dc.subject.armarc.spa.fl_str_mv |
Polímeros Dispositivos optoelectrónicos Detectores |
topic |
Polímeros Dispositivos optoelectrónicos Detectores Optoelectronic devices Detectors Fiber optic sensor Pressure detection Polymers Fabry-Perot interferometers |
dc.subject.armarc.eng.fl_str_mv |
Optoelectronic devices Detectors |
dc.subject.proposal.eng.fl_str_mv |
Fiber optic sensor Pressure detection Polymers Fabry-Perot interferometers |
description |
This manuscript presents the development of a low-pressure extrinsic Fabry-Perot fiber optic sensor based on a thin polyester film, using a phase signal analysis. The proposed interferometer is controlled by the simple contact interaction between the polymer membrane and a multimode fiber optic tip. The created cavity was uniformly stressed by applying a pressure varying from 0 to 2 psi. A finite element analysis was performed for these parameters. The stress applied to the membrane was below the yielding point. Thus, a linear study could be performed. The wavelength spectra exhibited a blue shift with a sensitivity of around 10.5 nm/psi. Although the interference spectra presented crosstalk measurements and required an initial set-point calibration, these effects were overcome by examining the spatial frequency components’ phase analysis. The sensors offered a high sensitivity, close to 3.5 rad/psi. Ultimately, this sensor is a high sensitivity and versatile alternative for low-pressure detection |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-11-01 |
dc.date.accessioned.none.fl_str_mv |
2021-09-27T13:54:58Z |
dc.date.available.none.fl_str_mv |
2021-09-27T13:54:58Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
9244247 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/10614/13265 |
identifier_str_mv |
9244247 |
url |
https://hdl.handle.net/10614/13265 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.citationedition.spa.fl_str_mv |
Volumen 315 (2020) |
dc.relation.citationendpage.spa.fl_str_mv |
8 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
Volumen 315 |
dc.relation.cites.spa.fl_str_mv |
Gutiérrez Rivera, M.E., Jauregui Vazquez, D., Sierra Hernández, J. M., García Mina, D.F., López Dieguez, Y., Estudillo Ayala, J.M., Rojas Laguna, R., García Navarro, S., Roca Blay, L. (2020). Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis. Elsevier, (Vol. 315 (1), pp. 1-8. https://doi.org/10.1016/j.sna.2020.112338 |
dc.relation.ispartofjournal.eng.fl_str_mv |
Sensors and Actuators A: Physical |
dc.relation.references.eng.fl_str_mv |
Q. Yu, X. Zhou, Pressure sensor based on the fiber-optic extrinsic fabry-perotinterferometer, Photonic Sens. 1 (2011) 72–83, http://dx.doi.org/10.1007/s13320-010-0017-9. W.J. Bock, M.S. Nawrocka, W. Urbanczyk, Highly sensitive fiber-optic sensorfor dynamic pressure measurements, IEEE Trans. Instrum. Meas. 50 (2001)1085–1088, http://dx.doi.org/10.1109/19.963163. W.B. Spillman, Multimode fiber-optic pressure sensor based on thephotoelastic effect, Opt. Lett. 7 (1982) 388, http://dx.doi.org/10.1364/ol.7.000388. N. Nadarajah, M.A. Corbo, W. Smith, Fiber optic pressure sensor forbiomedical applications, ASAIO J. (1996), Sept. 1996 Poster Sess.#6—Prosthetics/Biomaterials. J.N. Fields, C.K. Asawa, O.G. Ramer, M.K. Barnoski, Fiber optic pressure sensor,J. Acoust. Soc. Am. 67 (1980) 816–818, http://dx.doi.org/10.1121/1.383957. K. Totsu, Y. Haga, M. Esashi, Ultra-miniature fiber-optic pressure sensor usingwhite light interferometry, J. Micromech. Microeng. 15 (2005) 71–75, http://dx.doi.org/10.1088/0960-1317/15/1/011. D. Sindhanaiselvi, Design and analysis of low pressure MEMS sensor,Pondicherry University, 2015. E. Vorathin, Z.M. Hafizi, N. Ismail, M. Loman, Review of high sensitivityfibre-optic pressure sensors for low pressure sensing, Opt. Laser Technol.(2020), http://dx.doi.org/10.1016/j.optlastec.2019.105841. X. Qi, S. Wang, J. Jiang, K. Liu, X. Wang, Y. Yang, T. Liu, Fiber optic fabry-perotpressure sensor with embedded MEMS micro-cavity for ultra-high pressuredetection, J. Lightwave Technol. 37 (2019) 2719–2725, http://dx.doi.org/10.1109/JLT.2018.2876717. Q. Wang, W. Wang, X. Jiang, Q. Yu, Diaphragm-based extrinsic Fabry-Perotinterferometric optical fiber pressure sensor, 5th Int. Symp. Adv. Opt. Manuf.Test Technol. Opt. Test Meas. Technol. Equip. 7656 (2010) 76564V, http://dx.doi.org/10.1117/12.866925. W. Wang, Q. Yu, F. Li, X. Zhou, X. Jiang, Temperature-insensitive pressuresensor based on all-fused-silica extrinsic fabry-Pérot optical fiberinterferometer, IEEE Sens. J. 12 (2012) 2425–2429, http://dx.doi.org/10.1109/JSEN.2012.2190056. W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, J. Huang, Adhesive-freebonding homogenous fused-silica Fabry–Perot optical fiber low pressuresensor in harsh environments by CO2 laser welding, Opt. Commun. 435(2019) 97–101, http://dx.doi.org/10.1016/j.optcom.2018.10.064. J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, M. Han, Tuning operating point ofextrinsic Fabry–Perot interferometric fiber-optic sensors usingmicrostructured fiber and gas pressure, Opt. Lett. 37 (2012) 4672, http://dx.doi.org/10.1364/ol.37.004672. Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, Z. Ma, Absolute singlecavity length interrogation of fiber-optic compound Fabry–Perot pressuresensors through a white light non-scanning correlation method, Sensors(Switzerland) (2019), http://dx.doi.org/10.3390/s19071628. C. Lin, F. Xiaomeng, Miniature MEMS Fabry-Perot interferometry pressuresensor and the fabrication system, Proc 2016 10th IEEE Int. Conf.Anti-Counterfeiting, Secur Identification, ASID 2016 3 (2017) 105–108, http://dx.doi.org/10.1109/ICASID.2016.7873927. G.C. Hill, R. Melamud, F.E. Declercq, A.A. Davenport, I.H. Chan, P.G. Hartwell,B.L. Pruitt, SU-8 MEMS fabry-perot pressure sensor, Sens. Actuators A Phys.138 (2007) 52–62, http://dx.doi.org/10.1016/j.sna.2007.04.047. I. Padron, A.T. Fiory, N.M. Ravindra, Novel MEMS fabry-perot interferometricpressure sensors, Mater. Sci. Forum 638–642 (2010) 1009–1014, http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.1009. Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, H. Wei, Enhancing the pressuresensitivity of a Fabry–Perot interferometer using a simplified hollow-corephotonic crystal fiber with a microchannel, Appl. Phys. B 120 (2015) 461–467,http://dx.doi.org/10.1007/s00340-015-6155-4. J. Ma, J. Ju, L. Jin, W. Jin, A compact fiber-tip micro-cavity sensor forhigh-pressure measurement, IEEE Photonics Technol. Lett. 23 (2011)1561–1563, http://dx.doi.org/10.1109/LPT.2011.2164060. Y. Zhu, A. Wang, Miniature fiber-optic pressure sensor, IEEE PhotonicsTechnol. Lett. 17 (2005) 447–449, http://dx.doi.org/10.1109/LPT.2004.839002. L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, W. Ma, S. Wang, J. Hu, A diaphragm-freefiber Fabry-Perot gas pressure sensor, Rev. Sci. Instrum. (2019), http://dx.doi.org/10.1063/1.5055660. J. Zhu, M. Wang, L. Chen, X. Ni, H. Ni, An optical fiber Fabry–Perot pressuresensor using corrugated diaphragm and angle polished fiber, Opt. FiberTechnol. 34 (2017) 42–46, http://dx.doi.org/10.1016/j.yofte.2016.12.004. W. Ni, P. Lu, X. Fu, W. Zhang, P.P. Shum, H. Sun, C. Yang, D. Liu, J. Zhang,Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer forultra-wideband fiber optic acoustic sensing, Opt. Express 26 (2018) 20758,http://dx.doi.org/10.1364/oe.26.020758. X. Jiang, C. Lin, Y. Huang, K. Luo, J. Zhang, Q. Jiang, C. Zhang, Hybrid fiber opticsensor, based on the Fabry–Perot interference, assisted with fluorescentmaterial for the simultaneous measurement of temperature and pressure,Sensors (Switzerland) (2019), http://dx.doi.org/10.3390/s19051097. R. Oliveira, L. Bilro, R. Nogueira, A.M. Rocha, Adhesive based fabry-pérothydrostatic pressure sensor with improved and controlled sensitivity, J.Lightwave Technol. 37 (2019) 1909–1915, http://dx.doi.org/10.1109/JLT.2019.2894949. Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang,Y. Wang, High-sensitivity gas-pressure sensor based on fiber-tip PVCdiaphragm fabry–Pérot interferometer, J. Lightwave Technol. 35 (2017)4067–4071, http://dx.doi.org/10.1109/JLT.2017.2710210. W.P. Chen, D.N. Wang, B. Xu, C.L. Zhao, H.F. Chen, Multimode fiber tipFabry-Perot cavity for highly sensitive pressure measurement, Sci. Rep. 7(2017) 1–6, http://dx.doi.org/10.1038/s41598-017-00300-x. S. Sidhishwari, M. Basu, S.K. Ghorai, A modal interference-based Fiber opticSensor for dual parameter measurement using an artificial neural network,Opt. Fiber Technol. 50 (2019) 216–224, http://dx.doi.org/10.1016/j.yofte.2019.03.026. A.J. Thompson, M. Power, G.-Z. Yang, Micro-scale fiber-optic force sensorfabricated using direct laser writing and calibrated using machine learning,Opt. Express 26 (2018) 14186, http://dx.doi.org/10.1364/oe.26.014186. X. Zhang, D. Liang, J. Zeng, A. Asundi, Genetic algorithm-support vectorregression for high reliability SHM system based on FBG sensor network, Opt.Lasers Eng. 50 (2012) 148–153, http://dx.doi.org/10.1016/j.optlaseng.2011.09.015. D. Jauregui-Vazquez, J.W. Haus, A.B.H. Negari, J.M. Sierra-Hernandez, K.Hansen, Bitapered fiber sensor: signal analysis, Sens. Actuators B Chem. 218(2015) 105–110, http://dx.doi.org/10.1016/j.snb.2015.04.109. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Elsiever, 2020 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.eng.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Derechos reservados - Elsiever, 2020 https://creativecommons.org/licenses/by-nc-nd/4.0/ Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
8 páginas |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S092442472031654X |
institution |
Universidad Autónoma de Occidente |
bitstream.url.fl_str_mv |
https://dspace7-uao.metacatalogo.com/bitstreams/b2bae548-3b9d-49bd-a4bb-adaeea39970f/download https://dspace7-uao.metacatalogo.com/bitstreams/c0194a78-515d-4be9-8f68-b0144ef32e7a/download https://dspace7-uao.metacatalogo.com/bitstreams/7c34f7ae-c60a-4bc9-ad15-c45d3a2c9e83/download https://dspace7-uao.metacatalogo.com/bitstreams/26db9f6f-d983-466f-83ab-962383cb3795/download |
bitstream.checksum.fl_str_mv |
820b8248ae52789862684df44d21d999 20b5ba22b1117f71589c7318baa2c560 216cad1860173e16f7222ce919a7bd93 44ad9b48294b5c4efc737f9428f44801 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio UAO |
repository.mail.fl_str_mv |
repositorio@uao.edu.co |
_version_ |
1814260228031512576 |
spelling |
Gutierrez Rivera, Miguel E.d9743a5e5ab964c57f4ae1f34d36d176Sierra Hernández, Juan Manuel55e755f69134d7790d8a320d01720758Garcia Mina, Diego Felipec444e6cc93186e7c24a52a7b8e4a1f2dLópez Dieguez, Yanelis987b1d6450a79fad189040dbaf53c091Rojas Laguna, Roberto4213cb36bc1eaa42436b76ac9e2b4953Jauregui Vazquez, Daniel3ce5462e20573d017fd021baff8504beEstudillo-Ayala, Julián Moisés461f2baa86eadf7985584ff6e523f461Elsevier2021-09-27T13:54:58Z2021-09-27T13:54:58Z2020-11-019244247https://hdl.handle.net/10614/13265This manuscript presents the development of a low-pressure extrinsic Fabry-Perot fiber optic sensor based on a thin polyester film, using a phase signal analysis. The proposed interferometer is controlled by the simple contact interaction between the polymer membrane and a multimode fiber optic tip. The created cavity was uniformly stressed by applying a pressure varying from 0 to 2 psi. A finite element analysis was performed for these parameters. The stress applied to the membrane was below the yielding point. Thus, a linear study could be performed. The wavelength spectra exhibited a blue shift with a sensitivity of around 10.5 nm/psi. Although the interference spectra presented crosstalk measurements and required an initial set-point calibration, these effects were overcome by examining the spatial frequency components’ phase analysis. The sensors offered a high sensitivity, close to 3.5 rad/psi. Ultimately, this sensor is a high sensitivity and versatile alternative for low-pressure detection8 páginasapplication/pdfspaElsevierDerechos reservados - Elsiever, 2020https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2https://www.sciencedirect.com/science/article/pii/S092442472031654XLow-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysisArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85PolímerosDispositivos optoelectrónicosDetectoresOptoelectronic devicesDetectorsFiber optic sensorPressure detectionPolymersFabry-Perot interferometersVolumen 315 (2020)81Volumen 315Gutiérrez Rivera, M.E., Jauregui Vazquez, D., Sierra Hernández, J. M., García Mina, D.F., López Dieguez, Y., Estudillo Ayala, J.M., Rojas Laguna, R., García Navarro, S., Roca Blay, L. (2020). Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis. Elsevier, (Vol. 315 (1), pp. 1-8. https://doi.org/10.1016/j.sna.2020.112338Sensors and Actuators A: PhysicalQ. Yu, X. Zhou, Pressure sensor based on the fiber-optic extrinsic fabry-perotinterferometer, Photonic Sens. 1 (2011) 72–83, http://dx.doi.org/10.1007/s13320-010-0017-9.W.J. Bock, M.S. Nawrocka, W. Urbanczyk, Highly sensitive fiber-optic sensorfor dynamic pressure measurements, IEEE Trans. Instrum. Meas. 50 (2001)1085–1088, http://dx.doi.org/10.1109/19.963163.W.B. Spillman, Multimode fiber-optic pressure sensor based on thephotoelastic effect, Opt. Lett. 7 (1982) 388, http://dx.doi.org/10.1364/ol.7.000388.N. Nadarajah, M.A. Corbo, W. Smith, Fiber optic pressure sensor forbiomedical applications, ASAIO J. (1996), Sept. 1996 Poster Sess.#6—Prosthetics/Biomaterials.J.N. Fields, C.K. Asawa, O.G. Ramer, M.K. Barnoski, Fiber optic pressure sensor,J. Acoust. Soc. Am. 67 (1980) 816–818, http://dx.doi.org/10.1121/1.383957.K. Totsu, Y. Haga, M. Esashi, Ultra-miniature fiber-optic pressure sensor usingwhite light interferometry, J. Micromech. Microeng. 15 (2005) 71–75, http://dx.doi.org/10.1088/0960-1317/15/1/011.D. Sindhanaiselvi, Design and analysis of low pressure MEMS sensor,Pondicherry University, 2015.E. Vorathin, Z.M. Hafizi, N. Ismail, M. Loman, Review of high sensitivityfibre-optic pressure sensors for low pressure sensing, Opt. Laser Technol.(2020), http://dx.doi.org/10.1016/j.optlastec.2019.105841.X. Qi, S. Wang, J. Jiang, K. Liu, X. Wang, Y. Yang, T. Liu, Fiber optic fabry-perotpressure sensor with embedded MEMS micro-cavity for ultra-high pressuredetection, J. Lightwave Technol. 37 (2019) 2719–2725, http://dx.doi.org/10.1109/JLT.2018.2876717.Q. Wang, W. Wang, X. Jiang, Q. Yu, Diaphragm-based extrinsic Fabry-Perotinterferometric optical fiber pressure sensor, 5th Int. Symp. Adv. Opt. Manuf.Test Technol. Opt. Test Meas. Technol. Equip. 7656 (2010) 76564V, http://dx.doi.org/10.1117/12.866925.W. Wang, Q. Yu, F. Li, X. Zhou, X. Jiang, Temperature-insensitive pressuresensor based on all-fused-silica extrinsic fabry-Pérot optical fiberinterferometer, IEEE Sens. J. 12 (2012) 2425–2429, http://dx.doi.org/10.1109/JSEN.2012.2190056.W. Wang, W. Wu, S. Wu, Y. Li, C. Huang, X. Tian, X. Fei, J. Huang, Adhesive-freebonding homogenous fused-silica Fabry–Perot optical fiber low pressuresensor in harsh environments by CO2 laser welding, Opt. Commun. 435(2019) 97–101, http://dx.doi.org/10.1016/j.optcom.2018.10.064.J. Tian, Q. Zhang, T. Fink, H. Li, W. Peng, M. Han, Tuning operating point ofextrinsic Fabry–Perot interferometric fiber-optic sensors usingmicrostructured fiber and gas pressure, Opt. Lett. 37 (2012) 4672, http://dx.doi.org/10.1364/ol.37.004672.Z. Guo, W. Lv, W. Wang, Q. Chen, X. Zhang, H. Chen, Z. Ma, Absolute singlecavity length interrogation of fiber-optic compound Fabry–Perot pressuresensors through a white light non-scanning correlation method, Sensors(Switzerland) (2019), http://dx.doi.org/10.3390/s19071628.C. Lin, F. Xiaomeng, Miniature MEMS Fabry-Perot interferometry pressuresensor and the fabrication system, Proc 2016 10th IEEE Int. Conf.Anti-Counterfeiting, Secur Identification, ASID 2016 3 (2017) 105–108, http://dx.doi.org/10.1109/ICASID.2016.7873927.G.C. Hill, R. Melamud, F.E. Declercq, A.A. Davenport, I.H. Chan, P.G. Hartwell,B.L. Pruitt, SU-8 MEMS fabry-perot pressure sensor, Sens. Actuators A Phys.138 (2007) 52–62, http://dx.doi.org/10.1016/j.sna.2007.04.047.I. Padron, A.T. Fiory, N.M. Ravindra, Novel MEMS fabry-perot interferometricpressure sensors, Mater. Sci. Forum 638–642 (2010) 1009–1014, http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.1009.Y. Yu, X. Chen, Q. Huang, C. Du, S. Ruan, H. Wei, Enhancing the pressuresensitivity of a Fabry–Perot interferometer using a simplified hollow-corephotonic crystal fiber with a microchannel, Appl. Phys. B 120 (2015) 461–467,http://dx.doi.org/10.1007/s00340-015-6155-4.J. Ma, J. Ju, L. Jin, W. Jin, A compact fiber-tip micro-cavity sensor forhigh-pressure measurement, IEEE Photonics Technol. Lett. 23 (2011)1561–1563, http://dx.doi.org/10.1109/LPT.2011.2164060.Y. Zhu, A. Wang, Miniature fiber-optic pressure sensor, IEEE PhotonicsTechnol. Lett. 17 (2005) 447–449, http://dx.doi.org/10.1109/LPT.2004.839002.L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, W. Ma, S. Wang, J. Hu, A diaphragm-freefiber Fabry-Perot gas pressure sensor, Rev. Sci. Instrum. (2019), http://dx.doi.org/10.1063/1.5055660.J. Zhu, M. Wang, L. Chen, X. Ni, H. Ni, An optical fiber Fabry–Perot pressuresensor using corrugated diaphragm and angle polished fiber, Opt. FiberTechnol. 34 (2017) 42–46, http://dx.doi.org/10.1016/j.yofte.2016.12.004.W. Ni, P. Lu, X. Fu, W. Zhang, P.P. Shum, H. Sun, C. Yang, D. Liu, J. Zhang,Ultrathin graphene diaphragm-based extrinsic Fabry-Perot interferometer forultra-wideband fiber optic acoustic sensing, Opt. Express 26 (2018) 20758,http://dx.doi.org/10.1364/oe.26.020758.X. Jiang, C. Lin, Y. Huang, K. Luo, J. Zhang, Q. Jiang, C. Zhang, Hybrid fiber opticsensor, based on the Fabry–Perot interference, assisted with fluorescentmaterial for the simultaneous measurement of temperature and pressure,Sensors (Switzerland) (2019), http://dx.doi.org/10.3390/s19051097.R. Oliveira, L. Bilro, R. Nogueira, A.M. Rocha, Adhesive based fabry-pérothydrostatic pressure sensor with improved and controlled sensitivity, J.Lightwave Technol. 37 (2019) 1909–1915, http://dx.doi.org/10.1109/JLT.2019.2894949.Z. Zhang, C. Liao, J. Tang, Z. Bai, K. Guo, M. Hou, J. He, Y. Wang, S. Liu, F. Zhang,Y. Wang, High-sensitivity gas-pressure sensor based on fiber-tip PVCdiaphragm fabry–Pérot interferometer, J. Lightwave Technol. 35 (2017)4067–4071, http://dx.doi.org/10.1109/JLT.2017.2710210.W.P. Chen, D.N. Wang, B. Xu, C.L. Zhao, H.F. Chen, Multimode fiber tipFabry-Perot cavity for highly sensitive pressure measurement, Sci. Rep. 7(2017) 1–6, http://dx.doi.org/10.1038/s41598-017-00300-x.S. Sidhishwari, M. Basu, S.K. Ghorai, A modal interference-based Fiber opticSensor for dual parameter measurement using an artificial neural network,Opt. Fiber Technol. 50 (2019) 216–224, http://dx.doi.org/10.1016/j.yofte.2019.03.026.A.J. Thompson, M. Power, G.-Z. Yang, Micro-scale fiber-optic force sensorfabricated using direct laser writing and calibrated using machine learning,Opt. Express 26 (2018) 14186, http://dx.doi.org/10.1364/oe.26.014186.X. Zhang, D. Liang, J. Zeng, A. Asundi, Genetic algorithm-support vectorregression for high reliability SHM system based on FBG sensor network, Opt.Lasers Eng. 50 (2012) 148–153, http://dx.doi.org/10.1016/j.optlaseng.2011.09.015.D. Jauregui-Vazquez, J.W. Haus, A.B.H. Negari, J.M. Sierra-Hernandez, K.Hansen, Bitapered fiber sensor: signal analysis, Sens. Actuators B Chem. 218(2015) 105–110, http://dx.doi.org/10.1016/j.snb.2015.04.109.Comunidad universitaria en generalPublicationORIGINAL00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdfTexto archivo completo del artículo de revista, PDFapplication/pdf1137513https://dspace7-uao.metacatalogo.com/bitstreams/b2bae548-3b9d-49bd-a4bb-adaeea39970f/download820b8248ae52789862684df44d21d999MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81665https://dspace7-uao.metacatalogo.com/bitstreams/c0194a78-515d-4be9-8f68-b0144ef32e7a/download20b5ba22b1117f71589c7318baa2c560MD52TEXT00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf.txt00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf.txtExtracted texttext/plain38347https://dspace7-uao.metacatalogo.com/bitstreams/7c34f7ae-c60a-4bc9-ad15-c45d3a2c9e83/download216cad1860173e16f7222ce919a7bd93MD54THUMBNAIL00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf.jpg00394_Low-pressure fiber-optic sensor by polyester Fabry-Perot cavity and its phase signal processing analysis.pdf.jpgGenerated Thumbnailimage/jpeg15426https://dspace7-uao.metacatalogo.com/bitstreams/26db9f6f-d983-466f-83ab-962383cb3795/download44ad9b48294b5c4efc737f9428f44801MD5510614/13265oai:dspace7-uao.metacatalogo.com:10614/132652024-01-19 17:34:15.268https://creativecommons.org/licenses/by-nc-nd/4.0/Derechos reservados - Elsiever, 2020restrictedhttps://dspace7-uao.metacatalogo.comRepositorio UAOrepositorio@uao.edu.coRUwgQVVUT1IgYXV0b3JpemEgYSBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgT2NjaWRlbnRlLCBkZSBmb3JtYSBpbmRlZmluaWRhLCBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgbGEgTGV5IDQ0IGRlIDE5OTMsIGxhIERlY2lzacOzbiBhbmRpbmEgMzUxIGRlIDE5OTMsIGVsIERlY3JldG8gNDYwIGRlIDE5OTUgeSBkZW3DoXMgbGV5ZXMgeSBqdXJpc3BydWRlbmNpYSB2aWdlbnRlIGFsIHJlc3BlY3RvLCBoYWdhIHB1YmxpY2FjacOzbiBkZSBlc3RlIGNvbiBmaW5lcyBlZHVjYXRpdm9zLiBQQVJBR1JBRk86IEVzdGEgYXV0b3JpemFjacOzbiBhZGVtw6FzIGRlIHNlciB2w6FsaWRhIHBhcmEgbGFzIGZhY3VsdGFkZXMgeSBkZXJlY2hvcyBkZSB1c28gc29icmUgbGEgb2JyYSBlbiBmb3JtYXRvIG8gc29wb3J0ZSBtYXRlcmlhbCwgdGFtYmnDqW4gcGFyYSBmb3JtYXRvIGRpZ2l0YWwsIGVsZWN0csOzbmljbywgdmlydHVhbCwgcGFyYSB1c29zIGVuIHJlZCwgSW50ZXJuZXQsIGV4dHJhbmV0LCBpbnRyYW5ldCwgYmlibGlvdGVjYSBkaWdpdGFsIHkgZGVtw6FzIHBhcmEgY3VhbHF1aWVyIGZvcm1hdG8gY29ub2NpZG8gbyBwb3IgY29ub2Nlci4gRUwgQVVUT1IsIGV4cHJlc2EgcXVlIGVsIGRvY3VtZW50byAodHJhYmFqbyBkZSBncmFkbywgcGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIGVsYWJvcsOzIHNpbiBxdWVicmFudGFyIG5pIHN1cGxhbnRhciBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHkgZGUgdGFsIGZvcm1hLCBlbCBkb2N1bWVudG8gKHRyYWJham8gZGUgZ3JhZG8sIHBhc2FudMOtYSwgY2Fzb3MgbyB0ZXNpcykgZXMgZGUgc3UgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgw6lzdGUuIFBBUkFHUkFGTzogZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGd1bmEgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybywgcmVmZXJlbnRlIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGVsIGRvY3VtZW50byAoVHJhYmFqbyBkZSBncmFkbywgUGFzYW50w61hLCBjYXNvcyBvIHRlc2lzKSBlbiBjdWVzdGnDs24sIEVMIEFVVE9SLCBhc3VtaXLDoSBsYSByZXNwb25zYWJpbGlkYWQgdG90YWwsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvczsgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgbGEgVW5pdmVyc2lkYWQgIEF1dMOzbm9tYSBkZSBPY2NpZGVudGUgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4gVG9kYSBwZXJzb25hIHF1ZSBjb25zdWx0ZSB5YSBzZWEgZW4gbGEgYmlibGlvdGVjYSBvIGVuIG1lZGlvIGVsZWN0csOzbmljbyBwb2Ryw6EgY29waWFyIGFwYXJ0ZXMgZGVsIHRleHRvIGNpdGFuZG8gc2llbXByZSBsYSBmdWVudGUsIGVzIGRlY2lyIGVsIHTDrXR1bG8gZGVsIHRyYWJham8geSBlbCBhdXRvci4gRXN0YSBhdXRvcml6YWNpw7NuIG5vIGltcGxpY2EgcmVudW5jaWEgYSBsYSBmYWN1bHRhZCBxdWUgdGllbmUgRUwgQVVUT1IgZGUgcHVibGljYXIgdG90YWwgbyBwYXJjaWFsbWVudGUgbGEgb2JyYS4K |